INTERIM TEST 2WAH0: TENSOR CALCULUS AND DIFFERENTIAL GEOMETRY

Course code: 2WAH2. Date: Thursday February 25, 2016. Time: 10:45-11:30. Place: Paviljoen a 12 b.
(30) 1. Let \mathbb{M}^{n} denote the set of all $n \times n$-matrices with real matrix entries. By cof A and adj A we denote the cofactor matrix, resp. the adjugate matrix of A. These are defined as follows:

Definition. If $A \in \mathbb{M}^{n}$ has matrix entries $A_{i j}$, then $(\operatorname{cof} A)^{i j}=\frac{\partial \operatorname{det} A}{\partial A_{i j}}$, resp. $(\operatorname{adj} A)^{i j}=\frac{\partial \operatorname{det} A}{\partial A_{j i}}$.
In all that follows you may use the following lemma.
Lemma. If $\operatorname{det} A \neq 0$, then $\operatorname{adj} A=\operatorname{det} A A^{-1}$.

We consider a parametrized curve in \mathbb{M}^{n}, i.e. a smooth matrix-valued function of one variable:

$$
A: \mathbb{R} \rightarrow \mathbb{M}^{n}: t \mapsto A(t)
$$

Its component functions are indicated as $A_{i j}: \mathbb{R} \rightarrow \mathbb{R}: t \mapsto A_{i j}(t)$.
(5) a. Use the definition to prove the following theorem, in which $\operatorname{tr}: \mathbb{M}^{n} \rightarrow \mathbb{R}: X \mapsto \operatorname{tr}(X)$ stands for the trace operator, i.e. summation of diagonal elements: if X has components X_{j}^{i}, then $\operatorname{tr}(X)=X_{i}^{i}$ (summation convention):

$$
\frac{d \operatorname{det} A(t)}{d t}=\operatorname{tr}\left(\operatorname{adj} A(t) \frac{d A(t)}{d t}\right)
$$

b. Show that if $\operatorname{det} A(t) \neq 0$ for all $t \in \mathbb{R}$, then

$$
\begin{equation*}
\frac{d \log (\operatorname{det} A(t))}{d t}=\operatorname{tr}\left(A^{-1}(t) \frac{d A(t)}{d t}\right) \tag{5}
\end{equation*}
$$

The matrix exponential $\operatorname{Exp} X$ of a matrix $X \in \mathbb{M}^{n}$ is defined in terms of a series expansion:

$$
\operatorname{Exp}: \mathbb{M}^{n} \rightarrow \mathbb{R}: X \mapsto \operatorname{Exp}(X)=\sum_{k=0}^{\infty} \frac{1}{k!} X^{k}
$$

analogous to the Taylor series of its numeric counterpart,

$$
\exp : \mathbb{R} \rightarrow \mathbb{R}: x \mapsto \exp (x)=\sum_{k=0}^{\infty} \frac{1}{k!} x^{k}
$$

Integer matrix powers are defined as repetitive matrix autoproducts, with, by definition, $X^{0}=I$.

We now restrict ourselves to linear functions, $A(t)=t X$ for some constant matrix $X \in \mathbb{M}^{n}$.
(5) c. Show hat

$$
\frac{d \operatorname{Exp}(t X)}{d t}=\operatorname{Exp}(t X) X
$$

In subsequent questions you may use the following lemma (a special case of the CBH-formula).
Lemma. If $X, Y \in \mathbb{M}^{n}$ are commuting matrices (i.e. $X Y=Y X$), then $\operatorname{Exp}(X+Y)=\operatorname{Exp}(X) \operatorname{Exp}(Y)$.
d. Show, using the lemma, that $\operatorname{Exp}(X) \in \mathbb{M}^{n}$ is nonsingular regardless of $X \in \mathbb{M}^{n}$, and

$$
\begin{equation*}
(\operatorname{Exp}(X))^{-1}=\operatorname{Exp}(-X) \tag{5}
\end{equation*}
$$

e. Let $u: \mathbb{R} \rightarrow \mathbb{R}: t \mapsto u(t)=\operatorname{det} \operatorname{Exp}(t X)$. Show that this function satisfies the differential equation

$$
\left\{\begin{align*}
\frac{d u}{d t} & =\operatorname{tr}(X) u \tag{5}\\
u(0) & =1
\end{align*}\right.
$$

(5) f. Show that

$$
\operatorname{det} \operatorname{Exp}(X)=\exp (\operatorname{tr}(X))
$$

It is useful to memorize "det $\operatorname{Exp}=\exp \operatorname{tr} "$.

