
EXAMINATION TENSOR CALCULUS AND DIFFERENTIAL GEOMETRY

Course code: 2F800. Date: Thursday April 23, 2009. Time: 09h00–12h00. Place: HG 10.30 E.

Read this first!

• Write your name and student identification number on each paper.

• The exam consists of 4 problems. The maximum credit for each item is indicated in the margin.

• Motivate your answers.

• You may consult the course notes “Tensorrekening en Differentiaalmeetkunde (2F800)” by Jan de Graaf,
and the draft notes “Tensor Calculus and Differential Geometry (2F800)” by Luc Florack without warranty.

1. HODGE STAR ON LORENTZIAN SPACE.(30)

Definition. A Lorentzian inner product on n-dimensional linear space V is an indefinite symmetric
bilinear mapping ( · | · ) : V × V → R which satisfies the following axioms:

• ∀x,y ∈ V : (x|y) = (y|x),

• ∀x,y, z ∈ V, λ, µ ∈ R : (λx + µy|z) = λ (x|z) + µ (y|z),

• ∀x ∈ V with x 6= 0 ∃y ∈ V : (x|y) 6= 0.

Given a basis {∂i} of V and a corresponding decomposition x = xi∂i, y = yi∂i, we may write
(x|y) = G(x,y) = gijx

iyj , in which gij = (∂i|∂j) are the components of the corresponding Gram
matrix G. The dual basis of V ∗ is indicated by {dxi}.

Definition. The converters ] : V →V ∗ and [ : V ∗→V are defined as follows. If v ∈ V , v̂ ∈ V ∗, then

]v
def
= G(v, · ) ∈ V ∗ respectively [v̂

def
= G−1(v̂, · ) ∈ V .

Definition. Let â1, . . . , âk ∈ V ∗. The Hodge star operator ∗ :
∧
k(V )→

∧
n−k(V ) is defined as follows:{

∗1 = ε for k = 0,

∗
(
â1 ∧ . . . ∧ âk

)
= εy[â1y . . .y[âk for k = 1, . . . , n.

In this definition ε =
√
|g| dx1 ∧ . . . ∧ dxn = ε|i1...in|dx

i1 ∧ . . . ∧ dxin ∈
∧
n(V ) is the Levi-Civita

tensor, with ε1...n =
√
|g| =

√
|detG|.

Definition. Let a1, . . . ,ak ∈ V . The (n−k)-form εya1y . . .yak ∈
∧
n−k(V ) is defined as follows:

(εya1y . . .yak) (xk+1, . . . ,xn) = ε (a1, . . . ,ak,xk+1, . . . ,xn) for all xk+1, . . . ,xn ∈ V .



In the following problems we take n = 3, V = R3, and (“pseudo-Riemannian metric”) g11 = g22 = 1,
g33 =−1, gij =0 otherwise (i, j = 1, 2, 3). Moreover, we make the following notational simplifications:
∂1 = ∂x, ∂2 = ∂y, ∂3 = ∂t, dx1 = dx, dx2 = dy, dx3 = dt.

a. Let x = xi∂i ∈ V , y = yi∂i ∈ V . Show that (x|y) = gijx
iyj defines a Lorentzian inner product.(5)

Take x,y, z ∈ V and λ, µ ∈ R arbitrary. Then

• (x|y) = gijx
iyj

∗
= gjiy

jxi = (y|x),

• (λx + µy|z) = gij(λx
i + µyi)zj = λgijx

izj + µgijy
izj = λ (x|z) + µ (y|z),

• Suppose xa=ξ 6=0 for some a = 1, 2, 3, take ya=ξ, yb=0 for b 6=a, then (x|y) = ±ξ2 6= 0 (viz. + if a = 1, 2, − if a = 3).

Equality ∗ exploits the symmetry gij = gji.

b. Compute the following forms in terms of wedge products of dx, dy, and dt:(20)

• ∗ 1;

• ∗ dx, ∗ dy, ∗ dt;

• ∗ (dx ∧ dy), ∗ (dx ∧ dt), ∗ (dy ∧ dt);

• ∗ (dx ∧ dy ∧ dt).

Note that |g| = 1, thus ε123 = 1, whence εijk = [i, j, k]. Moreover, [dxi = gij∂j , so that, using g11 = g22 = −g33 = 1 we obtain
[dx = ∂x, [dy = ∂y , [dt = −∂t. This is used in all of the computations below.

• ∗ 1 = ε = ε|ijk|dx
i ∧ dxj ∧ dxk ∗= dx ∧ dy ∧ dt.

In ∗ we have used the fact that there is only one effective term, viz. (i, j, k) = (1, 2, 3). Furthermore,

• ∗ dx(∂j , ∂k) = ε([dx, ∂j , ∂k) = ε(∂x, ∂j , ∂k) = ε1jk . Therefore ∗ dx = ε1|jk|dx
j ∧ dxk ∗= dy ∧ dt.

• ∗ dy(∂j , ∂k) = ε([dy, ∂j , ∂k) = ε(∂y , ∂j , ∂k) = ε2jk . Therefore ∗ dy = ε2|jk|dx
j ∧ dxk ?

= −dx ∧ dt.

• ∗ dt(∂j , ∂k) = ε([dt, ∂j , ∂k) = ε(−∂t, ∂j , ∂k) = −ε3jk . Therefore ∗ dt = −ε3|jk|dxj ∧ dxk
◦
= −dx ∧ dy.

In ∗ we have used the fact that there is only one effective term, viz. (j, k) = (2, 3). In ? we have used the fact that there is only one effective
term, viz. (j, k) = (1, 3). In ◦ we have used the fact that there is only one effective term, viz. (j, k) = (1, 2).

• ∗ (dx ∧ dy)(∂k) = ε([dx, [dy, ∂k) = ε(∂x, ∂y , ∂k) = ε12k . Therefore ∗ (dx ∧ dy) = ε12kdx
k ∗= dt.

• ∗ (dx ∧ dt)(∂k) = ε([dx, [dt, ∂k) = ε(∂x,−∂t, ∂k) = −ε13k . Therefore ∗ (dx ∧ dt) = −ε13kdxk
?
= dy.

• ∗ (dy ∧ dt)(∂k) = ε([dy, [dt, ∂k) = ε(∂y ,−∂t, ∂k) = −ε23k . Therefore ∗ (dy ∧ dt) = −ε23kdxk
◦
= −dx.

In ∗ we have used the fact that there is only one effective term, viz. k = 3. In ? we have used the fact that there is only one effective term,
viz. k = 2. In ◦ we have used the fact that there is only one effective term, viz. k = 1. Finally,



• ∗ (dx ∧ dy ∧ dt) = ε([dx, [dy, [dt) = ε(∂x, ∂y ,−∂t) = −ε123 = −1.

c. What can you say about the double Hodge star operator ∗∗ :
∧
k(V )→

∧
k(V ) (k = 0, 1, 2, 3)?(5)

By inspection of the previous results under b we obtain, respectively,

• ∗ ∗ 1 = ∗ ε = ∗ (dx ∧ dy ∧ dt) = −1.

• ∗ ∗ dx = ∗ (dy ∧ dt) = −dx.

• ∗ ∗ dy = − ∗ (dx ∧ dt) = −dy.

• ∗ ∗ dt = − ∗ (dx ∧ dy) = −dt.

• ∗ ∗ (dx ∧ dy) = ∗ dt = −dx ∧ dy.

• ∗ ∗ (dx ∧ dt) = ∗ dy = −dx ∧ dt.

• ∗ ∗ (dy ∧ dt) = − ∗ dx = −dy ∧ dt.

• ∗ ∗ (dx ∧ dy ∧ dt) = − ∗ 1 = −dx ∧ dy ∧ dt.

All in all we observe that ∗∗ = −id∧
k(V ) for any k = 0, 1, 2, 3, so formally ∗∗ = −1. (In general ∗∗ = (−1)k(n−k)sgn g id∧

k(V ).)

♣

2. ANTISYMMETRISATION.(20)

Notation. By π = {π(i1), . . . , π(ip)} we denote a permutation of the p ordered symbols {i1, . . . , ip}.
The notation π(ik), k = 1, . . . , p, is shorthand for the k-th entry of π. By sgn (π) = ±1 we indicate
the parity (even/odd) of π. Furthermore, V is an n-dimensional linear space with basis {ei}. The
corresponding basis of V ∗ is indicated by {êi}.

Definition. The antisymmetrisation map A : T0
p(V ) −→

∧
p(V ) is defined as follows:

(A (T)) (v1, . . . ,vp) =
1

p!

∑
π

sgn (π)T(vπ(1), . . . ,vπ(p)) .

Let T = ti1...ip ê
i1 ⊗ . . .⊗ êip ∈ T0

p(V ). Show that

A (T) = t[i1...ip]ê
i1 ⊗ . . .⊗ êip ,

in which the antisymmetrised holor is defined as follows:

t[i1...ip]
def
=

1

p!

∑
π

sgn (π)tπ(i1)...π(ip) .

The holor is obtained by evaluating the tensor on (any combination of) basis vectors:

(A (T))
(
ei1 , . . . , eip

)
=

1

p!

∑
π

sgn (π)T
(
eπ(i1), . . . , eπ(ip)

)
=

1

p!

∑
π

sgn (π)tπ(i1)...π(ip) = t[i1...ip] .



♣

3. RELATIVE TENSORS.(25)

Definition. Let A be a square matrix with entries Aij (i, j = 1, . . . , n). The cofactor matrix of A is the
matrix Ã with entries Ãij given by

Ãij =
∂ detA

∂Aij
.

a. Compute the cofactor matrix Ã of(5)

A =

 A11 A12 A13

A21 A22 A23

A31 A32 A33

 .

(Hint: detA = A11A22A33+A12A23A31+A13A21A32−A13A22A31−A11A23A32−A12A21A33.)

We have
detA = A11A22A33+A12A23A31+A13A21A32−A13A22A31−A11A23A32−A12A21A33 ,

whence

Ã =

 A22A33 −A23A32 A23A31 −A12A33 A21A32 −A22A31

A13A32 −A12A33 A11A33 −A13A31 A12A31 −A11A32

A12A23 −A13A22 A13A21 −A11A23 A11A22 −A12A21

 .

Lemma. Let T ∈ Tp
q(V ) be a mixed tensor, {ei} a basis of the n-dimensional real linear space V ,

fj = Aijei a change of basis, with transformation matrix A, and B = A−1, i.e. AikB
k
j = δij . Then

T = T
i1...ip
j1...jq

ei1 ⊗ . . .⊗ eip ⊗ êj1 ⊗ . . .⊗ êjq
def
= T

i1...ip
j1...jq fi1 ⊗ . . .⊗ fip ⊗ f̂ j1 ⊗ . . .⊗ f̂ jq ,

if and only if the holor adheres to the tensor transformation law,

T
i1...ip
j1...jq = A`1j1 . . . A

`q
jq
Bi1
k1
. . . B

ip
kp
T
k1...kp
`1...`q

.

A scalar is defined as a tensor of type (p, q) = (0, 0).

In the following problems we take p = 0, q = 2. For notational simplicity we write S instead of T, and
likewise Sij instead of T ij , for the corresponding matrix and holor representations after transformation.
The tensor is invariably denoted by the symbol T ∈ T0

2(V ). In particular,

T = Tij ê
i ⊗ êj = Sij f̂

i ⊗ f̂ j .

b. Show that Tk` = Bi
kB

j
`Sij .(5)

The tensor transformation law states that Sij = Aki A
`
jTk`. Multiplication on both sides with BipB

j
q , using BipA

k
i = δkp and BjqA`j = δ`q ,

yields the desired result. Or, more directly, plug in the covector basis transformation f̂ i = Bipê
p and f̂ j = Bjq ê

q into T = Sij f̂
i ⊗ f̂ j and

read off the coefficients Tpq in terms of Sij relative to the old basis {ei}.

c. Show that detT is not a scalar by showing that detS = (detA)2 detT.(5)



From Sij = Aki A
`
jTk` it follows immediately that detS = (detA)2 detT 6= detT (generically).

d. Show that, consequently, the collection of numbers S̃ij does not transform as the holor of a rank-2(5)
contratensor, and derive the correct “relative tensor transformation law” for it.

S̃ij
def
= ∂ detS/∂Sij

∗
= ∂Tk`/∂Sij ∂((detA)2 detT)/∂Tk`

?
= (detA)2BikB

j
`∂ detT/∂Tk`

def
= (detA)2BikB

j
` T̃

k`. The equality

marked by ∗ exploits item c as well as the chain rule, the one marked by ? is based on b, the rest follows by definition of the cofactor matrix.

The factor (detA)2 on the r.h.s. violates the usual tensor transformation law for a rank-2 contratensor.

Below we assume that V is equipped with a real inner product, with (x|y) = G(x,y) = gijx
iyj , in

which gij = (ei|ej) are the corresponding components of the Gram matrix G relative to basis {ei},
with g = detG.

e. We stipulate that V ij = gw T̃ ij , for some w ∈ R, is the holor of a rank-2 contratensor that does(5)
adhere to the usual tensor transformation law. Prove that such a w ∈ R exists and determine its value.

Let V ij = gw S̃ij . Substitution of g c
= (detA)2 g and S̃ij d

= (detA)2BikB
j
` T̃

k` yields V ij = (detA)2w gw (detA)2BikB
j
` T̃

k` =

BikB
j
`V

k` if and only if w = −1.

♣

4. LOG-POLAR RETINA.(25)

We consider a simplified model of the human retina in the form of a 2-dimensional manifold with a
basic volume form µ ∈

∧
2(R2) given in polar coordinates by

µ =
1

r
dr ∧ dφ .

Recall the definition of polar coordinates (r, φ) in terms of Cartesian coordinates (x, y):{
x = r cosφ
y = r sinφ

(We ignore subtleties that normally need to be considered in the context of reparametrizations, such as
injectivity, differentiability and invertibility.)



MAPPING (CONNOLLY AND VAN ESSEN 1984) OF THE VISUAL FIELD (A) ON THE LGN
(B) AND THE STRIATE CORTEX (C) IN MONKEY. THE REPRESENTATION OF THE CENTRAL 5
DEGREES (SHADED AREAS) IN THE VISUAL FIELD OCCUPIES ABOUT 40% OF THE CORTEX.
THE VOLUME FORM µ IN THIS PROBLEM ANATOMICALLY REPRESENTS A DIFFERENTIAL

SURFACE ELEMENT ON THE HUMAN STRIATE CORTEX RETINOTOPICALLY CONNECTED TO

A CONSTANT SURFACE ELEMENT dx ∧ dy ON THE RETINA AT POSITION (x, y) RELATIVE TO

THE FOVEAL CENTER. PERCEPTUALLY IT EXPLAINS THE LINEAR DECREASE OF RESOLVING

POWER AS A FUNCTION OF ECCENTRICITY r.

a1. Express the 2-form µ in (x, y) coordinates.(5)

From r =
√
x2 + y2 and φ = arctan y

x
it follows that dr = xdx+ydy√

x2+y2
and dφ = xdy−ydx

x2+y2
, whence, using nilpotency and (thus)

antisymmetry of the wedge product (dx ∧ dx = dy ∧ dy = 0, dx ∧ dy = −dy ∧ dx), µ = 1
r
dr ∧ dφ = 1

x2+y2
dx ∧ dy.

a2. Find “log-polar coordinates” coordinates (ρ, ψ) such that µ = dρ ∧ dψ.(5)

The symmetry of the problem suggests a transformation of the form{
ρ = f(r)
ψ = φ

This implies dρ = f ′(r)dr and dψ = dφ, whence µ = dρ ∧ dψ = f ′(r)dr ∧ dφ. We conclude that f ′(r) = 1/r, so that we may take

f(r) = ln r (up to an additive constant). (This is also immediately evident from the fact that dr/r = d ln r.)

Definition. The Christoffel symbols Γkij associated with the affine connection ∇ : TR2 × TR2 → TR2



are defined by∇∂j∂i = Γkij∂k (i = 1, 2).

b. Show that the components of the Christoffel symbols in a coordinate system x are given relative to(5)
those in a coordinate system x by

Γ
k
ij = Sk`

(
Tmj T

n
i Γ`nm + ∂jT

`
i

)
,

in which T and S are the Jacobian matrices with components

T ij =
∂xi

∂xj
resp. Sij =

∂xi

∂xj
.

We have
Γ
k
ij =

〈
dxk,∇∂j∂i

〉
.

Substitute the transformations, and note that ∇∂j = T `j∇∂` , respectively ∇∂` (T `i ∂k) = ∂`T
`
i ∂k + T `i∇∂`∂k . Subsequently use the

definition of the Christoffel symbols,∇∂`∂k = Γmk`∂m, and finally the chain rule, ∂j = T `j ∂`.

c. Under the assumption that Γkij = 0 in Cartesian coordinates (x, y), evaluate the induced symbols Γ
k
ij(5)

in log-polar coordinates (ρ, ψ).

We now have
Γ
k
ij = Sk` ∂jT

`
i .

Furthermore, {
x = eρ cosψ
y = eρ sinψ

If we interpret Γ
k
ij as a matrix with row index k and column index i for fixed j, Sk` as a matrix with row index k and column index `, and T `i

as a matrix with row index ` and column index i, then (writing ρ and ψ for index values 1 and 2, respectively)

S =

(
e−ρ cosψ e−ρ sinψ
−e−ρ sinψ e−ρ cosψ

)
resp. T =

(
eρ cosψ −eρ sinψ
eρ sinψ eρ cosψ

)
,

so that

Γ
k
iρ =

(
e−ρ cosψ e−ρ sinψ
−e−ρ sinψ e−ρ cosψ

)
∂ρ

(
eρ cosψ −eρ sinψ
eρ sinψ eρ cosψ

)
=

(
1 0
0 1

)
,

and

Γ
k
iψ =

(
e−ρ cosψ e−ρ sinψ
−e−ρ sinψ e−ρ cosψ

)
∂ψ

(
eρ cosψ −eρ sinψ
eρ sinψ eρ cosψ

)
=

(
0 −1
1 0

)
.

This establishes all Christoffel symbols in log-polar coordinates: Γ
ρ
ρρ = 1, Γ

ψ
ψρ = 1, Γ

ρ
ψψ = −1, Γ

ψ
ρψ = 1, all other symbols zero.

d. As opposed to the previous problem we now assume that Γ
k
ij = 0 in log-polar coordinates (ρ, ψ).(5)

Evaluate the induced symbols Γkij in Cartesian coordinates (x, y).

Interchanging the roles of the matrices S and T, those of ∂j and ∂j , as well as those of Γkij and Γ
k
ij in the transformation formula for the

Christoffel symbols, recall b, yields
Γkij = Tk`

(
Smj S

n
i Γ

`
nm + ∂jS

`
i

)
.

In particular, in the case at hand,
Γkij = Tk` ∂jS

`
i .

The matrices have been computed above, but need to be re-expressed in (x, y) coordinates. In matrix notation, as before, we now have

Γkix =

(
x −y
y x

)
∂x

(
x

x2+y2
y

x2+y2

− y
x2+y2

x
x2+y2

)
=

(
− x
x2+y2

− y
x2+y2

y
x2+y2

− x
x2+y2

)
,



and

Γkiy =

(
x −y
y x

)
∂y

(
x

x2+y2
y

x2+y2

− y
x2+y2

x
x2+y2

)
=

(
− y
x2+y2

x
x2+y2

− x
x2+y2

− y
x2+y2

)
.

That is, Γxxx = Γyyx = Γyxy = −Γxyy = −x/(x2 + y2) and Γxyx = −Γyxx = Γxxy = Γyyy = −y/(x2 + y2).

THE END
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