INTERIM TEST 2WAH0: TENSOR CALCULUS AND DIFFERENTIAL GEOMETRY

Course code: 2WAH2. Date: Tuesday February 24, 2015. Time: 15h45-17h30. Place: Flux 1.07.

The following matrices are used in problems 1–5: $A = \begin{pmatrix} 1 & 3 \\ 2 & 7 \end{pmatrix}$ and $B = \begin{pmatrix} 1 & 2 & 1 \\ 6 & 3 & 8 \\ 8 & 7 & 10 \end{pmatrix}$.

- (2) **1.** Compute (i) det A, (ii) det B, (iii) perm A, and (iv) perm B.
- (1) **2.** Compute the following expression involving the standard 3-dimensional inner and outer product of vectors (cf. the columns— \mathbf{b}_1 , \mathbf{b}_2 , \mathbf{b}_3 , say—of B), and provide a geometrical interpretation of your result for det B in problem 1 (ii):

$$(\mathbf{b}_1 \times \mathbf{b}_2) \cdot \mathbf{b}_3 = \left[\begin{pmatrix} 1\\6\\8 \end{pmatrix} \times \begin{pmatrix} 2\\3\\7 \end{pmatrix} \right] \cdot \begin{pmatrix} 1\\8\\10 \end{pmatrix}.$$

- (2) **3.** Compute the following cofactor and adjugate matrices: (i) \tilde{A} , (ii) \tilde{B} , (iii) \tilde{A}^{T} , and (iv) \tilde{B}^{T} .
- (1) 4. Compute the following inverse matrices, if these exist: (i) A^{-1} and (ii) B^{-1} .
- (1) **5.** Compute (i) $A\tilde{A}^{T}$ and (ii) $B\tilde{B}^{T}$.
- (2) **6.** Consider the collection $\{A_{i_1\dots i_n} \in \mathbb{R} \mid i_1, \dots, i_n = 1, \dots, n\}$.

a. How many independent components does this collection have if no constraints are imposed?

b. Suppose $A_{i_1...i_k...i_\ell...i_n} = -A_{i_1...i_k...i_n}$ for any $1 \le k < \ell \le n$ (complete antisymmetry). Show that $A_{i_1...i_n} \propto [i_1...i_n]$, in which the symbol \propto indicates proportionality.

(4) 7. Compute the multi-dimensional Gaussian integral $\gamma(A, s) = \int_{\mathbb{R}^n} \exp(-x^i A_{ij} x^j + s_k x^k) dx$ for a symmetric positive definite $n \times n$ matrix A and "source" covector $s \in \mathbb{R}^n$. Here $dx = dx^1 \dots dx^n$.

Solution You may use the following lemmas:

•
$$\int_{-\infty}^{\infty} \exp(-az^2) dz = \sqrt{\frac{\pi}{a}}$$
 for $a > 0$.

- There exists a rotation matrix R such that $R^{T}AR = \Delta$, with $\Delta = \text{diag}(\lambda_1 > 0, \dots, \lambda_n > 0)$.
- (2) **8.** Suppose $\{\mathbf{e}_i\}$ and $\{\hat{\mathbf{e}}^i\}$ are dual bases of V and V^* , and $\mathbf{e}_i = A_i^j \mathbf{f}_j$, $\hat{\mathbf{e}}^i = B_j^i \hat{\mathbf{f}}^j$ for some a priori unrelated transformation matrices A and B. Show that if $\{\mathbf{f}_j, \hat{\mathbf{f}}^j\}$ constitute dual bases then $B_k^j A_i^k = \delta_i^j$.

THE END