
INTERIM TEST TENSOR CALCULUS AND DIFFERENTIAL GEOMETRY

Course code: 2WAH0-2WAH2. Date: Tuesday February 24, 2015. Time: 15h45–17h30. Place: Flux 1.07.

Let A =

(
1 3
2 7

)
and B =

 1 2 1
6 3 8
8 7 10

. Use these matrices in problems 1–5.

1. Compute (i) detA, (ii) detB, (iii) permA, and (iv) permB.

detA = 1 ,detB = 0 , permA = 13 , permB = 400.

2. Compute the following expression involving the standard 3-dimensional inner and outer product of
vectors (cf. the columns—b1, b2, b3, say—of B), and provide a geometrical interpretation of your
result for detB in problem 1 (ii):

(b1 × b2) · b3 =

 1
6
8

×
 2

3
7

 ·
 1

8
10


This expression yields 0, indicating that the third column vector of B lies within the 2-dimensional plane spanned by the first two column

vectors. This explains why detB = 0. In fact, detB = (b1 × b2) · b3.

3. Compute the following cofactor and adjugate matrices: (i) Ã, (ii) B̃, (iii) ÃT, and (iv) B̃T.

Ã =

(
7 −3
−2 1

)
, B̃ =

 −26 4 18
−13 2 9
13 −2 −9

 , ÃT =

(
7 −2
−3 1

)
, B̃T =

 −26 −13 13
4 2 −2
18 9 −9

 .

4. Compute the following inverse matrices, if these exist: (i) A−1 and (ii) B−1.

Since detA = 1 we have A−1 =
1

detA
ÃT = ÃT , cf. previous problem. Since detB = 0 the matrix B−1 does not exist.

5. Compute (i) AÃT and (ii) BB̃T.

We have AÃT = detAI = I , i.e. the 2×2 identity matrix, respectively BB̃T = detBI = 0, i.e. the 3×3 null matrix.

6. Consider the collection {Ai1...in ∈ R | i1, . . . , in = 1, . . . , n}.

a. How many independent components does this collection have if no constraints are imposed?

There are n indices, each of which can assume n distinct values, whence there are a priori nn independent components.

b. Suppose Ai1...ik...i`...in = −Ai1...i`...ik...in for any 1 ≤ k < ` ≤ n (complete antisymmetry). Show
that Ai1...in ∝ [i1 . . . in], in which the symbol ∝ indicates proportionality.



From complete antisymmetry under each index exchange it follows that all symbols with two or more equal index labels (say ik = i`) must

necessarily vanish (as 0 is the only number equal to its opposite). This implies that for nontrivial symbolsAi1...in the index set (i1, . . . , in)

must be a permutation of (1, . . . , n). Setting A1...n = C for some constant C, all Ai1...in can be obtained as ±C through repetitive index

exchanges exploiting the antisymmetry property, viz. Ai1...in = C[i1 . . . in]. Thus the underlying “hypermatrix” A, comprising all nn

entries Ai1...in , has in fact only a single degree of freedom.

7. Compute the multi-dimensional Gaussian integral γ(A, s) =

∫
Rn

exp(−xiAijxj + skx
k) dx for a

symmetric positive definite n×n matrix A and “source” covector s ∈ Rn. Here dx = dx1 . . . dxn.

You may make use of the following facts:

•
∫ ∞
−∞

exp(−az2) dz =

√
π

a
for a > 0.

• There exists a rotation matrix R such that RTAR = ∆, with ∆ = diag (λ1>0, . . . , λn>0).

I. First consider the case s = 0 ∈ Rn, i.e.

γ(A, 0) =

∫
Rn

exp(−xiAijx
j) dx .

A symmetric matrix can be diagonalized via a rotation. Thus consider the following substitution of variables: x = Ry, whence xT = yTRT

(note that RT = R−1) and dx = detRdy = dy. Define the diagonal matrix ∆ = RTAR = diag (λ1, . . . , λn), with λp > 0 for all
p = 1, . . . , n by virtue of positive definiteness. Then, with parameters λp considered implicitly as a function of matrix A as indicated,

γ(A, 0) =

n∏
p=1

∫
R
exp(−λp(yp)2) dyp .

If desired, one may absorb the eigenvalues λp into the integration variables by another substitution of variables in order to further simplify
the result, viz. consider the rescaling zp =

√
λpyp. Then, again assuming λp to be given as functions of A,

γ(A, 0) =

n∏
p=1

1√
λp

∫
R
exp(−(zp)2) dzp .

This reduces the problem to a standard one-dimensional Gaussian integral:
∫
R
exp(−z2) dz =

√
π. Note that

∏n
p=1 λp = detA, so that

γ(A, 0) =

√
π
n

√
detA

.

II. Next consider the case for a nontrivial source covector s ∈ Rn, i.e.

γ(A, s) =

∫
Rn

exp(−xiAijx
j + skx

k) dx .

Rewrite the exponent in the integrand as a quadratic form in x− ξ for some vector ξ ∈ Rn and an x-independent (ξ-dependent) remainder,
and solve for ξ in terms of s and A. In this way one obtains ξi = 1

2
skB

ki, in which B = A−1, i.e. AijB
jk = δki , so that

exp(−xiAijx
j + skx

k) = exp

(
−(xi −

1

2
skB

ki)Aij (xj −
1

2
s`B

`j)

)
exp

(
1

4
spB

pqsq

)
,

With the help of a substitution of variables, yi = xi − 1
2
skB

ki, for which dy = dx, we then obtain

γ(A, s) = exp

(
1

4
spB

pqsq

) ∫
Rn

exp
(
−yi Aij y

j)
)
dy =

√
π
n

√
detA

exp

(
1

4
spB

pqsq

)
=

√
π
n

√
detA

exp

(
1

4
sTA−1s

)
.

THE END


