
EXAMINATION TENSOR CALCULUS AND DIFFERENTIAL GEOMETRY

Course code: 2F800. Date: Wednesday June 26, 2013. Time: 14h00–17h00. Place:

Read this first!

• Write your name and student identification number on each paper.

• The exam consists of 3 problems. The maximum credit for each item is indicated in the margin.

• Motivate your answers.

• You may consult the course notes “Tensorrekening en Differentiaalmeetkunde (2F800)” by Jan de Graaf,
and the draft notes “Tensor Calculus and Differential Geometry (2F800)” by Luc Florack without warranty.

1. MAXWELL EQUATIONS IN MINKOWSKI SPACETIME.(35)

Definition. We consider “empty” 4-dimensional Minkowski spacetime, furnished with a Lorentzian
metric (x|y) = G(x,y) = gijx

iyj (on each tangent space V =TMx ∼ R4), in which gij = (∂i|∂j) are
the components of the corresponding Gram matrix G. The construct is similar to that of a Riemannian
manifold, except that the metric fails to satisfy the positivity axiom of a Riemannian inner product. In
Cartesian coordinates we have g11=g22=g33= 1, g44=−1, gij =0 otherwise (i, j = 1, 2, 3, 4).

We simplify notation: ∂1 = ∂x, ∂2 = ∂y, ∂3 = ∂z , ∂4 = ∂t, dx1 = dx, dx2 = dy, dx3 = dz, dx4 = dt.

Definition. The converters ] : V →V ∗ and [ : V ∗→V are defined as follows. If v ∈ V , v̂ ∈ V ∗, then

]v
def
= G(v, · ) ∈ V ∗ respectively [v̂

def
= G−1(v̂, · ) ∈ V .

Definition. Let â1, . . . , âk ∈ V ∗. The Hodge star operator ∗ :
∧
k(V )→

∧
n−k(V ) is defined as follows:{

∗1 = ε for k = 0,

∗
(
â1 ∧ . . . ∧ âk

)
= εy[â1y . . .y[âk for k = 1, . . . , n.

In this definition ε =
√
|g| dx1 ∧ . . . ∧ dxn = ε|i1...in|dx

i1 ∧ . . . ∧ dxin ∈
∧
n(V ) is the Levi-Civita

tensor, with ε1...n =
√
|g| =

√
|detG|.

Definition. Let a1, . . . ,ak ∈ V . The (n−k)-form εya1y . . .yak ∈
∧
n−k(V ) is defined as follows:

(εya1y . . .yak) (xk+1, . . . ,xn) = ε (a1, . . . ,ak,xk+1, . . . ,xn) for all xk+1, . . . ,xn ∈ V .

a. Compute the following forms in terms of wedge products of dx, dy, dz, and dt:(10)

• ∗ 1;

• ∗ dx, ∗ dy, ∗ dz, ∗ dt.



Lemma. Without proof the following identities are provided for your convenience.

• ∗ (dx ∧ dy) = dz ∧ dt;

• ∗ (dx ∧ dz) = −dy ∧ dt;

• ∗ (dx ∧ dt) = −dy ∧ dz;

• ∗ (dy ∧ dz) = dx ∧ dt;

• ∗ (dy ∧ dt) = dx ∧ dz;

• ∗ (dz ∧ dt) = −dx ∧ dy.

Definition. We define the Faraday 2-form F (x, y, z, t) = E(x, y, z, t) +B(x, y, z, t) ∈
∧

2(V ), with

E(x, y, z, t) = −E1(x, y, z, t) dx ∧ dt− E2(x, y, z, t) dy ∧ dt− E3(x, y, z, t) dz ∧ dt ,
B(x, y, z, t) = −B1(x, y, z, t) dy ∧ dz +B2(x, y, z, t) dx ∧ dz −B3(x, y, z, t) dx ∧ dy .

The independent components of E(x, y, z, t) and B(x, y, z, t) are collected into column 3-vectors:

E(x, y, z, t)
def
=

 E1(x, y, z, t)
E2(x, y, z, t)
E3(x, y, z, t)

 and B(x, y, z, t)
def
=

 B1(x, y, z, t)
B2(x, y, z, t)
B3(x, y, z, t)

 .

b. Suppose F = Fµν dx
µ ⊗ dxν = F|µν| dx

µ ∧ dxν . Provide the matrix F with entries Fµν .(10)

Definition. Let ωk(x, y, z, t) = ω|i1...ik|(x, y, z, t) dx
i1 ∧ . . . ∧ dxik ∈

∧
k(V ) be a k-form on V . The

exterior derivative of ωk(x) is the (k + 1)-form given by

dωk(x, y, z, t) = dω|i1...ik|(x, y, z, t) ∧ dx
i1 ∧ . . . ∧ dxik ∈

∧
k+1(V ) ,

with df(x, y, z, t)
def
= ∂if(x, y, z, t) dxi for a sufficiently smooth scalar field f : R4 → R.

Definition. Recall the first order derivative operators div and rot defined for 3-vector valued functions
on (x, y, z)-space (t is treated as a parameter and is irrelevant here):

divX def
= ∂xX1 + ∂yX2 + ∂zX3 and rotX def

=

 ∂yX3 − ∂zX2

∂zX1 − ∂xX3

∂xX2 − ∂yX1

 .

c. Show that dF = 0 is equivalent to the following system of pde’s for E andB:(71
2 )

∂B

∂t
= −rotE and divB = 0 .

Definition. The Maxwell 2-form ∗F is the Hodge dual of the Faraday 2-form F .



d. Show that d ∗F = 0 is equivalent to the following system of pde’s for E andB:(71
2 )

∂E

∂t
= rotB and divE = 0 .

(Hint: A symmetry consideration after computation of ∗F may considerably simplify your proof.)

¦

2. DIVERGENCE.(35)

We consider an n-dimensional Riemannian manifold M. The holor of the metric tensor is given by
gij = (∂i|∂j) relative to the local coordinate basis {∂i} of TMx. Recall that the Levi-Civita connection
induces a covariant derivative compatible with the metric, implying the (dual) metric to be “covariantly
constant”: Digjk = 0 and Dig

jk = 0.

Let v = vi∂i be a smooth vector field on M. We wish to define its divergence in a geometrically
meanigful, i.e. coordinate independent way.

a. Show that the “standard” definition div v def
= ∂iv

i fails to be coordinate independent.(5)
(Tip: The solution to problem b implies the solution to this problem.)

We stipulate a covariant divergence of the formDiv
i def

= (∂i+Ai)v
i for some “gauge field”A = Aidx

i.
In the next problem this definition is not necessarily compatible with the metric, i.e. the field A is not
necessarily related to the Levi-Civita connection.

b. Show that the gauge field does not transform as a covector field, and derive its explicit transformation(5)
behaviour if we assume div v def

= Div
i to be coordinate independent.

Henceforth we will assume the covariant derivative to be compatible with the metric. Recall the
Christoffel symbols of the second kind for the Levi-Civita connection:

Γijk =
1

2
gi` (∂jg`k + ∂kgj` − ∂`gjk) .

c. Prove that Γiik = Γiki = ∂k ln
√
g.(5)

(Hint: Recall the definition of the cofactor matrix and its relation to the matrix inverse.)

Lemma. If J is the determinant of the Jacobian matrix with entries
∂xk

∂xi
, then ∂kJ =

∂xj

∂x`
∂2x`

∂xk∂xj
J .

d. Show that Ak
def
= Γiik is consistent in the sense that this gauge field transforms exactly as in b.(5)

(Hint: You might need the lemma.)

e. Prove the identity Div
i =

1
√
g
∂i
(√
g vi
)
.(5)



(Hint: Use c and d.)

Let f be a smooth scalar field on M. Its vector gradient is defined relative to the local coordinate basis
{∂i} of TMx as grad f def

= gij∂jf ∂i.

f. Show that this is a coordinate independent definition.(5)

For this reason we define the holor of grad f as Dif
def
= gij∂jf .

Let f be a smooth scalar field on M. We define its Laplacian as ∆f
def
= DiD

if .

g. Prove the identity DiD
if =

1
√
g
∂i
(√
g gij∂jf

)
.(5)

(Hint: Use e.)

¦

3. GRAVITATIONAL WAVES∗.(30)

A wave propagating in n-dimensional spacetime (n ≥ 2) with unit velocity c = 1 in z-direction is
described by a wave function h(z, t) satisfying the wave equation

∂2h

∂t2
− ∂2h

∂z2
= 0 .

The additional n−2 spatial coordinates x and y are treated as parameters and are, for the moment,
suppressed in the notation. We introduce the light-cone coordinates

u
def
=
t− z√

2
and v

def
=
t+ z√

2
.

a. Define H(u, v)
def
= h(z, t). Transform the (z, t)-p.d.e. for h into a (u, v)-p.d.e. for H and show that(5)

it admits traveling wave solutions of the form H(u, v) = F (u) +G(v).

Under certain conditions such traveling waves turn out to be compatible with Einstein’s field equations
for the gravitational field, which in turn defines the (Levi-Civita connection of the) Lorentzian spacetime
metric. One exact solution in n= 4 (with additional spatial coordinates indicated by x, y) is given by
the so-called pp-wave metric

G = −du⊗ dv − dv × du− 2H(u, x, y) du⊗ du+ dx⊗ dx+ dy ⊗ dy . (‡)

Note that H does not depend on v. The only non-vanishing Christoffel symbols are Γxuu = Γvxu = Γvux,
Γyuu = Γvyu = Γvuy, and Γvuu.

b. Derive the formulas for these connection symbols in terms of H(u, x, y).(10)

∗CF. A. FUSTER. “KUNDT SPACETIMES IN GENERAL RELATIVITY AND SUPERGRAVITY”, c© 2007, VU UNIVERSITY AMSTERDAM.



The holor of the Riemann tensor is given by

Rλµρν = ∂ρΓ
λ
µν − ∂νΓλµρ + ΓλσρΓ

σ
µν − ΓλσνΓσµρ .

Alternatively one defines the fully covariant Riemann tensor, with holor

Rλµρν = gλσR
σ
µρν .

The holor of the Ricci tensor follows by a contraction:

Rµν = Rρµρν .

The Ricci scalar is given by
R = gµνRµν .

Einstein’s field equations for the metric gµν in vacuum (without cosmological constant) are given by

Rµν −
1

2
Rgµν = 0 .

c. Show that for any vacuum solution gµν of these equations we necessarily have R = 0, reducing the(5)
field equations to Rµν = 0.

Without proof we provide the only independent non-vanishing components of Rλµρν given the metric
stipulated above, viz.

Ruxux = −∂xxH , Ruyuy = −∂yyH , Ruxuy = −∂xyH .

d. Show that the stipulated metric (‡) is an exact vacuum solution of Einstein’s field equations if H is a(10)
harmonic function in the (x, y)-plane, i.e. if ∆H

def
= ∂xxH + ∂yyH = 0.

(Hint: Show that Ruu is the only non-zero component of the Ricci tensor, and compute its value.)

THE END


