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Preface

This problem companion belongs to the course notes “Tensor Calculus and Differential Geometry” (course code
2WAH0) by Luc Florack. Problems are concisely formulated. Einstein summation convention applies to all
problems, unless stated otherwise. Please refer to the course notes for further details.

Luc Florack

Eindhoven, March 25, 2015.
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1. Prerequisites from Linear Algebra

1. Let V be a real vector space, and u ∈ V . Show that (−1) · u = −u, and 0 · u = o.

2. Show that L (V,W ) is a vector space.

In analogy with the determinant of a matrix A, the so-called permanent is defined as

permA =

n∑
j1,...,jn=1

|[j1, . . . , jn]|A1j1 . . . Anjn =
1

n!

n∑
i1, . . . , in = 1
j1, . . . , jn = 1

|[i1, . . . , in] [j1, . . . , jn]|Ai1j1 . . . Ainjn .

Note that the nontrivial factors among the weights |[i1, . . . , in]| and |[j1, . . . , jn]| are invariably +1.

3. Can we omit the factors |[i1, . . . , in]| and |[j1, . . . , jn]| in this definition of permA?

4. How many multiplications and additions/subtractions do you need in the numerical computation of detA and
permA for a generic n× n matrix A?

5. Given a generic n × n matrix A. Argue why its cofactor and adjugate matrices Ã, respectively ÃT, always
exist, unlike its inverse A−1. What is the condition for A−1 to be well-defined?

6. Let

A =

(
1 3
2 7

)
and B =

 1 2 1
6 3 8
8 7 10


Compute, by hand, detA and detB. Likewise for permA and permB.

7. Cf. previous problem. Compute the following expression involving the standard 3-dimensional inner and outer
product of vectors (cf. the columns of B), and provide a geometrical interpretation of your result for detB: 1

6
8

×
 2

3
7

 ·
 1

8
10



8. Cf. previous problem. Compute the cofactor and adjugate matrices Ã, B̃, ÃT, and B̃T.

9. Cf. previous problem. Compute the inverse matrices A−1 and B−1, if these exist.

10. Cf. previous problem. Compute AÃT and BB̃T.

11. Given detA, detB for general n×n matrices A, B. What is det Ã, detAT, det(λA), det(AB), and detAk

for λ ∈ R, k ∈ Z?
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12. Consider the collection Ai1...in for all i1, . . . , in = 1, . . . , n. Suppose Ai1...ik...i`...in = −Ai1...i`...ik...in for
any 1 ≤ k < ` ≤ n (complete antisymmetry). Show that Ai1...in ∝ [i1 . . . in].

13. Prove the following identities for the completely antisymmetric symbol in n = 3:

[i, j, k] [`,m, n] = δi`δjmδkn + δimδjnδk` + δinδj`δkm − δimδj`δkn − δi`δjnδkm − δinδjmδk`
3∑
i=1

[i, j, k] [i,m, n] = δjmδkn − δjnδkm

3∑
i,j=1

[i, j, k] [i, j, n] = 2δkn

3∑
i,j,k=1

[i, j, k] [i, j, k] = 6

? 14. Compute the Gaussian integral γ(A) =

∫
Rn

exp(−xiAijxj) dx for a symmetric positive definite n×n

matrix A. Hint: There exists a rotation matrix R such that RTAR = ∆, in which ∆ = diag (λ1, . . . , λn), with
all λp > 0, p = 1, . . . , n.

? 15. Compute the extended Gaussian integral γ(A, s) =

∫
Rn

exp(−xiAijxj + skx
k) dx for a symmetric positive

definite n×n matrix A and arbitrary “source” s ∈ Rn.

? 16. Cf. previous problem. Consider the following integral: γi1...ip(A) =

∫
Rn

xi1 . . . xip exp(−xiAijxj) dx.

Express γi1...ip(A) in terms of γ(A, s). (You don’t need to compute γi1...ip(A) explicitly.)
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17. Expand in n=2 and n=3 dimensions, respectively: XiY
ijXj . Argue why we may assume, without loss of

generality, that Y ij = Y ji in this expression (“automatic” symmetry).

18. Expand in n= 2 and n= 3 dimensions, respectively: XijY
ij . Are we allowed to assume that Xij or Y ij is

symmetric in this expression?

19. Show that δii = n and δikδ
k
j = δij .

20. Show that δijX
j
i = Xi

i .

21. Suppose xi = Aijy
j and yi = Bijx

j for all y ∈ Rn. Prove that AikB
k
j = δij .

22. Consider a Cartesian basis {∂1 ≡ ∂x, ∂2 ≡ ∂y} spanning a 2-dimensional plane. (Here ∂i is shorthand for
∂/∂xi if xi denotes the i-th Cartesian coordinate; in R2 we identify x1 ≡ x, x2 ≡ y.) Let xi denote the i-th polar
coordinate, with x1 ≡ r (radial distance) and x2 ≡ φ (polar angle), such that x = r cosφ, y = r sinφ. Assume
∂j = Aij∂i (with ∂1 ≡ ∂r, ∂2 ≡ ∂φ). Argue why this assumption holds, and compute the matrix A.

23. Cf. previous problem, but now for the relation between Cartesian and spherical coordinates in R3, defined by
x = r sin θ cosφ, y = r sin θ sinφ, z = r cos θ, with radial distance x1 ≡ r, polar angle x2 ≡ θ and azimuthal
angle x3 ≡ φ, and, correspondingly, ∂1 ≡ ∂r, ∂2 ≡ ∂θ, ∂3 ≡ ∂φ.

24. Cf. previous two problems. Consider the dual Cartesian bases {dx1 ≡ dx, dx2 ≡ dy} in two dimensions,
respectively {dx1 ≡ dx, dx2 ≡ dy, , dx3 ≡ dz} in three dimensions. Assume dxi = Cijdx

j , with dual bases
{dx1 ≡ dr, dx2 ≡ dφ}, respectively {dx1 ≡ dr, dx2 ≡ dθ, , dx3 ≡ dφ}. Show that C = A, i.e. the same matrix
as computed in the previous two problems. (Notice the difference!)

25. Let x = xiei ∈ V . Show that the map â : V → R defined by â(x) = aix
i is a linear operator.

26. Cf. previous problem. A linear operator of this type is known as a covector, notation â ∈ V ∗ ≡ L (V,R).
Explain why a covector â (respectively covector space V ∗) is formally a vector (respectively vector space).

27. Consider â ∈ V ∗ with prototype â : V → R : x 7→ â(x) = aix
i. Argue why this naturally provides an

alternative interpretation of x ∈ V as an element of V ∗∗ = (V ∗)∗ ∼ V .

28. Suppose 〈ω̂,v〉 = Cijωiv
j = C

i

jωiv
j relative to dual bases {ei, êi} (middle term), respectively {fi, f̂ i}

(right hand side), in which Cij and C
i

j are coefficients (“holors”) to be determined. Show that the holor is basis

independent, i.e. Cij = C
i

j , and compute its components explicitly.

29. Suppose {ei} and {êi} are dual bases of V , respectively V ∗, and ei = Aji fj , ê
i = Bij f̂

j for some (a priori
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unrelated) transformation matrices A and B. Show that if {fj , f̂ j} constitute dual bases then BjkA
k
i = δji .

? 30. Show that the following “length functional” L (γ) for a parameterized curve γ : [T−, T+]→ Rn : t 7→ γ(t)
with fixed end points X± = γ(T±) is independent of the parametrization:

L (γ) =

∫ T+

T−

√
gij(γ(t)) γ̇i(t) γ̇j(t) dt .

Here γ̇(t) = γ̇i(t)ei denotes the derivative of the curve, expanded relative to a fiducial basis {ei}, and γij(x) are
the components of the inner product defined at base point x ∈ Rn. To this end, consider a reparametrization of
the form s = s(t), with ṡ(t) > 0, say.

31. Cf. previous problem. The parameter s is called an affine parameter if, along the entire parameterized curve
ξ : [S−, S+] → Rn : s 7→ ξ(s), we have ‖ξ̇(s)‖ = 1 (“unit speed parameterization”), or

(
ξ̇(s)|ξ̇(s)

)
= 1, in

which the l.h.s. pertains to the inner product at point ξ(s) ∈ Rn. In other words, gij(ξ(s)) ξ̇i(s) ξ̇j(s) = 1. Show
that this can always be realized through suitable reparameterization starting from an arbitrarily parameterized
curve γ : [T−, T+]→ Rn : t 7→ γ(t).

32. The figure below shows a pictorial representation of vectors (v,w ∈ V ) and covectors (ω ∈ V ∗) in terms
of graphical primitives. In this picture, a vector is denoted by a directed arrow, and a covector by an equally
spaced set of level lines along a directed normal (i.e. “phase” increases in the direction of the directed normal,
attaining consecutive integer values on the level lines drawn in the figure). Give a graphical interpretation of the
contraction 〈ω,v〉 ∈ R, and estimate from the figure the values of 〈ω,v〉, 〈ω,w〉, and 〈ω,v + w〉. Are these
values consistent with the linearity of 〈ω, · 〉?

w

v

v+w

ω

33. An inner product on V induces an inner product on V ∗. Recall that for x = xiei ∈ V and y = yjej ∈ V we
have (x|y) = gijx

iyj . Let x̂ = xiê
i ∈ V ∗, ŷ = yj ê

j ∈ V ∗, with 〈êi, ej〉 = δij . Define (x̂|ŷ)∗ = ([x̂|[ŷ). Show
that (x̂|ŷ)∗ = gijxiyj , in which gikgkj = δij .

34. Let û, v̂ ∈ V ∗. Prove equivalence of nilpotency and antisymmetry of the wedge product, i.e. û ∧ û = 0 iff
û ∧ v̂ = −v̂ ∧ û.

35. Let π, π′ : {1, . . . , p} → {1, . . . , p} : k 7→ π(k) be two bijections. By abuse of notation these can be
identified with permutations on any symbolic set Ωp = {(a1, . . . , ap)} consisting of p-tuples of labeled symbols:
π : Ωp → Ωp : (a1, . . . , ap) 7→ (aπ(1), . . . , aπ(p)), and likewise for π′. Let π(1, . . . , p) = (π(1), . . . , π(p)),
respectively π′(1, . . . , p) = (π′(1), . . . , π′(p)), argue that π′′ = π′π, i.e. the (right-to-left) concatenation of π′

and π, defines another permutation.

36. Argue that the concatenation π′′ = π′π of two permutations π′ and π satisfies sgnπ′′ = sgnπ′ sgnπ.
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37. Show that the symmetrisation map S : T0
p(V )→

∨
p(V ) is idempotent, i.e. S ◦S = S .

38. Show that the antisymmetrisation map A : T0
p(V )→

∧
p(V ) is idempotent, i.e. A ◦A = A .

39. Cf. the two previous problems. Show that A ◦S = S ◦A = 0 ∈ L (T0
p(V ),T0

p(V )), i.e. the null operator
on T0

p(V ) for p ≥ 2. What if p = 0, 1?

40. Let ti1...ip be the holor of T ∈ T0
p(V ). Show that the holor of S (T) ∈

∧
p(V ) is t(i1...ip)

def
= 1

p!

∑
π tπ(i1)...π(ip).

41. Cf. previous problem. Show that the holor of A (T) ∈
∧
p(V ) is t[i1...ip]

def
= 1

p!

∑
π sgnπ tπ(i1)...π(ip).

42. Write out the symmetrised holor t(ijk) in terms of tijk. Likewise for the antisymmetrised holor t[ijk].

43. Simplify the expressions of the previous problem as far as possible if tijk is known to possess the partial
symmetry property tijk = tjik.

44. Let B = {dt, dx, dy, dz} be a coordinate basis of the 4-dimensional spacetime covector space V ∗ of V ∼ R4.
What is dim

∧
p(V ) for p = 0, 1, 2, 3, 4? Provide explicit bases Bp of

∧
p(V ) for p = 0, 1, 2, 3, 4 induced by B.

45. Using the definition (v1 ∧ . . . ∧ vk|x1 ∧ . . . ∧ xk) = det〈]vi,xj〉, show that for any v,w ∈ V (with
dimV ≥ 2), (v ∧w|v ∧w) ≥ 0, with equality iff v ∧w = 0. What if dimV = 1?

Hint: Recall the Schwartz inequality for inner products: | (v|w) | ≤
√

(v|v) (w|w).

46. Cf. previous problem. Show that (v ∧w|x ∧ y) = (x ∧ y|v ∧w) for all v,w,x,y ∈ V .

47. Expand and simplify the symmetrized holor g(ijhk`) in terms of the unsymmetrized holor, i.e. in terms of
terms like gijhk` and similar ones with permuted index orderings, using the symmetry properties gij = gji and
hij = hji.

48. Show that for the holor of any covariant 2-tensor we have Tij = T(ij) + T[ij].

49. Cf. the previous problem. Show that, for the holor of a typical covariant 3-tensor, Tijk 6= T(ijk) + T[ijk].

50. Expand and simplify the symmetrized holor g(ijgk`) in terms of the unsymmetrized holor, i.e. in terms of
terms like gijgk` and similar ones with permuted index orderings, using the symmetry property gij = gji.

51. Consider the 1-form df = ∂if dx
i and define the gradient vector ∇f = [df = ∂if ∂i relative to the cor-

responding dual bases {dxi} and {∂i}. Here ∂if is shorthand for the partial derivative ∂f
∂xi , whereas ∂if is a

symbolic notation for the contravariant coefficient of∇f relative to {∂i} (all evaluated at a fiducial point). Show
that ∂if = gij∂jf .

52. Cf. previous problem.

• Compute the matrix entries gij explicitly for polar coordinates in n = 2, i.e. x1 ≡ r and x2 ≡ φ, starting
from a standard inner product in Cartesian coordinates x1 ≡ x = r cosφ, x2 = y = r sinφ. Relative to
basis {∂i}=̂{∂x, ∂y}, in which v = vi∂i = vx∂x + vy∂y , respectively w = wi∂i = wx∂x + wy∂y , the
standard inner product takes the form (v|w) = ηijv

iwj with ηij = 1 if i = j and 0 otherwise.

• Using your result, compute the components ∂
1
f = ∂rf and ∂

2
f = ∂φf of the gradient vector ∇f =

[df = ∂
i
f ∂i relative to the polar basis {∂i}=̂{∂r, ∂φ}.
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53. Show that the Kronecker symbol δij is an invariant holor under the “tensor transformation law”, and explain
the attribute “invariant” in this context.

54. Cf. previous problem. Define ε =
√
gµ ∈

∧
n(V ), in which V is an inner product space,µ = dx1∧. . .∧dxn,

and g = det gij , the determinant of the covariant metric tensor. Consider its expansion relative to two bases,
{dxi} respectively {dxi}, viz. ε = εi1...in dx

i1 ⊗ . . . ⊗ dxin = εi1...in dx
i1 ⊗ . . . ⊗ dxin . Find the relation

between the respective holors εi1...in and εi1...in . Is the holor of the ε-tensor invariant in the same sense as above?



3. Differential Geometry

55. Show that the definitions (i)∇∂j∂i = Γkij∂k and (ii) Γkij = 〈dxk,∇∂j∂i〉 are equivalent.

56. Show that if Γkij = Γkji in x-coordinates, then Γ
k

ij = Γ
k

ji in any coordinate basis induced by an arbitrary
coordinate transformation x = x(x).

57. Show that the holor T kij = Γkji − Γkij “transforms as a
(

1
2

)
-tensor”.

58. Show that the holor t` = Γkk` does not “transform as a covector”, and derive its proper transformation law.

59. Consider 3-dimensional Euclidean space E furnished with Cartesian coordinates (x, y, z) ∈ R3. Assuming
all Christoffel symbols Γkij vanish relative to the induced Cartesian basis (∂x, ∂y, ∂z), derive the corresponding

symbols Γ
k

ij relative to a cylindrical coordinate system x = ρ cosφ
y = ρ sinφ
z = ζ

60. Cf. the previous problem. Compute the components gij of the metric tensor for Euclidean 3-space E in
cylindrical coordinates yi, assuming a Euclidean metric gij(y)dyi ⊗ dyj = ηijdx

i ⊗ dxj in which the xi are
Cartesian coordinates, and ηij = 1 if i = j and ηij = 0 otherwise.

61. Cf. previous problems. Show that the Christoffel symbols Γ
k

ij derived above are in fact those corresponding to
the Levi-Civita connection of Euclidean 3-space E (in cylindrical coordinates), and provide the geodesic equations
for a geodesic curve (ρ, φ, ζ) = (ρ(t), φ(t), ζ(t)) in cylindrical coordinates. Finally, show that the solutions to
these equations are indeed straight lines.

Hint: Compare the y-geodesic equations to the trivial x-geodesic equations ẍ = ÿ = z̈ = 0.
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