EXAMINATION TENSOR CALCULUS AND DIFFERENTIAL GEOMETRY

Course code: 2WAH0. Date: Tuesday July 2, 2019. Time: 18h00-21h00. Place: MATRIX 1.333.

Read this first!

- Write your name and student identification number on each paper.
- The exam consists of 4 problems. The maximum credit for each item is indicated in the margin (in \%).
- You may consult an immaculate hardcopy of the online draft notes "Tensor Calculus and Differential Geometry (2WAH0)" by Luc Florack. No other material or equipment may be used.
- The Einstein summation convention is in effect throughout this exam.

1. Г-Symbol Miscellany.

We consider a Riemannian manifold M. The Gram matrix of the metric has components $g_{i j}=\left(\partial_{i} \mid \partial_{j}\right)$ relative to a coordinate basis. The connection ∇_{\bullet} of interest is the associated Levi-Civita connection. The Γ-symbols are defined by $\Gamma_{i j}^{k}=\left\langle d x^{k}, \nabla_{\partial_{j}} \partial_{i}\right\rangle$ relative to a coordinate basis. Square brackets surrounding indices in a holor denote antisymmetrization.
a. Show that $\Gamma_{j i}^{j}$ is not a basis independent covector holor.

Upon a coordinate transformation with Jacobians $T_{j}^{i} \doteq \frac{\partial x^{i}}{\partial \bar{x}^{j}}$ and $S_{j}^{i} \doteq \frac{\partial \bar{x}^{i}}{\partial x^{j}}$ we have $\bar{\Gamma}_{i j}^{k}=S_{\ell}^{k}\left(T_{j}^{m} T_{i}^{n} \Gamma_{n m}^{\ell}+\bar{\partial}_{j} T_{i}^{\ell}\right)$. Contraction of j and k yields $\bar{\Gamma}_{i j}^{j}=S_{\ell}^{j}\left(T_{j}^{m} T_{i}^{n} \Gamma_{n m}^{\ell}+\bar{\partial}_{j} T_{i}^{\ell}\right)$. By the chain rule, $S_{\ell}^{j} T_{j}^{m}=\delta_{\ell}^{m}$, this simplifies to $\bar{\Gamma}_{i j}^{j}=T_{i}^{n} \Gamma_{n m}^{m}+S_{\ell}^{j} \bar{\partial}_{j} T_{i}^{\ell}$. The first term corresponds to the proper linear transformation of a covector holor, but the nonlinear term involving the Hessian of the transformation remains, violating the tensor transformation law.
b. Show that $\Gamma_{[i j]}^{k}$ is a basis independent mixed tensor holor.

For the Levi-Civita connection at hand this is trivial, since $\Gamma_{[i j]}^{k}=0$, the null tensor, which is basis independent. (For general connections $\Gamma_{[i j]}^{k}$ may not be null. However, using the transformation of the Γ-symbols under a above, antisymmetrization w.r.t. i and j will cancel the inhomogeneous term, since $\bar{\partial}_{j} T_{i}^{\ell}-\bar{\partial}_{i} T_{j}^{\ell}=\bar{\partial}_{j i} x-\bar{\partial}_{i j} x=0$ by commuting partial derivatives.)
c. Show that $\partial_{i} g=2 \Gamma_{j i}^{j} g$, in which g is the determinant of the Gram matrix.

From $D_{i} g_{k \ell}=0$ (metric compatibility) we obtain $\partial_{i} g_{k \ell}=\Gamma_{k i}^{m} g_{m \ell}+\Gamma_{\ell i}^{m} g_{k m}$. Therefore, using the chain rule and the definition of the cofactor matrix, $\partial_{i} g=\tilde{g}^{k \ell} \partial_{i} g_{k \ell}=g g^{k \ell} \partial_{i} g_{k \ell}$. Inserting the previous expression for the metric derivatives in terms of the Γ-symbols then yields $\partial_{i} g=2 g \Gamma_{j i}^{j}$.
d. One defines the covariant derivative of g as $D_{i} g \doteq \partial_{i} g+{ }^{`} \Gamma$-correction terms'. Specify ' Γ-correction terms'.

By metric compatibility of the Levi-Civita connection (and the product rule for covariant derivatives) we have $D_{i} g=0$. Therefore problem d suggests $D_{i} g=\partial_{i} g-2 \Gamma_{j i}^{j} g$.

2. EXTERIOR DIFFERENTIALS.

Definition. The differential of an antisymmetric r-form field $\boldsymbol{\theta}=\theta_{\left|i_{1} \ldots i_{r}\right|} d x^{i_{1}} \wedge \ldots \wedge d x^{i_{r}}$ is given by

$$
d \boldsymbol{\theta}=\partial_{j} \theta_{\left|i_{1} \ldots i_{r}\right|} d x^{j} \wedge d x^{i_{1}} \wedge \ldots \wedge d x^{i_{r}}
$$

Definition. The commutator $[\mathbf{v}, \mathbf{w}]$ of the vector fields $\mathbf{v}=v^{i} \partial_{i}$ and $\mathbf{w}=w^{i} \partial_{i}$ satisfies

$$
[\mathbf{v}, \mathbf{w}] f=v^{j} \partial_{j}\left(w^{i} \partial_{i} f\right)-w^{j} \partial_{j}\left(v^{i} \partial_{i} f\right)
$$

in which f is an arbitrary smooth function.
b. Show that $d \boldsymbol{\zeta}=\partial_{[i} \zeta_{j]} d x^{i} \wedge d x^{j}$, in which the square brackets denote antisymmetrization.

Inserting ∂_{i} and ∂_{j} for \mathbf{v} and \mathbf{w} in problem a, respectively, we obtain, by noticing that $\left[\partial_{i}, \partial_{j}\right]=0, d \boldsymbol{\zeta}_{i j}=d \boldsymbol{\zeta}\left(\partial_{i}, \partial_{j}\right)=\partial_{i}\left(\boldsymbol{\zeta}\left(\partial_{j}\right)\right)-$ $\partial_{j}\left(\boldsymbol{\zeta}\left(\partial_{i}\right)\right)=\partial_{i} \zeta_{j}-\partial_{j} \zeta_{i}$, whence $d \boldsymbol{\zeta}=\left(\partial_{i} \zeta_{j}-\partial_{j} \zeta_{i}\right) d x^{i} \otimes d x^{j}=\partial_{[i} \zeta_{j]} d x^{i} \wedge d x^{j}$.
c. What is $d \boldsymbol{\zeta}$ for the case when $\boldsymbol{\zeta}=d f$?
$d d f=\partial_{[i} \partial_{j]} f d x^{i} \wedge d x^{j}=0$. In general, $d \circ d=0$, the zero operator.

3. Vector Bundle \& Image Restoration.

Vector bundle: We generalize the notion of a tangent bundle to that of an arbitrary vector bundle

$$
\mathrm{VM}=\cup_{x \in \mathbf{M}^{-} \mathrm{VM}_{x}}
$$

in which each fiber VM_{x} at $x \in \mathrm{M}$ is a vector space of arbitrary dimension $\operatorname{dim} \mathrm{VM}_{x}=k \in \mathbb{N}$. By abuse of notation we write VM to either denote the vector bundle as such, or the set of smooth sections of VM , i.e. smooth vector fields of the form $v: \mathrm{M} \rightarrow \mathrm{VM}: x \mapsto v(x) \stackrel{\text { def }}{=}\left(x, v_{x}(x)\right)$. The base manifold has dimension $\operatorname{dim} \mathrm{M}=n$. Note that $\mathrm{TM}=\cup_{x \in \mathrm{M}^{2}} \mathrm{TM}_{x}$ is a special case of a vector bundle, with $\operatorname{dim} \mathrm{TM}_{x}=n$.

Linear connection: A linear connection $\nabla: \mathrm{TM} \times \mathrm{VM} \rightarrow \mathrm{VM}:(v, \xi) \mapsto \nabla_{v} \xi$ on a vectorbundle VM is a map with the following properties, in which $f, g \in C^{\infty}(\mathrm{M}), v, w \in \mathrm{TM}, \xi, \eta \in \mathrm{VM}$:
(i.) $\nabla_{f v} \xi=f \nabla_{v} \xi$.
(ii.) $\nabla_{v+w} \xi=\nabla_{v} \xi+\nabla_{w} \xi$.
(iii.) $\nabla_{v}(f \xi+g \eta)=\nabla_{v} f \xi+f \nabla_{v} \xi+\nabla_{v} g \eta+g \nabla_{v} \eta$, in which $\nabla_{v} f \doteq d f(v), \nabla_{v} g \doteq d g(v)$.

Connection 1-forms: Let $\left\{e_{a} \in \mathrm{VM}\right\}_{a=1, \ldots, k}$ be an ordered k-tuple of smooth sections such that $\left\{\left.e_{a}\right|_{x}\right\}_{a=1, \ldots, k}$ constitutes a basis of VM_{x} for each $x \in \mathrm{M}$, and

$$
\nabla_{v} e_{a} \stackrel{\text { def }}{=} \omega_{a}^{b}(v) e_{b} .
$$

Without vector argument, the symbols $\omega_{a}^{b} \in \mathrm{~T}^{*} \mathrm{M}$ are referred to as the connection 1-forms.
a1. Show that $\nabla_{v} \xi=\left(d \xi^{a}(v)+\omega_{b}^{a}(v) \xi^{b}\right) e_{a}$ (the 'covariant derivative of ξ along v ').

Following the axioms we obtain $\nabla_{v} \xi=\nabla_{v}\left(\xi^{a} e_{a}\right) \stackrel{\text { iii }}{=} \nabla_{v} \xi^{a} e_{a}+\xi^{a} \nabla_{v} e_{a} \stackrel{\text { def }}{=} d \xi^{a}(v) e_{a}+\xi^{a} \omega_{a}^{b}(v) e_{b}=\left(d \xi^{a}(v)+\omega_{b}^{a}(v) \xi^{b}\right) e_{a}$.
a2. Show that $\nabla_{v} \xi=v^{i} D_{i} \xi^{a} e_{a} \doteq v^{i}\left(\partial_{i} \xi^{a}+\omega_{b i}^{a} \xi^{b}\right) e_{a}$ for certain connection coefficients $\omega_{b i}^{a} \in \mathbb{R}$ $(a, b=1, \ldots, k, i=1, \ldots, n)$.

Decompose $v=v^{i} \partial_{i}$ relative to a coordinate basis, then by linearity we have $\omega_{b}^{a}(v)=v^{i} \omega_{b}^{a}\left(\partial_{i}\right)$. Apparently $\omega_{b i}^{a}=\omega_{b}^{a}\left(\partial_{i}\right)$.
Covariant differential. We define the covariant differential $\nabla \xi \in \mathrm{T}^{*} \mathrm{M} \otimes \mathrm{VM}$ of $\xi \in \mathrm{VM}$ by

$$
\nabla \xi \stackrel{\text { def }}{=} D \xi^{a} \otimes e_{a}, \quad \text { in which } D \xi^{a} \stackrel{\text { def }}{=} D_{i} \xi^{a} d x^{i}
$$

We henceforth consider the case of a 1-dimensional vector bundle, with single basis section $e \in \mathrm{VM}$, so that a general section takes the form $\Phi=\varphi e \in \mathrm{VM}$ for some smooth function $\varphi \in C^{\infty}(\mathrm{M})$.

We define the component $D \varphi$ of $\nabla \Phi$ relative to e by the identity $\nabla(\varphi e) \stackrel{\text { def }}{=} D \varphi \otimes e$.
b. Show that $\nabla(\varphi e)=(d \varphi+\omega \varphi) \otimes e \doteq D \varphi \otimes e$, in which $\omega=\omega_{i} d x^{i} \in \mathrm{~T}^{*} \mathrm{M}$ is the single connection 1-form, and $D_{i} \varphi=\partial_{i} \varphi+\omega_{i} \varphi$.

We have, according to the definition of the covariant differential in this 1-dimensional case (just drop the (a, b)-indices),

$$
\nabla(\varphi e)=(d \varphi+\omega \varphi) \otimes e \doteq D \varphi \otimes e \quad \text { in which } \quad D \varphi \doteq D_{i} \varphi d x^{i} \doteq\left(\partial_{i} \varphi+\omega_{i} \varphi\right) d x^{i}
$$

from which it follows that $D_{i} \varphi=\partial_{i} \varphi+\omega_{i} \varphi$.
Consider a basis transformation on the 1-dimensional vector bundle, such that $\bar{e}=\lambda e$ is our new basis section, in which $\lambda \in C^{\infty}(\mathrm{M})$ is a positive scaling function.
c. Requiring basis independence $\varphi e=\bar{\varphi} \bar{e}$, we stipulate $\nabla(\bar{\varphi} \bar{e})=D \bar{\varphi} \otimes \bar{e}$, in which $D \bar{\varphi}=(d \bar{\varphi}+\bar{\omega} \bar{\varphi})$. Express the transformed connection 1-form $\bar{\omega} \in \mathrm{T}^{*} \mathrm{M}$ in terms of $\omega \in \mathrm{T}^{*} \mathrm{M}$ and $\lambda \in C^{\infty}(\mathrm{M})$.

[^0]We take $M \sim \mathbb{R}^{2}$ to be the Euclidean plane, equipped with a standard inner product section on TM with globally constant Gram matrix $\eta_{i j}=1$ if $i=j \in\{1,2\}, \eta_{i j}=0$ otherwise, in Cartesian coordinates $\left(x^{1}, x^{2}\right)=(x, y)$.

Laplacian on VM: We define the Laplacian of $\Phi=\varphi e \in \mathrm{VM}$ as $\Delta \Phi \stackrel{\text { def }}{=} \eta^{i j} \nabla_{\partial_{i}} \nabla_{\partial_{j}} \Phi$. The induced covariant Laplacian of the holor φ is defined as $\Delta^{\text {cov }} \varphi \stackrel{\text { def }}{=} \eta^{i j} D_{i} D_{j} \varphi$, so that $\Delta \Phi=\left(\Delta^{\operatorname{cov}} \varphi\right) e$.

Image Restoration: Scratches in an image may be removed by inpainting. A standard approach is to delineate a region of interest $\Omega \subset \mathbb{R}^{2}$ containing the scratch, and to solve the Laplace equation $\Delta u=0$ on its interior with Dirichlet boundary condition $\left.u\right|_{\partial \Omega}$. The result is a graceful 'inpainting' of Ω. However, in textured regions, such as in the figure below, this method leaves visible scars, since it has no knowledge of any texture to be inpainted. To account for this, theoretical physicist Todor Georgiev from Adobe Photoshop stipulated the idea to exploit the 1-dimensional vector bundle construct above. The idea is to replace Δ by $\Delta^{\text {cov }}$ using a suitably defined connection $\omega=\omega_{i} d x^{i}$ (aka a 'gauge field' in physics), in other words, by interpreting an image as a section of VM rather than as a scalar field on M.

In order to remove a scratch, the user draws a contour $\partial \Omega$ around the region of interest Ω, then drags a copy $\partial \Omega^{\prime}$ of that contour to delineate a region Ω^{\prime} congruent to Ω elsewhere in the image (or in another image) containing a desirable texture for the inpainting.
d. Associated with $\omega=\omega_{i} d x^{i}$ consider the vector-valued function $\vec{\omega}=\left(\omega_{1}, \omega_{2}\right) \in C^{\infty}\left(\mathbb{R}^{2}, \mathbb{R}^{2}\right)$. Prove:

$$
\begin{equation*}
\Delta^{\operatorname{cov}} \varphi=\Delta \varphi+\left(\operatorname{div} \vec{\omega}+\|\vec{\omega}\|^{2}\right) \varphi+2 \vec{\omega} \cdot \nabla \varphi \tag{5}
\end{equation*}
$$

in which $\Delta \varphi=\eta^{i j} \partial_{i} \partial_{j} \varphi$ denotes the standard Euclidean Laplacian of $\varphi, \operatorname{div} \omega=\eta^{i j} \partial_{j} \omega_{i}$ the standard divergence of $\vec{\omega}, \vec{\omega} \cdot \nabla \varphi=\eta^{i j} \omega_{i} \partial_{j} \varphi$ the standard directional derivative of φ along $\vec{\omega}$, and $\|\vec{\omega}\|^{2}=\eta^{i j} \omega_{i} \omega_{j}$ the standard squared magnitude of $\vec{\omega}$.

The result follows by working out the successive derivatives in $\eta^{i j} \nabla_{\partial_{i}} \nabla_{\partial_{j}}(\varphi e)$, using $\nabla_{\partial_{i}} \varphi=\partial_{i} \varphi, \nabla_{\partial_{i}} \omega_{j}=\partial_{i} \omega_{j}$, and $\nabla_{\partial_{i}} e=\omega_{i} e$, with the help of the product rule.
e. Determine the connection ω that renders the texture pattern φ inside Ω^{\prime} 'covariantly constant', i.e. $D_{i} \varphi=0$ on Ω^{\prime}.

Identify the image 'function' with the section $\Phi=\varphi e$, and set $\nabla \Phi=0$ on Ω^{\prime}, i.e. $D_{i} \varphi=\partial_{i} \varphi+\omega_{i} \varphi=0$ on Ω^{\prime}. Given φ on Ω^{\prime} this determines $\omega_{i}=-\partial_{i} \ln \varphi$ on Ω^{\prime}. Translating back to Ω defines ω_{i} inside the region of interest, disambiguating the covariant Laplacian. Now solve the covariant Laplace equation with Dirichlet boundary conditions. The illustration shows the result.

LEFT: IMAGE WITH SCRATCH INSIDE A MANUALLY DELINEATED REGION OF INTEREST, WITH A COPY OF ITS BOUNDARY SHIFTED TO A LOCATION CONTAINING THE DESIRED BACKGROUND TEXTURE FOR RESTORATION. RIGHT: RESULT AFTER ‘COVARIANT INPAINTING’.

Adapted from: T. Georgiev, "Covariant Derivatives and Vision".
(c) Proc. $9^{\text {Th }}$ ECCV, May 2006, Graz, Austria, LNCS 3954, pp. 56-69.

4. Pauli Exclusion Principle.

We consider two types of elementary particles, referred to as bosons and fermions. Such particles are characterized by an intrinsic property known as spin. The spin state of a particle is represented by a nontrivial vector in an abstract complex vector space Σ_{s}, in which $s \in \frac{1}{2} \mathbb{Z}_{0}^{+} \stackrel{\text { def }}{=}\left\{0, \frac{1}{2}, 1, \frac{3}{2}, \ldots\right\}$ determines the dimension $\operatorname{dim} \Sigma_{s}=2 s+1$. By definition, bosons have an integer-valued spin, so that $\operatorname{dim} \Sigma_{s}^{\text {boson }}$ is odd, whereas fermions have a half-integer valued spin, so that $\operatorname{dim} \Sigma_{s}^{\text {fermion }}$ is even.

There is a profound difference between bosons and fermions in the way systems of multiple identical particles behave, viz. (assuming physical states w.r.t. all other quantum numbers involved are identical):

Pauli's spin statistics theorem:

- A system of N identical bosons is represented by a vector space that is the symmetric N-fold tensor product $\bigvee^{N}\left(\Sigma_{s}\right) \stackrel{\text { def }}{=} \Sigma_{s} \otimes_{S} \ldots \otimes_{S} \Sigma_{s}$ of the 1-particle state space Σ_{s}.
- A system of N identical fermions is represented by a vector space that is the antisymmetric N-fold tensor product $\bigwedge^{N}\left(\Sigma_{s}\right) \stackrel{\text { def }}{=} \Sigma_{s} \otimes_{A} \ldots \otimes_{A} \Sigma_{s}$ of the 1-particle state space Σ_{s}.

Note: The infix product operators \otimes_{S} and \otimes_{A} are synonymous to \vee and \wedge, respectively.
Let $\left\{e_{\mu}\right\}_{\mu=-s,-s+1, \ldots, s-1, s}$ denote a basis of Σ_{s}.

- For $s=\frac{1}{2}$ we simplify notation by writing e_{\downarrow} and e_{\uparrow} instead of $e_{-1 / 2}$, respectively $e_{+1 / 2}$.
- For $s=1$ we simplify notation by writing e_{-}, e_{0} and e_{+}instead of e_{-1}, e_{0}, respectively e_{+1}.

We consider a system with $N \in \mathbb{N}$ identical fermions for the fermionic case with $s=\frac{1}{2}$.
a. Provide an explicit basis of $\bigwedge^{N}\left(\Sigma_{1 / 2}\right)$ for each $N \in \mathbb{N}$. Why cannot we put arbitrarily many identical fermions into a system? Support your argument by stating the explicit dimension of $\bigwedge^{N}\left(\Sigma_{1 / 2}\right)$.

By definition, a basis of $\bigwedge^{1}\left(\Sigma_{1 / 2}\right) \doteq \Sigma_{1 / 2}$ is given by $\left\{e_{\downarrow}, e_{\uparrow}\right\}$, so $\operatorname{dim} \bigwedge^{1}\left(\Sigma_{1 / 2}\right)=2$. A basis of $\bigwedge^{2}\left(\Sigma_{1 / 2}\right) \doteq \Sigma_{1 / 2} \otimes_{A} \Sigma_{1 / 2}$ is given by $\left\{e_{\downarrow} \wedge e_{\uparrow}\right\}$, so $\operatorname{dim} \bigwedge^{2}\left(\Sigma_{1 / 2}\right)=1$. If $N>2$ then $\operatorname{dim} \bigwedge^{N}\left(\Sigma_{1 / 2}\right)=0$, since no nontrivial antisymmetric N-form exists if $N>\operatorname{dim} \Sigma_{1 / 2}$. Thus we can put at most two identical spin- $\frac{1}{2}$ fermions (with otherwise identical physical states) into a system.

Next consider a system with $N \in \mathbb{N}$ identical bosons for the bosonic case with $s=1$.
b. Can we put arbitrarily many identical bosons into a system? Support your argument by stating the
explicit dimension of $\bigvee^{N}\left(\Sigma_{1}\right)$.
For the N-fold symmetric product space $\bigvee^{N}\left(\Sigma_{1}\right)$ we have $n \doteq \operatorname{dim} \Sigma_{1}=2 \times 1+1=3$ and $\operatorname{dim} \bigvee^{N}\left(\Sigma_{1}\right)=\binom{n+N-1}{N}=\binom{N+2}{N}$. Thus this space is nontrivial for any N, whence a system of bosons can accommodate arbitrarily many identical particles. (A laser provides an example of such a system.)

We consider the case of a system of N electrons ($s=\frac{1}{2}$ fermions) bound to an atom. The physical state of an electron is then determined by four quantum numbers, each of which labels one basis vector in a corresponding representation vector space:

- the principal quantum number $n \in \mathbb{N}$ (energy level, designating the principle electron shell),
- the orbital angular momentum quantum number $\ell \in\{0, \ldots, n-1\}$ (defining a subshell),
- the magnetic quantum number $m \in\{-\ell,-\ell+1, \ldots, \ell-1, \ell\}$ (defining an orbital), and
- the aforementioned spin quantum number $\mu \in\{-s,-s+1, \ldots, s-1, s\}$, in casu $\mu \in\{\downarrow, \uparrow\}$.

The complete representation space for a bound electron, V say, is just the product space of all four vector spaces. A basis vector of V is thus uniquely characterized by the four quantum numbers (n, ℓ, m, μ) subject to the indicated index range restrictions, and will be denoted by $|n, \ell, m, \mu\rangle$.

Note that $\operatorname{dim} V=\infty$ since there are infinitely many energy levels. We restrict ourselves to a fixed energy level $n \in \mathbb{N}$, and consider the corresponding subspace V_{n}.

Lemma. You may use the following sums without proof:

$$
\sum_{\ell=0}^{n-1} \ell=\frac{1}{2} n(n-1), \quad \sum_{k=1}^{n} k^{2}=\frac{n(n+1)(2 n+1)}{6} .
$$

c. Determine $\operatorname{dim} V_{n}$.

We have $\operatorname{dim} V_{n}=2 n^{2}$. To see this, note that there are n valid ℓ-values, each of which allows $2 \ell+1$ valid m-values, and for each pair (ℓ, m) we have two μ-values, $\mu \in\{\downarrow, \uparrow\}$. Thus we have, using the first formula in the lemma,

$$
2 \sum_{\ell=0}^{n-1}(2 \ell+1)=2 n^{2}
$$

effective index values.
According to Pauli's spin statistics theorem the representation vector space of a system of N bound electrons with fixed principal quantum number n is given by $V_{n}^{N} \stackrel{\text { def }}{=} \bigwedge^{N}\left(V_{n}\right) \stackrel{\text { def }}{=} V_{n} \otimes_{A} \ldots \otimes_{A} V_{n}$.
d1. Determine the dimension $\operatorname{dim} V_{n}^{N}$ of V_{n}^{N}.

We have, using problem c ,

$$
\operatorname{dim} V_{n}^{N}=\binom{\operatorname{dim} V_{n}}{N}=\binom{2 n^{2}}{N}
$$

($2 \frac{1}{2}$)
d2. How many electrons maximally fit into the $n^{\text {th }}$ principle shell of an atom?

According to d1, the largest N for which $\operatorname{dim} V_{n}^{N}>0$ equals $N=2 n^{2}$.
$\left(2 \frac{1}{2}\right)$ d3. How many electrons maximally fit into all principle shells up to (and including) the $n^{\text {th }}$?
The second formula in the lemma essentially gives us the result, viz. if all shells up to the $n^{\text {th }}$ principle shell are maximally filled according to d2, then the total number of electrons becomes

$$
2 \sum_{k=1}^{n} k^{2}=\frac{n(n+1)(2 n+1)}{3}
$$

Note: A fixed pair (n, ℓ) (with $0 \leq \ell \leq n-1)$ determines the $\ell^{\text {th }}$ subshell of the $n^{\text {th }}$ principle shell. Up to $\ell=3$, ℓ-values are known in the trade by the symbols $\mathrm{s}(\ell=0), \mathrm{p}(\ell=1), \mathrm{d}(\ell=2)$, respectively $\mathrm{f}(\ell=3)$.

The End

[^0]: From $\varphi e=\bar{\varphi} \bar{e}$ and $\bar{e}=\lambda e$ it follows that $\bar{\varphi}=\lambda^{-1} \varphi$. Substitute this as well as $\bar{e}=\lambda e$ in $\nabla(\bar{\varphi} \bar{e})=(d \bar{\varphi}+\bar{\omega} \bar{\varphi}) \otimes \bar{e}$ yields $\nabla(\bar{\varphi} \bar{e})=(d \bar{\varphi}+\bar{\omega} \bar{\varphi}) \otimes \bar{e}=(d \varphi+\bar{\omega} \varphi-\varphi d \ln \lambda)) \otimes e \doteq(d \varphi+\omega \varphi) \otimes e=\nabla(\varphi e)$, so $\bar{\omega}=\omega+d \ln \lambda$.

