
EXAMINATION TENSOR CALCULUS AND DIFFERENTIAL GEOMETRY

Course code: 2WAH0. Date: Tuesday July 2, 2019. Time: 18h00–21h00. Place: MATRIX 1.333.

Read this first!

• Write your name and student identification number on each paper.

• The exam consists of 4 problems. The maximum credit for each item is indicated in the margin (in %).

• You may consult an immaculate hardcopy of the online draft notes “Tensor Calculus and Differential
Geometry (2WAH0)” by Luc Florack. No other material or equipment may be used.

• The Einstein summation convention is in effect throughout this exam.

1. Γ-SYMBOL MISCELLANY.(30)

We consider a Riemannian manifold M. The Gram matrix of the metric has components gij = (∂i|∂j)
relative to a coordinate basis. The connection ∇• of interest is the associated Levi-Civita connection.
The Γ-symbols are defined by Γkij = 〈dxk,∇∂j∂i〉 relative to a coordinate basis. Square brackets
surrounding indices in a holor denote antisymmetrization.

a. Show that Γjji is not a basis independent covector holor.(71
2 )

b. Show that Γk[ij] is a basis independent mixed tensor holor.(71
2 )

c. Show that ∂ig = 2Γjjig, in which g is the determinant of the Gram matrix.(71
2 )

d. One defines the covariant derivative of g asDig
.
= ∂ig+‘Γ-correction terms’. Specify ‘Γ-correction terms’.(71

2 )

♣

2. EXTERIOR DIFFERENTIALS.(15)

Definition. The differential of an antisymmetric r-form field θ = θ|i1...ir| dx
i1 ∧ . . . ∧ dxir is given by

dθ = ∂jθ|i1...ir| dx
j ∧ dxi1 ∧ . . . ∧ dxir .

Definition. The commutator [v,w] of the vector fields v = vi∂i and w = wi∂i satisfies

[v,w]f = vj∂j(w
i∂if)− wj∂j(vi∂if) ,

in which f is an arbitrary smooth function.



a. Show that, for a smooth covector field ζ = ζidx
i, dζ(v,w) = v(ζ(w))−w(ζ(v))− ζ([v,w]).(5)

b. Show that dζ = ∂[iζj] dx
i ∧ dxj , in which the square brackets denote antisymmetrization.(5)

c. What is dζ for the case when ζ = df?(5)

♣

3. VECTOR BUNDLE & IMAGE RESTORATION.(30)

Vector bundle: We generalize the notion of a tangent bundle to that of an arbitrary vector bundle

VM = ∪x∈MVMx

in which each fiber VMx at x ∈ M is a vector space of arbitrary dimension dim VMx = k ∈ N. By
abuse of notation we write VM to either denote the vector bundle as such, or the set of smooth sections
of VM, i.e. smooth vector fields of the form v : M → VM : x 7→ v(x)

def
= (x, vx(x)). The base

manifold has dimension dim M = n. Note that TM =∪x∈MTMx is a special case of a vector bundle,
with dim TMx = n.

Linear connection: A linear connection∇ : TM×VM→ VM : (v, ξ) 7→ ∇vξ on a vectorbundle VM
is a map with the following properties, in which f, g∈C∞(M), v, w∈TM, ξ, η∈VM:

(i.) ∇fvξ = f ∇vξ.

(ii.) ∇v+wξ = ∇vξ +∇wξ.

(iii.) ∇v(f ξ + g η) = ∇vf ξ + f ∇vξ +∇vg η + g∇vη, in which∇vf
.
= df(v), ∇vg

.
= dg(v).

Connection 1-forms: Let {ea ∈ VM}a=1,...,k be an ordered k-tuple of smooth sections such that
{ea|x}a=1,...,k constitutes a basis of VMx for each x∈M, and

∇vea
def
= ωba(v)eb .

Without vector argument, the symbols ωba ∈ T∗M are referred to as the connection 1-forms.

a1. Show that∇vξ=(dξa(v)+ωab (v)ξb)ea (the ‘covariant derivative of ξ along v’).(5)

a2. Show that ∇vξ = viDiξ
aea

.
= vi(∂iξ

a+ωabiξ
b)ea for certain connection coefficients ωabi ∈ R(5)

(a, b=1, . . . , k, i=1, . . . , n).

Covariant differential. We define the covariant differential∇ξ∈T∗M⊗ VM of ξ∈VM by

∇ξ def
= Dξa ⊗ ea , in which Dξa def

= Diξ
adxi.

We henceforth consider the case of a 1-dimensional vector bundle, with single basis section e∈VM, so
that a general section takes the form Φ=ϕe ∈ VM for some smooth function ϕ∈C∞(M).



We define the component Dϕ of ∇Φ relative to e by the identity∇(ϕe)
def
= Dϕ⊗ e.

b. Show that ∇(ϕe) = (dϕ+ ωϕ)⊗ e .
= Dϕ⊗ e, in which ω=ωidx

i∈T∗M is the single connection(5)
1-form, and Diϕ=∂iϕ+ωiϕ.

Consider a basis transformation on the 1-dimensional vector bundle, such that e = λe is our new basis
section, in which λ∈C∞(M) is a positive scaling function.

c. Requiring basis independence ϕe=ϕe, we stipulate∇(ϕe) = Dϕ⊗e, in whichDϕ = (dϕ+ω ϕ).(5)
Express the transformed connection 1-form ω∈T∗M in terms of ω∈T∗M and λ∈C∞(M).

We take M∼R2 to be the Euclidean plane, equipped with a standard inner product section on TM with
globally constant Gram matrix ηij = 1 if i = j ∈ {1, 2}, ηij = 0 otherwise, in Cartesian coordinates
(x1, x2)=(x, y).

Laplacian on VM: We define the Laplacian of Φ =ϕe ∈ VM as ∆Φ
def
= ηij∇∂i∇∂jΦ. The induced

covariant Laplacian of the holor ϕ is defined as ∆covϕ
def
= ηijDiDjϕ, so that ∆Φ = (∆covϕ) e.

Image Restoration: Scratches in an image may be removed by inpainting. A standard approach is
to delineate a region of interest Ω ⊂ R2 containing the scratch, and to solve the Laplace equation
∆u = 0 on its interior with Dirichlet boundary condition u|∂Ω. The result is a graceful ‘inpainting’ of
Ω. However, in textured regions, such as in the figure below, this method leaves visible scars, since it has
no knowledge of any texture to be inpainted. To account for this, theoretical physicist Todor Georgiev
from Adobe Photoshop stipulated the idea to exploit the 1-dimensional vector bundle construct above.
The idea is to replace ∆ by ∆cov using a suitably defined connection ω=ωidx

i (aka a ‘gauge field’ in
physics), in other words, by interpreting an image as a section of VM rather than as a scalar field on M.

In order to remove a scratch, the user draws a contour ∂Ω around the region of interest Ω, then drags a
copy ∂Ω′ of that contour to delineate a region Ω′ congruent to Ω elsewhere in the image (or in another
image) containing a desirable texture for the inpainting.

d. Associated with ω=ωidx
i consider the vector-valued function ~ω=(ω1, ω2) ∈ C∞(R2,R2). Prove:(5)

∆covϕ = ∆ϕ+ (div ~ω + ‖~ω‖2)ϕ+ 2~ω · ∇ϕ ,

in which ∆ϕ= ηij∂i∂jϕ denotes the standard Euclidean Laplacian of ϕ, divω= ηij∂jωi the standard
divergence of ~ω, ~ω ·∇ϕ=ηijωi∂jϕ the standard directional derivative of ϕ along ~ω, and ‖~ω‖2 =ηijωiωj
the standard squared magnitude of ~ω.

e. Determine the connection ω that renders the texture pattern ϕ inside Ω′ ‘covariantly constant’, i.e.(5)
Diϕ = 0 on Ω′.



LEFT: IMAGE WITH SCRATCH INSIDE A MANUALLY DELINEATED REGION OF INTEREST, WITH A COPY OF ITS BOUNDARY SHIFTED TO A

LOCATION CONTAINING THE DESIRED BACKGROUND TEXTURE FOR RESTORATION. RIGHT: RESULT AFTER ‘COVARIANT INPAINTING’.

ADAPTED FROM: T. GEORGIEV, “COVARIANT DERIVATIVES AND VISION”.

c© PROC. 9TH ECCV, MAY 2006, GRAZ, AUSTRIA, LNCS 3954, PP. 56–69.

♣

4. PAULI EXCLUSION PRINCIPLE.(25)

We consider two types of elementary particles, referred to as bosons and fermions. Such particles are
characterized by an intrinsic property known as spin. The spin state of a particle is represented by
a nontrivial vector in an abstract complex vector space Σs, in which s ∈ 1

2Z
+
0

def
= {0, 1

2 , 1,
3
2 , . . .}

determines the dimension dim Σs = 2s+ 1. By definition, bosons have an integer-valued spin, so that
dim Σboson

s is odd, whereas fermions have a half-integer valued spin, so that dim Σfermion
s is even.

There is a profound difference between bosons and fermions in the way systems of multiple identical
particles behave, viz. (assuming physical states w.r.t. all other quantum numbers involved are identical):

Pauli’s spin statistics theorem:

• A system of N identical bosons is represented by a vector space that is the symmetric N -fold
tensor product

∨N (Σs)
def
= Σs ⊗S . . .⊗S Σs of the 1-particle state space Σs.

• A system of N identical fermions is represented by a vector space that is the antisymmetric
N -fold tensor product

∧N (Σs)
def
= Σs ⊗A . . .⊗A Σs of the 1-particle state space Σs.

Note: The infix product operators ⊗S and ⊗A are synonymous to ∨ and ∧, respectively.

Let {eµ}µ=−s,−s+1,...,s−1,s denote a basis of Σs.

• For s = 1
2 we simplify notation by writing e↓ and e↑ instead of e−1/2, respectively e+1/2.

• For s = 1 we simplify notation by writing e−, e0 and e+ instead of e−1, e0, respectively e+1.

We consider a system with N ∈N identical fermions for the fermionic case with s= 1
2 .



a. Provide an explicit basis of
∧N (Σ1/2) for eachN ∈ N. Why cannot we put arbitrarily many identical(5)

fermions into a system? Support your argument by stating the explicit dimension of
∧N (Σ1/2).

Next consider a system with N ∈N identical bosons for the bosonic case with s=1.

b. Can we put arbitrarily many identical bosons into a system? Support your argument by stating the(5)
explicit dimension of

∨N (Σ1).

We consider the case of a system of N electrons (s = 1
2 fermions) bound to an atom. The physical state

of an electron is then determined by four quantum numbers, each of which labels one basis vector in a
corresponding representation vector space:

• the principal quantum number n ∈ N (energy level, designating the principle electron shell),

• the orbital angular momentum quantum number ` ∈ {0, . . . , n− 1} (defining a subshell),

• the magnetic quantum number m ∈ {−`,−`+ 1, . . . , `− 1, `} (defining an orbital), and

• the aforementioned spin quantum number µ ∈ {−s,−s+ 1, . . . , s− 1, s}, in casu µ ∈ {↓, ↑}.

The complete representation space for a bound electron, V say, is just the product space of all four vector
spaces. A basis vector of V is thus uniquely characterized by the four quantum numbers (n, `,m, µ)
subject to the indicated index range restrictions, and will be denoted by |n, `,m, µ〉.

Note that dimV = ∞ since there are infinitely many energy levels. We restrict ourselves to a fixed
energy level n ∈ N, and consider the corresponding subspace Vn.

Lemma. You may use the following sums without proof:
n−1∑
`=0

` =
1

2
n(n−1) ,

n∑
k=1

k2 =
n(n+ 1)(2n+ 1)

6
.

c. Determine dimVn.(5)

According to Pauli’s spin statistics theorem the representation vector space of a system of N bound
electrons with fixed principal quantum number n is given by V N

n
def
=

∧N (Vn)
def
= Vn ⊗A . . .⊗A Vn.

d1. Determine the dimension dimV N
n of V N

n .(5)

d2. How many electrons maximally fit into the nth principle shell of an atom?(21
2 )

d3. How many electrons maximally fit into all principle shells up to (and including) the nth?(21
2 )

Note: A fixed pair (n, `) (with 0≤`≤n−1) determines the `th subshell of the nth principle shell. Up to
`=3, `-values are known in the trade by the symbols s (`=0), p (`=1), d (`=2), respectively f (`=3).

THE END


