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Preface

This problem companion belongs to the course notes “Tensor Calculus and Differential Geometry” (course code
2WAH0) by Luc Florack. Problems are concisely formulated. Einstein summation convention applies to all
problems, unless stated otherwise. Please refer to the course notes for further details.

Luc Florack

Eindhoven, February 27, 2021.
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1. Prerequisites from Linear Algebra

1. Let V be a real vector space, and u ∈ V . Show that (−1) · u = −u, and 0 · u = o.

Each step in the following derivations either exploits a basic vector space axiom or reflects a trivality:

• u+ 0 · u = 1 · u+ 0 · u = (1 + 0) · u = 1 · u = u for all u ∈ V , whence 0 · u = o ∈ V , i.e. the null vector;

• u+ (−1) · u = 1 · u+ (−1) · u = (1 + (−1)) · u = 0 · u = o for all u ∈ V according to the previous result, whence (−1) · u = −u.

2. Show that L (V,W ) is a vector space.

Let A ,B ∈ L (V,W ), thenλA +µB ∈ L (V,W ) is the linear operator defined by (λA +µB)(v) = λA (v)+µB(v) for all v ∈ V . The proof of the

vector space structure of L (V,W ) exploits the vector space structure ofW , as follows. Let v ∈ V be any given vector, A ,B,C ∈ L (V,W ), and consider,

say, the associativity axiom: ((A + B) + C ) (v) = (A +B)(v)+C (v) = A (v)+B(v)+C (v) = A (v)+(B+C )(v) = (A + (B + C )) (v),

whence (A + B) + C = A + (B + C ). Note that triple sums onW do not require disambiguating parentheses as a result of its vector space structure. The

remaining seven axioms are proven in a similar fashion by evaluation on an arbitrary dummy v ∈ V .

In analogy with the determinant of a matrix A, the so-called permanent is defined as

permA =

n∑
j1,...,jn=1

|[j1, . . . , jn]|A1j1 . . . Anjn =
1

n!

n∑
i1, . . . , in = 1
j1, . . . , jn = 1

|[i1, . . . , in] [j1, . . . , jn]|Ai1j1 . . . Ainjn .

Note that the nontrivial factors among the weights |[i1, . . . , in]| and |[j1, . . . , jn]| are invariably +1.

3. Can we omit the factors |[i1, . . . , in]| and |[j1, . . . , jn]| in this definition of permA?

No. They are needed to effectively constrain the (i1, . . . , in) and (j1, . . . , jn) sums to all n! permutations of (1, . . . , n). Without these factors the sums

would effectively have nn ≥ n! terms.

4. How many multiplications and additions/subtractions do you need in the numerical computation of detA and
permA for a generic n× n matrix A?

For both detA and permA we generically have n! nontrivial terms, each consisting of an n-fold product of matrix entries. This implies that we need n!−1

additions/subtractions of terms, each of which requires n−1 multiplications.

5. Given a generic n × n matrix A. Argue why its cofactor and adjugate matrices Ã, respectively ÃT, always
exist, unlike its inverse A−1. What is the condition for A−1 to be well-defined?

By construction the entries of the cofactor and adjugate matrices are homogeneous (n−1)-degree polynomials in terms of the original matrix entries.
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6. Let

A =

(
1 3
2 7

)
and B =

 1 2 1
6 3 8
8 7 10



Compute, by hand, detA and detB. Likewise for permA and permB.

detA = 1 , detB = 0 , permA = 13 , permB = 400.

7. Cf. previous problem. Compute the following expression involving the standard 3-dimensional inner and outer
product of vectors (cf. the columns of B), and provide a geometrical interpretation of your result for detB:

 1
6
8

×
 2

3
7

 ·
 1

8
10



This expression yields 0, indicating that the third column vector of B lies within the 2-dimensional plane spanned by the first two column vectors. This explains

why detB = 0.

8. Cf. previous problem. Compute the cofactor and adjugate matrices Ã, B̃, ÃT, and B̃T.

Ã =

(
7 −2
−3 1

)
, B̃ =

 −26 4 18
−13 2 9
13 −2 −9

 , Ã
T

=

(
7 −3
−2 1

)
, B̃

T
=

 −26 −13 13
4 2 −2
18 9 −9

 .

9. Cf. previous problem. Compute the inverse matrices A−1 and B−1, if these exist.

Since detA = 1 we haveA−1
=

1

detA
Ã
T

= Ã
T , cf. previous problem. Since detB = 0 the matrixB−1 does not exist.

10. Cf. previous problem. Compute AÃT and BB̃T.

We haveAÃT = detAI = I , i.e. the 2×2 identity matrix, respectivelyBB̃T = detBI = 0, i.e. the 3×3 null matrix.

11. Given detA, detB for general n×n matrices A, B. What is det Ã, detAT, det(λA), det(AB), and detAk

for λ ∈ R, k ∈ Z?

The following identities hold: det Ã = (detA)n−1, detAT = detA, det(λA) = λn detA, detAk = (detA)k .

12. Consider the collection Ai1...in for all i1, . . . , in = 1, . . . , n. Suppose Ai1...ik...i`...in = −Ai1...i`...ik...in for
any 1 ≤ k < ` ≤ n (complete antisymmetry). Show that Ai1...in ∝ [i1 . . . in].

From complete antisymmetry under each index exchange it follows that all symbols with two or more equal index labels (say ik = i`) must necessarily vanish (as

0 is the only number equal to its opposite). This implies that for nontrivial symbolsAi1...in the index set (i1, . . . , in) must be a permutation of (1, . . . , n).

Setting A1...n = C for some constant C, all Ai1...in can be obtained as ±C through repetitive index exchanges exploiting the antisymmetry property, viz.

Ai1...in = C[i1 . . . in]. Thus the underlying “hypermatrix”A, comprising all nn entriesAi1...in , has in fact only a single degree of freedom.
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13. Prove the following identities for the completely antisymmetric symbol in n = 3:

[i, j, k] [`,m, n] = δi`δjmδkn + δimδjnδk` + δinδj`δkm − δimδj`δkn − δi`δjnδkm − δinδjmδk`
3∑
i=1

[i, j, k] [i,m, n] = δjmδkn − δjnδkm

3∑
i,j=1

[i, j, k] [i, j, n] = 2δkn

3∑
i,j,k=1

[i, j, k] [i, j, k] = 6

The first identity follows from the following observations. The l.h.s. is notrivial iff the three entries of each triple (i, j, k) and (`,m, n), with i, j, k, `,m, n =
1, 2, 3, are all distinct, and therefore equal to some permutation of (1, 2, 3). This implies that the entries of (i, j, k) should pairwise match those of (`,m, n).
The six possible matches are reflected in the Kronecker symbols on the r.h.s. The sign in front of each term expresses whether one needs an even (+) or odd
number (−) of reorderings of pairs in (`,m, n) in order to bring these three indices in the same ordering as their matching indices in (i, j, k). Note that once
this reordering has been carried out, the product is invariably 1, explaining the amplitude±1 of each term.

Subsequent expressions follow by conducting the indicated index contractions, using
∑3
i=1 δii = 3 (in 3 dimensions) and

∑3
i=1 δijδik = δjk .

? 14. Compute the Gaussian integral γ(A) =

∫
Rn

exp(−xiAijxj) dx for a symmetric positive definite n×n

matrix A. Hint: There exists a rotation matrix R such that RTAR = ∆, in which ∆ = diag (λ1, . . . , λn), with
all λp > 0, p = 1, . . . , n.

A symmetric matrix can be diagonalized via a rotation. Thus consider the following substitution of variables: x = Ry, whence xT = yTRT (note that
RT = R−1) and dx = detRdy = dy. Define the diagonal matrix ∆ = RTAR = diag (λ1, . . . , λn), with λp > 0 for all p = 1, . . . , n by virtue of
positive definiteness. Then, with parameters λp considered implicitly as a function of matrixA as indicated,

γ(A) =

n∏
p=1

∫
R
exp(−λp(y

p
)
2
) dy

p
.

If desired, one may absorb the eigenvalues λp into the integration variables by another substitution of variables in order to further simplify the result, viz. consider
the rescaling zp =

√
λpy

p. Then, again assuming λp to be given as functions ofA,

γ(A) =

n∏
p=1

1√
λp

∫
R
exp(−(z

p
)
2
) dz

p
.

This reduces the problem to a standard one-dimensional Gaussian integral:
∫
R
exp(−ξ2) dξ =

√
π. Note that

∏n
p=1 λp = detA, so that we finally obtain

γ(A) =

√
πn

√
detA

.

? 15. Compute the extended Gaussian integral γ(A, s) =

∫
Rn

exp(−xiAijxj + skx
k) dx for a symmetric positive

definite n×n matrix A and arbitrary “source” s ∈ Rn.

Rewrite the exponent as a quadratic form in x − a for some vector a ∈ Rn and an x-independent (a-dependent) remainder, and solve for a in terms of the
source s and the matrixA. In this way one obtains

exp(−xiAijxj + skx
k
) = exp

(
−(x

i −
1

2
skB

ki
)Aij (x

j −
1

2
s`B

`j
)

)
exp

(
1

4
spB

pq
sq

)
,

in whichB = A−1, i.e.AijBjk = δki . With the help of a substitution of variables, yi = xi − 1
2 skB

ki, for which dy = dx, we then obtain

γ(A, s) = exp

(
1

4
spB

pq
sq

) ∫
Rn

exp
(
−yi Aij yj)

)
dy =

√
πn

√
detA

exp

(
1

4
spB

pq
sq

)
=

√
πn

√
detA

exp

(
1

4
s
T
A
−1
s

)
.
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? 16. Cf. previous problem. Consider the following integral: γi1...ip(A) =

∫
Rn
xi1 . . . xip exp(−xiAijxj) dx.

Express γi1...ip(A) in terms of γ(A, s). (You don’t need to compute γi1...ip(A) explicitly.)

Observe that
γ
i1...ip (A) = ∂

i1 . . . ∂
ipγ(A, s)

∣∣∣
s=0

,

in which ∂i = ∂/∂si. Together with the expression obtained for γ(A, s) in the previous problem this admits a closed-form solution.



2. Tensor Calculus

1. Expand in n= 2 and n= 3 dimensions, respectively: XiY
ijXj . Argue why we may assume, without loss of

generality, that Y ij = Y ji in this expression (“automatic” symmetry).

In the following expressions all superscripts are to be interpreted as contravariant indices (labels), except if attached to a parenthesized expression, in which case
they denote powers, i.c. squares:

• for n = 2: XiY ijXj = Y 11(X1)2 + 2Y 12X1X2 + Y 22(X2)2;

• for n = 3: XiY ijXj = Y 11(X1)2 + 2Y 12X1X2 + 2Y 13X1X3 + Y 22(X2)2 + 2Y 23X2X3 + Y 33(X3)2.

Note that we have used symmetry to simplify the expressions by noting that Y 21 = Y 12, Y 31 = Y 13, Y 32 = Y 23, i.e. the effective indices of Y ij may
be rearranged such that i ≤ j provided one takes into account a proper combinatorial factor, i.c. a factor 2 for the mixed terms. The legitimacy of the symmetry
assumption Y ij = Y ji can be seen as follows. In general one may write any square matrix as a sum of a symmetric and an antisymmetric part: Y = Ys + Ya,
with entries

Y
ij

s =
1

2

(
Y
ij

+ Y
ji
)

and Y
ij

a =
1

2

(
Y
ij − Y ji

)
.

As a result, XiY ijXj = Xi(Y
ij

s + Y ija )Xj = XiY
ij

s Xj + XiY
ij

a Xj = XiY
ij

s Xj . The latter step follows from XiY
ij

a Xj
?
= XjY

ji
a Xi

∗
=

−XjY ija Xi = −XiY ija Xj . In step ? we we have merely relabelled dummies, in step ∗ we have used antisymmetry Y jia = −Y ija , the final step is trivial.

Since the antisymmetric part of Y does not contribute to the result we may as well assume Y to be symmetric from the outset, as done in the above.

2. Expand in n= 2 and n= 3 dimensions, respectively: XijY
ij . Are we allowed to assume that Xij or Y ij is

symmetric in this expression?

We now have (again all superscripts are labels, not powers)

• for n = 2: XijY ij = X11Y
11 +X12Y

12 +X21Y
21 +X22Y

22;

• for n = 3: XijY ij = X11Y
11 +X12Y

12 +X13Y
13 +X21Y

21 +X22Y
22 +X23Y

23 +X31Y
31 +X32Y

32 +X33Y
33.

There is no reason why there should be any dependencies, such as symmetries, among theXij or Y ij .

3. Show that δii = n and δikδ
k
j = δij .

We have δii = δ11 + . . . + δnn = 1 + . . .+ 1︸ ︷︷ ︸
n terms

= n. Furthermore, δikδ
k
j ≡

∑n
k=1 δ

i
kδ
k
j = δij , because the first Kronecker symbol in the sum, δik , singles

out only the term for which k = i, in which case it evaluates to 1, leaving for the second Kronecker symbol δk=ij as the only effective term.

4. Show that δijX
j
i = Xi

i .

Of all the j-labelled terms in the double sum δijX
j
i ≡

∑n
i=1

∑n
j=1 δ

i
jX

j
i the only ones that are effective due to the δij factor are those terms with j = i,

leavingXj=ii ≡
∑n
i=1X

i
i , i.e. n instead of the n2 terms that are a priori present in the full

∑n
i=1

∑n
j=1-sum.

5. Suppose xi = Aijy
j and yi = Bijx

j for all y ∈ Rn. Prove that AikB
k
j = δij .
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Multiply the first equation withBki and sum over i = 1, . . . , n. Using the second identity we then obtain yk = Bki x
i = Bki A

i
jy
j for all yk , k = 1, . . . , n,

which implies thatBki A
i
j = δkj . Alternatively you can see this by differentiating yk = Bki A

i
jy
j w.r.t. yj , yielding δkj = Bki A

i
j .

6. Consider a Cartesian basis {∂1 ≡ ∂x, ∂2 ≡ ∂y} spanning a 2-dimensional plane. (Here ∂i is shorthand for
∂/∂xi if xi denotes the i-th Cartesian coordinate; in R2 we identify x1 ≡ x, x2 ≡ y.) Let xi denote the i-th polar
coordinate, with x1 ≡ r (radial distance) and x2 ≡ φ (polar angle), such that x = r cosφ, y = r sinφ. Assume
∂j = Aij∂i (with ∂1 ≡ ∂r, ∂2 ≡ ∂φ). Argue why this assumption holds, and compute the matrix A.

The assumption holds by virtue of the chain rule, viz. Aij = ∂xi

∂xj
. Taking i and j as row, respectively column index, we have

A =

(
∂x
∂r

∂x
∂φ

∂y
∂r

∂y
∂φ

)
=

(
cosφ −r sinφ
sinφ r cosφ

)
.

7. Cf. previous problem, but now for the relation between Cartesian and spherical coordinates in R3, defined by
x = r sin θ cosφ, y = r sin θ sinφ, z = r cos θ, with radial distance x1 ≡ r, polar angle x2 ≡ θ and azimuthal
angle x3 ≡ φ, and, correspondingly, ∂1 ≡ ∂r, ∂2 ≡ ∂θ, ∂3 ≡ ∂φ.

The assumption holds by virtue of the chain rule, viz. Aij = ∂xi

∂xj
. Taking i and j as row, respectively column index, we have

A =


∂x
∂r

∂x
∂θ

∂x
∂φ

∂y
∂r

∂y
∂θ

∂y
∂φ

∂z
∂r

∂z
∂θ

∂z
∂φ

 =

 sin θ cosφ r cos θ cosφ −r sin θ sinφ
sin θ sinφ r cos θ sinφ r sin θ cosφ

cos θ −r sin θ 0

 .

8. Cf. previous two problems. Consider the dual Cartesian bases {dx1 ≡ dx, dx2 ≡ dy} in two dimensions,
respectively {dx1 ≡ dx, dx2 ≡ dy, , dx3 ≡ dz} in three dimensions. Assume dxi = Cijdx

j , with dual bases
{dx1 ≡ dr, dx2 ≡ dφ}, respectively {dx1 ≡ dr, dx2 ≡ dθ, , dx3 ≡ dφ}. Show that C = A, i.e. the same matrix
as computed in the previous two problems. (Notice the difference!)

By virtue of the chain rule for differentials we have dxi = Cijdx
j , with Cij = ∂xi

∂xj
, i.e. the same matrix C = A as evaluated in the previous problem.

Whereas in the previous problem the new derivatives ∂i were expressed as linear combinations of the old ones ∂j , we now have the old differentials dxi

expressed as linear combinations of the new ones dxj , with the same coefficients.

9. Let x = xiei ∈ V . Show that the map â : V → R defined by â(x) = aix
i is a linear operator.

For x,y ∈ V , λ, µ ∈ R, we have â(λx + µy) = ai(λx
i + µyi) = λaix

i + µaiy
i = λâ(x) + µâ(y).

10. Cf. previous problem. A linear operator of this type is known as a covector, notation â ∈ V ∗ ≡ L (V,R).
Explain why a covector â (respectively covector space V ∗) is formally a vector (respectively vector space).

For λ, µ ∈ R, â, b̂ ∈ V ∗, and arbitrary x ∈ V , we have, by definition, (λâ+µb̂)(x) = λâ(x) +µb̂(x). With this definition, V ∗ acquires a vector space

structure, and its elements, i.c. â, b̂ ∈ V ∗, are, by definition, vectors.

11. Consider â ∈ V ∗ with prototype â : V → R : x 7→ â(x) = aix
i. Argue why this naturally provides an

alternative interpretation of x ∈ V as an element of V ∗∗ = (V ∗)∗ ∼ V .

Notice the symmetric role played by the coefficients ai of the linear map â ∈ V ∗ and its arguments xi. We might as well call xi the coefficients, and ai the

arguments, if we reinterpret the linear map as x ∈ V ∗∗, i.e. x : V ∗ → R : â 7→ aix
i, i.e. x(â)

def
= â(x).

12. Suppose 〈ω̂,v〉 = Cijωiv
j = C

i

jωiv
j relative to dual bases {ei, êi} (middle term), respectively {fi, f̂ i}

(right hand side), in which Cij and C
i

j are coefficients (“holors”) to be determined. Show that the holor is basis

independent, i.e. Cij = C
i

j , and compute its components explicitly.
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Inserting the decompositions ω̂ = ωiê
i and v = vjej into the Kronecker tensor yields, using bilinearity and duality, 〈ω̂,v〉 = ωiv

j〈êi, ej〉 = ωiv
jδij ,

so that apparently Cij = δij . This is basis independent, so by the same token we have Cij = δij .

13. Suppose {ei} and {êi} are dual bases of V , respectively V ∗, and ei = Aji fj , ê
i = Bij f̂

j for some (a priori
unrelated) transformation matrices A and B. Show that if {fj , f̂ j} constitute dual bases then BjkA

k
i = δji .

By virtue of duality we have δji = 〈êj , ei〉 = 〈Bjk f̂
k, A`if`〉 = BjkA

`
i〈f̂

k, f`〉
∗
= BjkA

`
iδ
k
` = BjkA

k
i . The equality marked by ∗ follows if {fj , f̂ i}

define dual bases, i.e. if 〈f̂ i, fj〉 = δij .

? 14. Show that the following “length functional” L (γ) for a parameterized curve γ : [T−, T+]→ Rn : t 7→ γ(t)
with fixed end points X± = γ(T±) is independent of the parametrization:

L (γ) =

∫ T+

T−

√
gij(γ(t)) γ̇i(t) γ̇j(t) dt .

Here γ̇(t) = γ̇i(t)ei denotes the derivative of the curve, expanded relative to a fiducial basis {ei}, and γij(x) are
the components of the inner product defined at base point x ∈ Rn. To this end, consider a reparametrization of
the form s = s(t), with ṡ(t) > 0, say.

Substitution of variables, with s = s(t) or, equivalently, t = t(s), setting γ(t) = ξ(s(t)) and defining ξ̇(s) = dξ(s)/ds, yields, by the chain rule,

L (γ) =

∫ T+

T−

√
gij(γ(t)) γ̇i(t) γ̇j(t) dt =

∫ T+

T−

√
gij(ξ(s(t))) ξ̇i(s(t)) ṡ(t) ξ̇j(s(t)) ṡ(t) dt =

∫ S+

S−

√
gij(ξ(s)) ξ̇i(s) ξ̇j(s) ds ,

in which we have used ds = ṡ(t)dt, and in which S± = s(T±) denote the new parameter values of the (fixed) end pointsX±.

15. Cf. previous problem. The parameter s is called an affine parameter if, along the entire parameterized curve
ξ : [S−, S+] → Rn : s 7→ ξ(s), we have ‖ξ̇(s)‖ = 1 (“unit speed parameterization”), or

(
ξ̇(s)|ξ̇(s)

)
= 1, in

which the l.h.s. pertains to the inner product at point ξ(s) ∈ Rn. In other words, gij(ξ(s)) ξ̇i(s) ξ̇j(s) = 1. Show
that this can always be realized through suitable reparameterization starting from an arbitrarily parameterized
curve γ : [T−, T+]→ Rn : t 7→ γ(t).

Cf. previous problem for notation. Note that (γ̇(t)|γ̇(t)) = f2(t) for some positive definite function f : [T−, T+] → R : t 7→ f(t). By the

chain rule we have f2(t) =
(
ξ̇(s(t))ṡ(t)|ξ̇(s(t))ṡ(t)

)
=
(
ξ̇(s(t))|ξ̇(s(t))

)
ṡ2(t). If we now choose the reparameterization such that ṡ(t) = f(t)

with arbitrarily fixed initial condition s(T−) = S− (admitting a unique solution), then we get
(
ξ̇(s)|ξ̇(s)

)
= 1 along the entire reparameterized curve

ξ : [S−, S+]→ Rn : s 7→ ξ(s). Note that the reparameterization is one-to-one.

16. The figure below shows a pictorial representation of vectors (v,w ∈ V ) and covectors (ω ∈ V ∗) in terms
of graphical primitives. In this picture, a vector is denoted by a directed arrow, and a covector by an equally
spaced set of level lines along a directed normal (i.e. “phase” increases in the direction of the directed normal,
attaining consecutive integer values on the level lines drawn in the figure). Give a graphical interpretation of the
contraction 〈ω,v〉 ∈ R, and estimate from the figure the values of 〈ω,v〉, 〈ω,w〉, and 〈ω,v + w〉. Are these
values consistent with the linearity of 〈ω, · 〉?
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w

v

v+w

ω

The contraction 〈ω,v〉 equals the (fractional) number of level lines of ω intersected by the arrow v, with a sign depending on whether the progression along the

level lines is in forward (+) or backward (−) direction, in other words, the phase difference between tip and tail of the arrow relative to the “planar wave” pattern.

From the picture we estimate 〈ω,v〉 ≈ 3, 〈ω,w〉 ≈ 2, and 〈ω,v + w〉 ≈ 5, consistent with the linearity constraint 〈ω,v〉+ 〈ω,w〉 = 〈ω,v + w〉.

17. An inner product on V induces an inner product on V ∗. Recall that for x = xiei ∈ V and y = yjej ∈ V we
have (x|y) = gijx

iyj . Let x̂ = xiê
i ∈ V ∗, ŷ = yj ê

j ∈ V ∗, with 〈êi, ej〉 = δij . Define (x̂|ŷ)∗ = ([x̂|[ŷ). Show
that (x̂|ŷ)∗ = gijxiyj , in which gikgkj = δij .

We have (x̂|ŷ)∗ = ([x̂|[ŷ) =
(
gikxiek|gj`y`ej

)
= gikgj`xiy` (ek|ej) = gikgkjg

j`xiy` = gijxiyj .

18. Let û, v̂ ∈ V ∗. Prove equivalence of nilpotency and antisymmetry of the wedge product, i.e. û ∧ û = 0 iff
û ∧ v̂ = −v̂ ∧ û.

Starting from nilpotency, consider 0 = (û + v̂)∧ (û + v̂) = û∧ v̂ + v̂∧ û, in which the last step follows from bilinearity and nilpotency of the ∧-product.

Vice versa, antisymmetry implies û ∧ û = −û ∧ û, whence û ∧ û = 0.

19. Let π, π′ : {1, . . . , p} → {1, . . . , p} : k 7→ π(k) be two bijections. By abuse of notation these can be
identified with permutations on any symbolic set Ωp = {(a1, . . . , ap)} consisting of p-tuples of labeled symbols:
π : Ωp → Ωp : (a1, . . . , ap) 7→ (aπ(1), . . . , aπ(p)), and likewise for π′. Let π(1, . . . , p) = (π(1), . . . , π(p)),
respectively π′(1, . . . , p) = (π′(1), . . . , π′(p)), argue that π′′ = π′π, i.e. the (right-to-left) concatenation of π′

and π, defines another permutation.

Consider π′′(1, . . . , p) = π′π(1, . . . , p) = π′(π(1), . . . , π(p)) = (π′π(1), . . . , π′π(p)). Since π, π′ : {1, . . . , p} → {1, . . . , p} are bijective,

so is their composition π′′ = π′π : {1, . . . , p} → {1, . . . , p}, whence we must define π′′ : Ωp → Ωp : (a1, . . . , ap) 7→ (aπ′′(1), . . . , aπ′′(p)). In

particular, π′′(1, . . . , p) = (π′′(1), . . . , π′′(p)), i.e. a permutation of (1, . . . , p).

20. Argue that the concatenation π′′ = π′π of two permutations π′ and π satisfies sgnπ′′ = sgnπ′ sgnπ.

Although the absolute number of pairwise toggles of entries in the p-tuple π(1, . . . , p) = (π(1), . . . , π(p)) needed to rearrange its entries into the orig-

inal ordering (1, . . . , p) is not unique, it is always either even or odd for any particular permutation. Thus sgnπ = ±1, indicating whether this number

is even (+) or odd (−), is well-defined. Using “±1” as synonyms for “any even/odd number”, rearranging π′′(1, . . . , p) = (π′′(1), . . . , π′′(p)) =

(π′π(1), . . . , π′π(p)) intoπ′(1, . . . , p) = (π′(1), . . . , π′(p)) requires sgnπ pairwise toggles of entries, while subsequent rearrangement ofπ′(1, . . . , p) =

(π′(1), . . . , π′(p)) into (1, . . . , p) requires another sgnπ′ number. The total number is thus sgnπ′′ = sgnπ′ sgnπ.

21. Show that the symmetrisation map S : T0
p(V )→

∨
p(V ) is idempotent, i.e. S ◦S = S .

Consider (S ◦ S )(T)(v1, . . . ,vp) = 1
p!

∑
π S (T)(vπ(1), . . . ,vπ(p)) = 1

p!

∑
π

1
p!

∑
π′ T(vπ′π(1), . . . ,vπ′π(p)). Now π′π = π′′ is

again a permutation of (1, . . . , p), so we may rewrite the r.h.s. as 1
p!

∑
π

1
p!

∑
π′′ T(vπ′′(1), . . . ,vπ′′(p)). Since the terms in the innermost π′′-sum



Tensor Calculus 11

do not depend on π, the outermost π-sum adds p! identical terms, cancelling one combinatorial factor:
∑
π

1
p! = 1. Thus (S ◦ S )(T)(v1, . . . ,vp) =

1
p!

∑
π′′ T(vπ′′(1), . . . ,vπ′′(p)) = S (T)(v1, . . . ,vp). Since this holds for all vector arguments vk , k = 1, . . . , p, we have the operator identity

S ◦S = S .

22. Show that the antisymmetrisation map A : T0
p(V )→

∧
p(V ) is idempotent, i.e. A ◦A = A .

Consider (A ◦ A )(T)(v1, . . . ,vp) = 1
p!

∑
π sgnπA (T)(vπ(1), . . . ,vπ(p)) = 1

p!

∑
π sgnπ 1

p!

∑
π′ sgnπ′T(vπ′π(1), . . . ,vπ′π(p)). Now

π′π = π′′ is again a permutation of (1, . . . , p), with sgnπ′′ = sgnπ′sgnπ, so we may rewrite the r.h.s. as 1
p!

∑
π

1
p!

∑
π′′ sgnπ′′T(vπ′′(1), . . . ,vπ′′(p)).

Since the terms in the innermost π′′-sum do not depend on π, the outermost π-sum adds p! identical terms, cancelling one combinatorial factor:
∑
π

1
p! = 1.

Thus (A ◦ A )(T)(v1, . . . ,vp) = 1
p!

∑
π′′ sgnπ′′T(vπ′′(1), . . . ,vπ′′(p)) = A (T)(v1, . . . ,vp). Since this holds for all vector arguments vk ,

k = 1, . . . , p, we have the operator identity A ◦A = A .

23. Cf. the two previous problems. Show that A ◦S = S ◦A = 0 ∈ L (T0
p(V ),T0

p(V )), i.e. the null operator
on T0

p(V ) for p ≥ 2. What if p = 0, 1?

For p ≥ 2, assume T ∈ A (T0
p(V )) ∩S (T0

p(V )) =
∧
p(V ) ∩

∨
p(V ), i.e. T is both symmetric as well as antisymmetric. Then, for 1 ≤ k 6= ` ≤ p,

T(v1, . . . ,vk, . . . ,v`, . . . ,vp)
s
= T(v1, . . . ,v`, . . . ,vk, . . . ,vp)

a
= −T(v1, . . . ,vk, . . . ,v`, . . . ,vp), in which symmetry (s), respectively

antisymmetry (a) has been used in the last two steps. So
∧
p(V ) ∩

∨
p(V ) = {0}, i.e. A ◦S = S ◦A = 0 ∈ L (T0

p(V ),T0
p(V )). For p = 0, 1 the

maps A and S act trivially: A = S = id : T0
p=0,1(V )→ T0

p=0,1(V ).

24. Let ti1...ip be the holor of T ∈ T0
p(V ). Show that the holor of S (T) ∈

∧
p(V ) is t(i1...ip)

def
= 1

p!

∑
π tπ(i1)...π(ip).

We have

S (T)(v1, . . . ,vp) =

1

p!

∑
π

T(vπ(1), . . . ,vπ(p)) =
1

p!

∑
π

ti1...ipv
i1
π(1)

. . . v
ip
π(p)

∗
=

1

p!

∑
π

tiπ(1)...iπ(p)
v
iπ(1)

π(1)
. . . v

iπ(p)

π(p)

?
=

1

p!

∑
π

tiπ(1)...iπ(p)
v
i1
1 . . . v

ip
p .

In step ∗ we have relabeled dummy summation indices in each of the p! terms of the π-sum, while step ? relies on a trivial reordering of commuting factors.

25. Cf. previous problem. Show that the holor of A (T) ∈
∧
p(V ) is t[i1...ip]

def
= 1

p!

∑
π sgnπ tπ(i1)...π(ip).

We have

A (T)(v1, . . . ,vp) =

1

p!

∑
π

sgnπT(vπ(1), . . . ,vπ(p)) =
1

p!

∑
π

sgnπ ti1...ipv
i1
π(1)

. . . v
ip
π(p)

∗
=

1

p!

∑
π

sgnπ tiπ(1)...iπ(p)
v
iπ(1)

π(1)
. . . v

iπ(p)

π(p)

?
=

1

p!

∑
π

sgnπ tiπ(1)...iπ(p)
v
i1
1 . . . v

ip
p .

In step ∗ we have relabeled dummy summation indices in each of the p! terms of the π-sum, while step ? relies on a trivial reordering of commuting factors.

26. Write out the symmetrised holor t(ijk) in terms of tijk. Likewise for the antisymmetrised holor t[ijk].

We have t(ijk) = 1
3!

∑
π tπ(i)π(j)π(k) = 1

6 (t123 + t231 + t312 + t213 + t132 + t321), respectively t[ijk] = 1
3!

∑
π sgnπ tπ(i)π(j)π(k) =

1
6 (t123 + t231 + t312 − t213 − t132 − t321).

27. Simplify the expressions of the previous problem as far as possible if tijk is known to possess the partial
symmetry property tijk = tjik.

In this case we encounter identical pairs in the summation for t(ijk) = 1
3 (t123 + t231 + t132), whereas those in t[ijk] = 0 cancel eachother.

28. Let B = {dt, dx, dy, dz} be a coordinate basis of the 4-dimensional spacetime covector space V ∗ of V ∼ R4.
What is dim

∧
p(V ) for p = 0, 1, 2, 3, 4? Provide explicit bases Bp of

∧
p(V ) for p = 0, 1, 2, 3, 4 induced by B.
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We have, respectively, dim B0 = 1, dim B1 = 4, dim B2 = 6, dim B3 = 4, dim B4 = 1, with bases B0 = {1}, B1 = {dt, dx, dy, dz} = B,

B2 = {dt ∧ dx, dt ∧ dy, dt ∧ dz, dx ∧ dy, dx ∧ dz, dy ∧ dz}, B3 = {dt ∧ dx ∧ dy, dt ∧ dx ∧ dz, dt ∧ dy ∧ dz, dx ∧ dy ∧ dz},

B4 = {dt ∧ dx ∧ dy ∧ dz}.

29. Using the definition (v1 ∧ . . . ∧ vk|x1 ∧ . . . ∧ xk) = det〈]vi,xj〉, show that for any v,w ∈ V (with
dimV ≥ 2), (v ∧w|v ∧w) ≥ 0, with equality iff v ∧w = 0. What if dimV = 1?

Hint: Recall the Schwartz inequality for inner products: | (v|w) | ≤
√

(v|v) (w|w).

We have

(v ∧w|v ∧w) = det

(
〈]v,v〉 〈]v,w〉
〈]w,v〉 〈]w,w〉

)
= det

(
(v|v) (v|w)
(w|v) (w|w)

)
= (v|v) (w|w)− (w|v) (v|w) ≥ 0 .

The last step follows from the Schwartz inequality, which also yields that equality occurs iff v ∝ w, which is equivalent to v∧w = 0. Note that if dimV = 1

the inequality becomes a trivial equality, since then v ∧w = 0 for v,w ∈ V .

30. Cf. previous problem. Show that (v ∧w|x ∧ y) = (x ∧ y|v ∧w) for all v,w,x,y ∈ V .

We have

(v ∧w|x ∧ y) = det

(
〈]v,x〉 〈]v,y〉
〈]w,x〉 〈]w,y〉

)
= det

(
(v|x) (v|y)
(w|x) (w|y)

)
∗
= det

(
(x|v) (x|w)
(y|v) (y|w)

)
= det

(
〈]x,v〉 〈]x,w〉
〈]y,v〉 〈]y,w〉

)
= (x ∧ y|v ∧w) .

In step ∗ we have used symmetry of the inner product as well as the fact that detA = detAT for any square matrixA.

31. Expand and simplify the symmetrized holor g(ijhk`) in terms of the unsymmetrized holor, i.e. in terms of
terms like gijhk` and similar ones with permuted index orderings, using the symmetry properties gij = gji and
hij = hji.

There are 4! = 24 terms in total, which can be reduced to 4 identical copies of either of 6 terms as follows: g(ijhk`) = 1
4!

∑
π gπ(i)π(j)hπ(k)π(`) =

1
6 (gijhk` + gikhj` + gi`hjk + gk`hij + gj`hik + gjkhi`).

32. Show that for the holor of any covariant 2-tensor we have Tij = T(ij) + T[ij].

33. Cf. the previous problem. Show that, for the holor of a typical covariant 3-tensor, Tijk 6= T(ijk) + T[ijk].

34. Expand and simplify the symmetrized holor g(ijgk`) in terms of the unsymmetrized holor, i.e. in terms of
terms like gijgk` and similar ones with permuted index orderings, using the symmetry property gij = gji.

There are 4! = 24 terms in total, which can be reduced to 8 identical copies of either of 3 terms as follows: g(ijgk`) = 1
4!

∑
π gπ(i)π(j)gπ(k)π(`) =

1
3 (gijgk` + gikgj` + gi`gjk). This is a special case of the previous problem, with first and fourth, second and fifth, and third and sixth terms now being

identical due to the identification gij = hij .

35. Consider the 1-form df = ∂if dx
i and define the gradient vector ∇f = [df = ∂if ∂i relative to the cor-

responding dual bases {dxi} and {∂i}. Here ∂if is shorthand for the partial derivative ∂f
∂xi , whereas ∂if is a

symbolic notation for the contravariant coefficient of∇f relative to {∂i} (all evaluated at a fiducial point). Show
that ∂if = gij∂jf .

36. Cf. previous problem.

• Compute the matrix entries gij explicitly for polar coordinates in n = 2, i.e. x1 ≡ r and x2 ≡ φ, starting
from a standard inner product in Cartesian coordinates x1 ≡ x = r cosφ, x2 = y = r sinφ. Relative to
basis {∂i}=̂{∂x, ∂y}, in which v = vi∂i = vx∂x + vy∂y , respectively w = wi∂i = wx∂x + wy∂y , the
standard inner product takes the form (v|w) = ηijv

iwj with ηij = 1 if i = j and 0 otherwise.

• Using your result, compute the components ∂
1
f = ∂rf and ∂

2
f = ∂φf of the gradient vector ∇f =

[df = ∂
i
f ∂i relative to the polar basis {∂i}=̂{∂r, ∂φ}.
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37. Show that the Kronecker symbol δij is an invariant holor under the “tensor transformation law”, and explain
the attribute “invariant” in this context.

38. Cf. previous problem. Define ε =
√
gµ ∈

∧
n(V ), in which V is an inner product space,µ = dx1∧. . .∧dxn,

and g = det gij , the determinant of the covariant metric tensor. Consider its expansion relative to two bases,
{dxi} respectively {dxi}, viz. ε = εi1...in dx

i1 ⊗ . . . ⊗ dxin = εi1...in dx
i1 ⊗ . . . ⊗ dxin . Find the relation

between the respective holors εi1...in and εi1...in . Is the holor of the ε-tensor invariant in the same sense as above?
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3. Differential Geometry

1. Show that the definitions (i)∇∂j∂i = Γkij∂k and (ii) Γkij = 〈dxk,∇∂j∂i〉 are equivalent.

Using (i) we have 〈dxk,∇∂j ∂i〉 = 〈dxk,Γ`ij∂`〉 = Γ`ij〈dx
k, ∂`〉 = Γ`ijδ

k
` = Γkij . Starting with (ii), since∇∂j ∂i ∈ TM there exist coefficients Akij

such that ∇∂j ∂i = Akij∂k . Insertion into the second slot of the Kronecker tensor yields Γkij = 〈dxk,∇∂j ∂i〉 = 〈dxk, A`ij∂`〉 = A`ij〈dx
k, ∂`〉 =

A`ijδ
k
` = Akij , which proves (i).

2. Show that if Γkij = Γkji in x-coordinates, then Γ
k

ij = Γ
k

ji in any coordinate basis induced by an arbitrary
coordinate transformation x = x(x).

This follows from the the fact that Tkij = Γkji − Γkij is the holor of a tensor, cf. the next problem.

3. Show that the holor T kij = Γkji − Γkij “transforms as a
(

1
2

)
-tensor”.

4. Show that the holor t` = Γkk` does not “transform as a covector”, and derive its proper transformation law.

If Tm` = ∂xm

∂y`
and Skr = ∂yk

∂xr , then t` = Tm` tm + ∂2xr

∂y`∂yk
Skr . (The latter term can be rewritten as ∂2xr

∂y`∂yk
Skr = ∂

∂y`
(ln det ∂x∂y ).)

5. Consider 3-dimensional Euclidean space E furnished with Cartesian coordinates (x, y, z) ∈ R3. Assuming
all Christoffel symbols Γkij vanish relative to the induced Cartesian basis (∂x, ∂y, ∂z), derive the corresponding

symbols Γ
k

ij relative to a cylindrical coordinate system x = ρ cosφ
y = ρ sinφ
z = ζ

Writing x1 =x, x2 =y, x3 =z, y1 =ρ, y2 =φ, y3 =ζ, and ∂i = ∂

∂xi
, ∂i = ∂

∂yi
, the solution follows from Γ

k
ij = Skp∂jT

p
i , in which Skp = ∂yk

∂xp and

Tpi = ∂xp

∂yi
. All symbols Γ

k
ij vanish except Γ

φ
ρφ = Γ

φ
φρ = 1

ρ and Γ
ρ
φφ = −ρ.

6. Cf. the previous problem. Compute the components gij of the metric tensor for Euclidean 3-space E in cylin-
drical coordinates yi, assuming a Euclidean metric gij(y)dyi⊗dyj = ηijdx

i⊗dxj in which the xi are Cartesian
coordinates, and ηij = 1 if i = j and ηij = 0 otherwise.

7. Cf. previous problems. Show that the Christoffel symbols Γ
k

ij derived above are in fact those corresponding to
the Levi-Civita connection of Euclidean 3-space E (in cylindrical coordinates), and provide the geodesic equations
for a geodesic curve (ρ, φ, ζ) = (ρ(t), φ(t), ζ(t)) in cylindrical coordinates. Finally, show that the solutions to
these equations are indeed straight lines.

Hint: Compare the y-geodesic equations to the trivial x-geodesic equations ẍ = ÿ = z̈ = 0.
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