EXAMINATION TENSOR CALCULUS AND DIFFERENTIAL GEOMETRY

Course code: 2F800. Date: Wednesday June 26, 2013. Time: 14h00-17h00. Place:

Read this first!

- Write your name and student identification number on each paper.
- The exam consists of 3 problems. The maximum credit for each item is indicated in the margin.
- Motivate your answers.
- You may consult the course notes "Tensorrekening en Differentiaalmeetkunde (2F800)" by Jan de Graaf, and the draft notes "Tensor Calculus and Differential Geometry (2F800)" by Luc Florack without warranty.

1. Maxwell Equations in Minkowski Spacetime.

Definition. We consider "empty" 4-dimensional Minkowski spacetime, furnished with a Lorentzian $\operatorname{metric}(\mathbf{x} \mid \mathbf{y})=G(\mathbf{x}, \mathbf{y})=g_{i j} x^{i} y^{j}$ (on each tangent space $V=\mathbf{T M}_{x} \sim \mathbb{R}^{4}$), in which $g_{i j}=\left(\partial_{i} \mid \partial_{j}\right)$ are the components of the corresponding Gram matrix \mathbf{G}. The construct is similar to that of a Riemannian manifold, except that the metric fails to satisfy the positivity axiom of a Riemannian inner product. In Cartesian coordinates we have $g_{11}=g_{22}=g_{33}=1, g_{44}=-1, g_{i j}=0$ otherwise $(i, j=1,2,3,4)$.

We simplify notation: $\partial_{1}=\partial_{x}, \partial_{2}=\partial_{y}, \partial_{3}=\partial_{z}, \partial_{4}=\partial_{t}, d x^{1}=d x, d x^{2}=d y, d x^{3}=d z, d x^{4}=d t$.
Definition. The converters $\sharp: V \rightarrow V^{*}$ and $b: V^{*} \rightarrow V$ are defined as follows. If $\mathbf{v} \in V, \hat{\mathbf{v}} \in V^{*}$, then

$$
\sharp \mathbf{v} \stackrel{\text { def }}{=} G(\mathbf{v}, \cdot) \in V^{*} \quad \text { respectively } \quad b \hat{\mathbf{v}} \stackrel{\text { def }}{=} G^{-1}(\hat{\mathbf{v}}, \cdot) \in V
$$

Definition. Let $\hat{\mathbf{a}}^{1}, \ldots, \hat{\mathbf{a}}^{k} \in V^{*}$. The Hodge star operator $*: \bigwedge_{k}(V) \rightarrow \bigwedge_{n-k}(V)$ is defined as follows:

$$
\left\{\begin{array}{lll}
* 1 & =\boldsymbol{\epsilon} & \text { for } k=0, \\
*\left(\hat{\mathbf{a}}^{1} \wedge \ldots \wedge \hat{\mathbf{a}}^{k}\right) & \left.\left.=\boldsymbol{\epsilon}\lrcorner b \hat{\mathbf{a}}^{1}\right\lrcorner \ldots\right\lrcorner b \hat{\mathbf{a}}^{k} & \text { for } k=1, \ldots, n .
\end{array}\right.
$$

In this definition $\boldsymbol{\epsilon}=\sqrt{|g|} d x^{1} \wedge \ldots \wedge d x^{n}=\epsilon_{\left|i_{1} \ldots i_{n}\right|} d x^{i_{1}} \wedge \ldots \wedge d x^{i_{n}} \in \bigwedge_{n}(V)$ is the Levi-Civita tensor, with $\epsilon_{1 \ldots n}=\sqrt{|g|}=\sqrt{|\operatorname{det} \mathbf{G}|}$.

Definition. Let $\mathbf{a}_{1}, \ldots, \mathbf{a}_{k} \in V$. The $(n-k)$-form $\left.\left.\left.\boldsymbol{\epsilon}\right\lrcorner \mathbf{a}_{1}\right\lrcorner \ldots\right\lrcorner \mathbf{a}_{k} \in \bigwedge_{n-k}(V)$ is defined as follows:

$$
\left.\left.\left.(\boldsymbol{\epsilon}\lrcorner \mathbf{a}_{1}\right\lrcorner \ldots\right\lrcorner \mathbf{a}_{k}\right)\left(\mathbf{x}_{k+1}, \ldots, \mathbf{x}_{n}\right)=\boldsymbol{\epsilon}\left(\mathbf{a}_{1}, \ldots, \mathbf{a}_{k}, \mathbf{x}_{k+1}, \ldots, \mathbf{x}_{n}\right) \quad \text { for all } \mathbf{x}_{k+1}, \ldots, \mathbf{x}_{n} \in V
$$

(10) a. Compute the following forms in terms of wedge products of $d x, d y, d z$, and $d t$:

- * 1 ;
- $* d x, * d y, * d z, * d t$.

Lemma. Without proof the following identities are provided for your convenience.

- $*(d x \wedge d y)=d z \wedge d t ;$
- $*(d x \wedge d z)=-d y \wedge d t ;$
- $*(d x \wedge d t)=-d y \wedge d z ;$
- $*(d y \wedge d z)=d x \wedge d t ;$
- $*(d y \wedge d t)=d x \wedge d z ;$
- $*(d z \wedge d t)=-d x \wedge d y$.

Definition. We define the Faraday 2-form $F(x, y, z, t)=E(x, y, z, t)+B(x, y, z, t) \in \Lambda_{2}(V)$, with

$$
\begin{aligned}
& E(x, y, z, t)=-E_{1}(x, y, z, t) d x \wedge d t-E_{2}(x, y, z, t) d y \wedge d t-E_{3}(x, y, z, t) d z \wedge d t \\
& B(x, y, z, t)=-B_{1}(x, y, z, t) d y \wedge d z+B_{2}(x, y, z, t) d x \wedge d z-B_{3}(x, y, z, t) d x \wedge d y
\end{aligned}
$$

The independent components of $E(x, y, z, t)$ and $B(x, y, z, t)$ are collected into column 3-vectors:

$$
\boldsymbol{E}(x, y, z, t) \stackrel{\text { def }}{=}\left(\begin{array}{l}
E_{1}(x, y, z, t) \\
E_{2}(x, y, z, t) \\
E_{3}(x, y, z, t)
\end{array}\right) \quad \text { and } \quad \boldsymbol{B}(x, y, z, t) \stackrel{\text { def }}{=}\left(\begin{array}{l}
B_{1}(x, y, z, t) \\
B_{2}(x, y, z, t) \\
B_{3}(x, y, z, t)
\end{array}\right) .
$$

b. Suppose $F=F_{\mu \nu} d x^{\mu} \otimes d x^{\nu}=F_{|\mu \nu|} d x^{\mu} \wedge d x^{\nu}$. Provide the matrix \boldsymbol{F} with entries $F_{\mu \nu}$.

Definition. Let $\omega^{k}(x, y, z, t)=\omega_{\left|i_{1} \ldots i_{k}\right|}(x, y, z, t) d x^{i_{1}} \wedge \ldots \wedge d x^{i_{k}} \in \bigwedge_{k}(V)$ be a k-form on V. The exterior derivative of $\omega^{k}(x)$ is the $(k+1)$-form given by

$$
d \omega^{k}(x, y, z, t)=d \omega_{\left|i_{1} \ldots i_{k}\right|}(x, y, z, t) \wedge d x^{i_{1}} \wedge \ldots \wedge d x^{i_{k}} \in \bigwedge_{k+1}(V)
$$

with $d f(x, y, z, t) \stackrel{\text { def }}{=} \partial_{i} f(x, y, z, t) d x^{i}$ for a sufficiently smooth scalar field $f: \mathbb{R}^{4} \rightarrow \mathbb{R}$.
Definition. Recall the first order derivative operators div and rot defined for 3 -vector valued functions on (x, y, z)-space (t is treated as a parameter and is irrelevant here):

$$
\operatorname{div} X \stackrel{\text { def }}{=} \partial_{x} X_{1}+\partial_{y} X_{2}+\partial_{z} X_{3} \quad \text { and } \quad \operatorname{rot} X \stackrel{\text { def }}{=}\left(\begin{array}{c}
\partial_{y} X_{3}-\partial_{z} X_{2} \\
\partial_{z} X_{1}-\partial_{x} X_{3} \\
\partial_{x} X_{2}-\partial_{y} X_{1}
\end{array}\right) .
$$

(7 $\frac{1}{2}$)
c. Show that $d F=0$ is equivalent to the following system of pde's for \boldsymbol{E} and \boldsymbol{B} :

$$
\frac{\partial \boldsymbol{B}}{\partial t}=-\operatorname{rot} \boldsymbol{E} \quad \text { and } \quad \operatorname{div} \boldsymbol{B}=0
$$

Definition. The Maxwell 2-form $* F$ is the Hodge dual of the Faraday 2-form F.
($7 \frac{1}{2}$)
d. Show that $d * F=0$ is equivalent to the following system of pde's for \boldsymbol{E} and \boldsymbol{B} :

$$
\frac{\partial \boldsymbol{E}}{\partial t}=\operatorname{rot} \boldsymbol{B} \quad \text { and } \quad \operatorname{div} \boldsymbol{E}=0
$$

(Hint: A symmetry consideration after computation of $* F$ may considerably simplify your proof.)

2. Divergence.

We consider an n-dimensional Riemannian manifold M . The holor of the metric tensor is given by $g_{i j}=\left(\partial_{i} \mid \partial_{j}\right)$ relative to the local coordinate basis $\left\{\partial_{i}\right\}$ of TM_{x}. Recall that the Levi-Civita connection induces a covariant derivative compatible with the metric, implying the (dual) metric to be "covariantly constant": $D_{i} g_{j k}=0$ and $D_{i} g^{j k}=0$.

Let $v=v^{i} \partial_{i}$ be a smooth vector field on M . We wish to define its divergence in a geometrically meanigful, i.e. coordinate independent way.
a. Show that the "standard" definition $\operatorname{div} v \stackrel{\text { def }}{=} \partial_{i} v^{i}$ fails to be coordinate independent.
(Tip: The solution to problem b implies the solution to this problem.)
We stipulate a covariant divergence of the form $D_{i} v^{i} \stackrel{\text { def }}{=}\left(\partial_{i}+A_{i}\right) v^{i}$ for some "gauge field" $A=A_{i} d x^{i}$. In the next problem this definition is not necessarily compatible with the metric, i.e. the field A is not necessarily related to the Levi-Civita connection.
b. Show that the gauge field does not transform as a covector field, and derive its explicit transformation behaviour if we assume div $v \stackrel{\text { def }}{=} D_{i} v^{i}$ to be coordinate independent.

Henceforth we will assume the covariant derivative to be compatible with the metric. Recall the Christoffel symbols of the second kind for the Levi-Civita connection:

$$
\Gamma_{j k}^{i}=\frac{1}{2} g^{i \ell}\left(\partial_{j} g_{\ell k}+\partial_{k} g_{j \ell}-\partial_{\ell} g_{j k}\right) .
$$

(5) c. Prove that $\Gamma_{i k}^{i}=\Gamma_{k i}^{i}=\partial_{k} \ln \sqrt{g}$.
(Hint: Recall the definition of the cofactor matrix and its relation to the matrix inverse.)
Lemma. If J is the determinant of the Jacobian matrix with entries $\frac{\partial x^{k}}{\partial \bar{x}^{i}}$, then $\bar{\partial}_{k} J=\frac{\partial \bar{x}^{j}}{\partial x^{\ell}} \frac{\partial^{2} x^{\ell}}{\partial \bar{x}^{k} \partial \bar{x}^{j}} J$.
(5) d. Show that $A_{k} \stackrel{\text { def }}{=} \Gamma_{i k}^{i}$ is consistent in the sense that this gauge field transforms exactly as in b . (Hint: You might need the lemma.)
e. Prove the identity $D_{i} v^{i}=\frac{1}{\sqrt{g}} \partial_{i}\left(\sqrt{g} v^{i}\right)$.
(Hint: Use c and d.)
Let f be a smooth scalar field on M. Its vector gradient is defined relative to the local coordinate basis $\left\{\partial_{i}\right\}$ of TM_{x} as $\operatorname{grad} f \stackrel{\text { def }}{=} g^{i j} \partial_{j} f \partial_{i}$.
(5) f. Show that this is a coordinate independent definition.

For this reason we define the holor of grad f as $D^{i} f \stackrel{\text { def }}{=} g^{i j} \partial_{j} f$.
Let f be a smooth scalar field on M. We define its Laplacian as $\Delta f \stackrel{\text { def }}{=} D_{i} D^{i} f$.
g. Prove the identity $D_{i} D^{i} f=\frac{1}{\sqrt{g}} \partial_{i}\left(\sqrt{g} g^{i j} \partial_{j} f\right)$.
(Hint: Use e.)

(30) 3. Gravitational Waves*.

A wave propagating in n-dimensional spacetime ($n \geq 2$) with unit velocity $c=1$ in z-direction is described by a wave function $h(z, t)$ satisfying the wave equation

$$
\frac{\partial^{2} h}{\partial t^{2}}-\frac{\partial^{2} h}{\partial z^{2}}=0
$$

The additional $n-2$ spatial coordinates x and y are treated as parameters and are, for the moment, suppressed in the notation. We introduce the light-cone coordinates

$$
u \stackrel{\text { def }}{=} \frac{t-z}{\sqrt{2}} \quad \text { and } \quad v \stackrel{\text { def }}{=} \frac{t+z}{\sqrt{2}}
$$

(5) a. Define $H(u, v) \stackrel{\text { def }}{=} h(z, t)$. Transform the (z, t)-p.d.e. for h into a (u, v)-p.d.e. for H and show that it admits traveling wave solutions of the form $H(u, v)=F(u)+G(v)$.

Under certain conditions such traveling waves turn out to be compatible with Einstein's field equations for the gravitational field, which in turn defines the (Levi-Civita connection of the) Lorentzian spacetime metric. One exact solution in $n=4$ (with additional spatial coordinates indicated by x, y) is given by the so-called pp-wave metric

$$
G=-d u \otimes d v-d v \times d u-2 H(u, x, y) d u \otimes d u+d x \otimes d x+d y \otimes d y
$$

Note that H does not depend on v. The only non-vanishing Christoffel symbols are $\Gamma_{u u}^{x}=\Gamma_{x u}^{v}=\Gamma_{u x}^{v}$, $\Gamma_{u u}^{y}=\Gamma_{y u}^{v}=\Gamma_{u y}^{v}$, and $\Gamma_{u u}^{v}$.
(10) b. Derive the formulas for these connection symbols in terms of $H(u, x, y)$.

[^0]The holor of the Riemann tensor is given by

$$
R_{\mu \rho \nu}^{\lambda}=\partial_{\rho} \Gamma_{\mu \nu}^{\lambda}-\partial_{\nu} \Gamma_{\mu \rho}^{\lambda}+\Gamma_{\sigma \rho}^{\lambda} \Gamma_{\mu \nu}^{\sigma}-\Gamma_{\sigma \nu}^{\lambda} \Gamma_{\mu \rho}^{\sigma} .
$$

Alternatively one defines the fully covariant Riemann tensor, with holor

$$
R_{\lambda \mu \rho \nu}=g_{\lambda \sigma} R_{\mu \rho \nu}^{\sigma} .
$$

The holor of the Ricci tensor follows by a contraction:

$$
R_{\mu \nu}=R^{\rho}{ }_{\mu \rho \nu} .
$$

The Ricci scalar is given by

$$
R=g^{\mu \nu} R_{\mu \nu}
$$

Einstein's field equations for the metric $g_{\mu \nu}$ in vacuum (without cosmological constant) are given by

$$
R_{\mu \nu}-\frac{1}{2} R g_{\mu \nu}=0 .
$$

(5) c. Show that for any vacuum solution $g_{\mu \nu}$ of these equations we necessarily have $R=0$, reducing the field equations to $R_{\mu \nu}=0$.

Without proof we provide the only independent non-vanishing components of $R_{\lambda \mu \rho \nu}$ given the metric stipulated above, viz.

$$
R_{u x u x}=-\partial_{x x} H, R_{u y u y}=-\partial_{y y} H, R_{u x u y}=-\partial_{x y} H .
$$

d. Show that the stipulated metric (\ddagger) is an exact vacuum solution of Einstein's field equations if H is a harmonic function in the (x, y)-plane, i.e. if $\Delta H \stackrel{\text { def }}{=} \partial_{x x} H+\partial_{y y} H=0$.
(Hint: Show that $R_{u u}$ is the only non-zero component of the Ricci tensor, and compute its value.)

The End

[^0]: *Cf. A. Fuster. "Kundt Spacetimes in General Relativity and Supergravity", © 2007, VU University Amsterdam.

