INTERIM TEST TENSOR CALCULUS AND DIFFERENTIAL GEOMETRY

Course code: 2WAH0-2WAH2. Date: Tuesday February 24, 2015. Time: 15h45-17h30. Place: Flux 1.07.

Let $A=\left(\begin{array}{cc}1 & 3 \\ 2 & 7\end{array}\right)$ and $B=\left(\begin{array}{ccc}1 & 2 & 1 \\ 6 & 3 & 8 \\ 8 & 7 & 10\end{array}\right)$. Use these matrices in problems $1-5$.

1. Compute (i) $\operatorname{det} A$, (ii) $\operatorname{det} B$, (iii) perm A, and (iv) perm B.
$\operatorname{det} A=1, \operatorname{det} B=0, \operatorname{perm} A=13, \operatorname{perm} B=400$.
2. Compute the following expression involving the standard 3-dimensional inner and outer product of vectors (cf. the columns- $\mathbf{b}_{1}, \mathbf{b}_{2}, \mathbf{b}_{3}$, say—of B), and provide a geometrical interpretation of your result for $\operatorname{det} B$ in problem 1 (ii):

$$
\left(\mathbf{b}_{1} \times \mathbf{b}_{2}\right) \cdot \mathbf{b}_{3}=\left[\left(\begin{array}{l}
1 \\
6 \\
8
\end{array}\right) \times\left(\begin{array}{l}
2 \\
3 \\
7
\end{array}\right)\right] \cdot\left(\begin{array}{c}
1 \\
8 \\
10
\end{array}\right)
$$

This expression yields 0 , indicating that the third column vector of B lies within the 2 -dimensional plane spanned by the first two column vectors. This explains why $\operatorname{det} B=0$. In fact, $\operatorname{det} B=\left(\mathbf{b}_{1} \times \mathbf{b}_{2}\right) \cdot \mathbf{b}_{3}$.
3. Compute the following cofactor and adjugate matrices: (i) \tilde{A}, (ii) \tilde{B}, (iii) \tilde{A}^{T}, and (iv) \tilde{B}^{T}.

$$
\tilde{A}=\left(\begin{array}{cc}
7 & -3 \\
-2 & 1
\end{array}\right), \tilde{B}=\left(\begin{array}{ccc}
-26 & 4 & 18 \\
-13 & 2 & 9 \\
13 & -2 & -9
\end{array}\right), \tilde{A}^{T}=\left(\begin{array}{cc}
7 & -2 \\
-3 & 1
\end{array}\right), \tilde{B}^{T}=\left(\begin{array}{ccc}
-26 & -13 & 13 \\
4 & 2 & -2 \\
18 & 9 & -9
\end{array}\right) .
$$

4. Compute the following inverse matrices, if these exist: (i) A^{-1} and (ii) B^{-1}.

Since $\operatorname{det} A=1$ we have $A^{-1}=\frac{1}{\operatorname{det} A} \tilde{A}^{T}=\tilde{A}^{T}$, cf. previous problem. Since $\operatorname{det} B=0$ the matrix B^{-1} does not exist.
5. Compute (i) $A \tilde{A}^{\mathrm{T}}$ and (ii) $B \tilde{B}^{\mathrm{T}}$.

We have $A \tilde{A}^{T}=\operatorname{det} A I=I$, i.e. the 2×2 identity matrix, respectively $B \tilde{B}^{T}=\operatorname{det} B I=0$, i.e. the 3×3 null matrix.
6. Consider the collection $\left\{A_{i_{1} \ldots i_{n}} \in \mathbb{R} \mid i_{1}, \ldots, i_{n}=1, \ldots, n\right\}$.
a. How many independent components does this collection have if no constraints are imposed?

There are n indices, each of which can assume n distinct values, whence there are a priori n^{n} independent components.
b. Suppose $A_{i_{1} \ldots i_{k} \ldots i_{\ell} \ldots i_{n}}=-A_{i_{1} \ldots i_{\ell} \ldots i_{k} \ldots i_{n}}$ for any $1 \leq k<\ell \leq n$ (complete antisymmetry). Show that $A_{i_{1} \ldots i_{n}} \propto\left[i_{1} \ldots i_{n}\right]$, in which the symbol \propto indicates proportionality.

From complete antisymmetry under each index exchange it follows that all symbols with two or more equal index labels (say $i_{k}=i_{\ell}$) must necessarily vanish (as 0 is the only number equal to its opposite). This implies that for nontrivial symbols $A_{i_{1} \ldots i_{n}}$ the index set (i_{1}, \ldots, i_{n}) must be a permutation of $(1, \ldots, n)$. Setting $A_{1 \ldots n}=C$ for some constant C, all $A_{i_{1} \ldots i_{n}}$ can be obtained as $\pm C$ through repetitive index exchanges exploiting the antisymmetry property, viz. $A_{i_{1} \ldots i_{n}}=C\left[i_{1} \ldots i_{n}\right]$. Thus the underlying "hypermatrix" A, comprising all n^{n} entries $A_{i_{1} \ldots i_{n}}$, has in fact only a single degree of freedom.
7. Compute the multi-dimensional Gaussian integral $\gamma(A, s)=\int_{\mathbb{R}^{n}} \exp \left(-x^{i} A_{i j} x^{j}+s_{k} x^{k}\right) d x$ for a symmetric positive definite $n \times n$ matrix A and "source" covector $s \in \mathbb{R}^{n}$. Here $d x=d x^{1} \ldots d x^{n}$.

You may make use of the following facts:

- $\int_{-\infty}^{\infty} \exp \left(-a z^{2}\right) d z=\sqrt{\frac{\pi}{a}}$ for $a>0$.
- There exists a rotation matrix R such that $R^{\mathrm{T}} A R=\Delta$, with $\Delta=\operatorname{diag}\left(\lambda_{1}>0, \ldots, \lambda_{n}>0\right)$.
I. First consider the case $s=0 \in \mathbb{R}^{n}$, i.e.

$$
\gamma(A, 0)=\int_{\mathbb{R}^{n}} \exp \left(-x^{i} A_{i j} x^{j}\right) d x
$$

A symmetric matrix can be diagonalized via a rotation. Thus consider the following substitution of variables: $x=R y$, whence $x^{T}=y^{T} R^{T}$ (note that $R^{T}=R^{-1}$) and $d x=\operatorname{det} R d y=d y$. Define the diagonal matrix $\Delta=R^{T} A R=\operatorname{diag}\left(\lambda_{1}, \ldots, \lambda_{n}\right)$, with $\lambda_{p}>0$ for all $p=1, \ldots, n$ by virtue of positive definiteness. Then, with parameters λ_{p} considered implicitly as a function of matrix A as indicated,

$$
\gamma(A, 0)=\prod_{p=1}^{n} \int_{\mathbb{R}} \exp \left(-\lambda_{p}\left(y^{p}\right)^{2}\right) d y^{p}
$$

If desired, one may absorb the eigenvalues λ_{p} into the integration variables by another substitution of variables in order to further simplify the result, viz. consider the rescaling $z^{p}=\sqrt{\lambda_{p}} y^{p}$. Then, again assuming λ_{p} to be given as functions of A,

$$
\gamma(A, 0)=\prod_{p=1}^{n} \frac{1}{\sqrt{\lambda_{p}}} \int_{\mathbb{R}} \exp \left(-\left(z^{p}\right)^{2}\right) d z^{p}
$$

This reduces the problem to a standard one-dimensional Gaussian integral: $\int_{\mathbb{R}} \exp \left(-z^{2}\right) d z=\sqrt{\pi}$. Note that $\prod_{p=1}^{n} \lambda_{p}=\operatorname{det} A$, so that

$$
\gamma(A, 0)=\frac{\sqrt{\pi}^{n}}{\sqrt{\operatorname{det} A}}
$$

II. Next consider the case for a nontrivial source covector $s \in \mathbb{R}^{n}$, i.e.

$$
\gamma(A, s)=\int_{\mathbb{R}^{n}} \exp \left(-x^{i} A_{i j} x^{j}+s_{k} x^{k}\right) d x
$$

Rewrite the exponent in the integrand as a quadratic form in $x-\xi$ for some vector $\xi \in \mathbb{R}^{n}$ and an x-independent (ξ-dependent) remainder, and solve for ξ in terms of s and A. In this way one obtains $\xi^{i}=\frac{1}{2} s_{k} B^{k i}$, in which $B=A^{-1}$, i.e. $A_{i j} B^{j k}=\delta_{i}^{k}$, so that

$$
\exp \left(-x^{i} A_{i j} x^{j}+s_{k} x^{k}\right)=\exp \left(-\left(x^{i}-\frac{1}{2} s_{k} B^{k i}\right) A_{i j}\left(x^{j}-\frac{1}{2} s_{\ell} B^{\ell j}\right)\right) \exp \left(\frac{1}{4} s_{p} B^{p q} s_{q}\right)
$$

With the help of a substitution of variables, $y^{i}=x^{i}-\frac{1}{2} s_{k} B^{k i}$, for which $d y=d x$, we then obtain

$$
\left.\gamma(A, s)=\exp \left(\frac{1}{4} s_{p} B^{p q} s_{q}\right) \int_{\mathbb{R}^{n}} \exp \left(-y^{i} A_{i j} y^{j}\right)\right) d y=\frac{\sqrt{\pi}^{n}}{\sqrt{\operatorname{det} A}} \exp \left(\frac{1}{4} s_{p} B^{p q} s_{q}\right)=\frac{\sqrt{\pi}^{n}}{\sqrt{\operatorname{det} A}} \exp \left(\frac{1}{4} s^{T} A^{-1} s\right)
$$

