INTERIM TEST 2WAH0: TENSOR CALCULUS AND DIFFERENTIAL GEOMETRY

Course code: 2WAH2. Date: Tuesday February 24, 2015. Time: 15h45-17h30. Place: Flux 1.07.

The following matrices are used in problems 1-5: $A=\left(\begin{array}{cc}1 & 3 \\ 2 & 7\end{array}\right)$ and $B=\left(\begin{array}{ccc}1 & 2 & 1 \\ 6 & 3 & 8 \\ 8 & 7 & 10\end{array}\right)$.
6. Consider the collection $\left\{A_{i_{1} \ldots i_{n}} \in \mathbb{R} \mid i_{1}, \ldots, i_{n}=1, \ldots, n\right\}$.
a. How many independent components does this collection have if no constraints are imposed?
b. Suppose $A_{i_{1} \ldots i_{k} \ldots i_{\ell} \ldots i_{n}}=-A_{i_{1} \ldots i_{\ell} \ldots i_{k} \ldots i_{n}}$ for any $1 \leq k<\ell \leq n$ (complete antisymmetry). Show that $A_{i_{1} \ldots i_{n}} \propto\left[i_{1} \ldots i_{n}\right]$, in which the symbol \propto indicates proportionality.
7. Compute the multi-dimensional Gaussian integral $\gamma(A, s)=\int_{\mathbb{R}^{n}} \exp \left(-x^{i} A_{i j} x^{j}+s_{k} x^{k}\right) d x$ for a symmetric positive definite $n \times n$ matrix A and "source" covector $s \in \mathbb{R}^{n}$. Here $d x=d x^{1} \ldots d x^{n}$.
(2ou may use the following lemmas:

- $\int_{-\infty}^{\infty} \exp \left(-a z^{2}\right) d z=\sqrt{\frac{\pi}{a}}$ for $a>0$.
- There exists a rotation matrix R such that $R^{\mathrm{T}} A R=\Delta$, with $\Delta=\operatorname{diag}\left(\lambda_{1}>0, \ldots, \lambda_{n}>0\right)$.

1. Compute (i) $\operatorname{det} A$, (ii) $\operatorname{det} B$, (iii) perm A, and (iv) perm B.
2. Compute the following expression involving the standard 3-dimensional inner and outer product of vectors (cf. the columns- $\mathbf{b}_{1}, \mathbf{b}_{2}, \mathbf{b}_{3}$, say-of B), and provide a geometrical interpretation of your result for $\operatorname{det} B$ in problem 1 (ii):

$$
\left(\mathbf{b}_{1} \times \mathbf{b}_{2}\right) \cdot \mathbf{b}_{3}=\left[\left(\begin{array}{l}
1 \\
6 \\
8
\end{array}\right) \times\left(\begin{array}{c}
2 \\
3 \\
7
\end{array}\right)\right] \cdot\left(\begin{array}{c}
1 \\
8 \\
10
\end{array}\right) .
$$

3. Compute the following cofactor and adjugate matrices: (i) \tilde{A}, (ii) \tilde{B}, (iii) \tilde{A}^{T}, and (iv) \tilde{B}^{T}.
4. Compute the following inverse matrices, if these exist: (i) A^{-1} and (ii) B^{-1}.
5. Compute (i) $A \tilde{A}^{\mathrm{T}}$ and (ii) $B \tilde{B}^{\mathrm{T}}$.
6. Suppose $\left\{\mathbf{e}_{i}\right\}$ and $\left\{\hat{\mathbf{e}}^{i}\right\}$ are dual bases of V and V^{*}, and $\mathbf{e}_{i}=A_{i}^{j} \mathbf{f}_{j}, \hat{\mathbf{e}}^{i}=B_{j}^{i} \hat{\mathbf{f}}^{j}$ for some a priori unrelated transformation matrices A and B. Show that if $\left\{\mathbf{f}_{j}, \hat{\mathbf{f}}^{j}\right\}$ constitute dual bases then $B_{k}^{j} A_{i}^{k}=\delta_{i}^{j}$.
