
EXAMINATION TENSOR CALCULUS AND DIFFERENTIAL GEOMETRY

Course code: 2WAH0-2WAH1. Date: Tuesday April 5, 2016. Time: 9h00–12h00. Place: AUD 11.

Read this first!

• Write your name and student identification number on each paper.

• The exam consists of 3 problems. The maximum credit for each item is indicated in the margin.

• Motivate your answers.

• Einstein summation convention applies throughout for all repeated indices.

• You may consult an immaculate hardcopy of the online draft notes “Tensor Calculus and Differential
Geometry (2WAH0)” by Luc Florack. No equipment may be used.

1. METRIC CONNECTION(40)

We consider an affine connection ∇ : TM × TM → TM on a Riemannian manifold M. In a local
coordinate basis the connection is defined in terms of the Christoffel symbols:

∇∂j∂i = Γkij∂k .

We wish to complement this definition with (a) disambiguating rule(s) so as to single out a “metric
connection”, i.e. one uniquely determined by the Riemannian metric. The Riemannian metric is locally
defined in terms of the components of the symmetric Gram matrix:

gij = (∂i|∂j) .

As an ansatz we impose the following “metric compatibility condition”:

∇z (v|w) = (∇zv|w) + (v|∇zw) ,

for all vector fields v,w, z ∈ TM

a. Show that(15)
g`jT

`
ki + gi`T

`
kj − gk`S`ij = ∂kgij − ∂jgki − ∂igjk ,

in which T kij = Γkji − Γkij are the components of the torsion tensor, and Skij = Γkij + Γkji.
[HINT: CONSIDER z = ∂k , v = ∂i, w = ∂j .]

To achieve complete disambiguation we impose the additional condition of torsion freeness:

(?) T kij = 0 .



b. Show that these equations hold in any coordinate system.(15)
[HINT: Γk

ij = 〈dxk|∇∂j
∂i〉.]

c. Show that, with this condition (?) added, the Christoffel symbols Γkij are uniquely determined, and(10)
provide their explicit form in terms of the metric coefficients gij (and gij).

♣

2. INFINITESIMAL COORDINATE TRANSFORMATIONS(30)

We consider two coordinate systems on a common neighbourhood Ω of some fiducial point P ∈ M on
an n-dimensional Riemannian manifold M, with coordinates xµ (“old”) and yµ (“new”), respectively.
The coordinate transformation relating these systems is assumed to be “infinitesimal”, in the sense that,
for a fixed point P ∈ M,

yµ(P) = xµ(P) + ε ξµ(P) ,

in which the ξµ are certain smooth functions on Ω and 0 ≤ ε� 1. In all problems below we explicitly
account for terms of O(ε), but neglect effective terms of order O(ε2) (with ≈ indicating equalities up
to such higher order terms).

On M we consider a scalar field φ, a covector field ω = ωµdx
µ, and a cotensor field T = Tµνdx

µ⊗dxν ,
in which {dxµ} is dual to the coordinate basis {∂µ} of TMP in the xµ-system: 〈dxµ|∂ν〉 = δµν . With φ,
ω, and T we denote the corresponding functional forms of these field quantities valid in the yµ-system.
That is, by definition,

φ (y(P)) = φ (x(P)) , ω (y(P)) = ω (x(P)) , resp. T (y(P)) = T (x(P)) .

All (component) functions are analytical, φ, ωµ, Tµν ∈ Cω(M), admitting globally convergent Taylor
expansions.

a. Show that φ ≈ φ− ε ξµ∂µφ.(71
2 )

b. Show that ωµ ≈ ωµ − ε (ξν∂νωµ + ∂µξ
νων).(71

2 )

c. Show that Tµν ≈ Tµν − ε (ξρ∂ρTµν + ∂µξ
ρTρν + ∂νξ

ρTµρ).(71
2 )

If we assume that the manifold M is “almost Euclidean” in the sense of being only slightly curved, then
we may stipulate a metric of the form g = gµνdx

µ ⊗ dxν , with

gµν = ηµν + δ hµν ,

in which η = ηµνdx
µ ⊗ dxν is the flat Euclidean metric, h = hµνdx

µ ⊗ dxν a smooth symmetric
cotensor field of rank 2, and 0 ≤ δ � 1 a formal parameter. Moreover, we may assume that the
components ηµν are constant on Ω (i.e. all variability of gµν on Ω is accounted for by the O(δ)-term).
In all problems below we explicitly account for terms of O(δ) and O(ε), but neglect effective terms of
order O(δ2), O(δ ε) and O(ε2).

d. Show that gµν ≈ gµν − ε (∂νξµ + ∂µξν).(71
2 )

♣



3. VISUAL ILLUSIONS1(30)

Consider the “simultaneous contrast illusion” in the figure. The central bar has an overall constant
physical value (all pixels inside the bar have the same numerical value). To appreciate this, cover its
surroundings with blank paper (or with your hands), leaving only the bar visible, and observe that its
perceptual brightness is indeed constant. We will refer to perceptual brightness under this condition—
i.e. with context suppression—as physical brightness, as it agrees with the physical constancy of pixel
values. Curiously, when regarded within its actual context (a background gradient), its perceptual
brightness changes, revealing a smooth light-to-dark (left-to-right) transition along the bar.

We want to “explain” both phenomena—constant physical versus non-constant, context dependent
perceptual brightness—in terms of one single geometric model.

THE BAR EXHIBITS A GRADIENT IN PERCEPTUAL BRIGHTNESS DESPITE CONSTANT PHYSICAL BRIGHTNESS.

Ignoring boundaries, the image domain is a 2-dimensional Euclidean space M, identified with R2 by
employing a Cartesian coordinate system. Brightness is expressed as a dimensionfull scalar u = uσ,
with dimensionless amplitude u ≥ 0 relative to a dimensional unit σ. We may interpret σ as a basis
vector spanning a 1-dimensional “brightness vector space” U = span{σ}.

A physical image arises after associating a unique value to each point of M (a “pixel”, with low/high
values representing dark/bright regions, respectively). For this reason we model an image geometrically
as a section of a fiber bundle. The fiber bundle itself comprises the set product M × U. Given a fixed
point x ∈ M we refer to the set Ux = {(x,u) |u ∈ U} as the fiber at x ∈ M. The fiber bundle is thus
the union of fibers over all base points:

M× U = ∪x∈MUx .

A section of this fiber bundle arises by picking a unique brightness value at every location in the image
domain in a piecewise smooth fashion: {(x,u(x) = u(x)σ) ∈ M× U}. This gives rise to a piecewise
smooth scalar field u : M → R+

0 : x 7→ u(x), representing the numerical amplitude of the image
u(x) = u(x)σ relative to the physical unit σ. We will henceforth identify x ∈ M with its coordinate
pair (x, y) ∈ R2 in a given Cartesian coordinate system.

1Inspiration taken from: J. Koenderink. “The Brain a Geometry Engine”. Psychol. Res. 1990, vol. 52, pp. 122–127, and
T. Georgiev. “Covariant Derivatives and Vision”. Proc. ECCV, 2006, Springer Verlag LNCS, vol. 3951, pp. 56–69.



Spatial variations of physical and perceived brightness may now be accounted for by introducing a
connection∇ on the fiber bundle, obeying the following product rule:

∇u = duσ + u∇σ with du = ∂µu dx
µ = uxdx+ uydy.

a1. For a scalar function u the usual gradient ∇u = uµ∂µ and differential du = uµdx
µ are related via(5)

the Euclidean metric by ∇u = [du. Explain why, and under which assumptions, we may identify their
holors, i.e. uµ = uµ (for any u).

We henceforth adopt coordinates (x1, x2) = (x, y) such that co- and contravariant tensor components
are identical (cf. a1). Such coordinates are referred to as Cartesian coordinates.

a2. Let xµ = rµν ξν + aµ be an affine coordinate transformation, with new coordinates (ξ1, ξ2)=(ξ, η).(5)
Which constraints must be imposed on rµν and aµ in order for these to be likewise Cartesian?

We stipulate a context dependent spatial variability of the perceptual brightness reference unit in terms
of a connection∇ on M× U defined by some gauge field A = Aµdx

µ ∈ T∗M:

∇σ def
= (Aµ dx

µ)σ = (Axdx+Aydy)σ so that ∇u def
= Dµu dx

µ σ = (∂µu+Aµu) dxµ σ .

Global constancy ofσ can be expressed as the “physical gauge” in which∇σ=0, orAµ=0. In general,
any gauge compatible with our (illusionary) visual percept may be called a “perceptual gauge”.

b. Show that the gauge field A = Aµdx
µ is coordinate independent if the gauge field holor “transforms(10)

as a covector”, i.e. show that after a general coordinate transformation, x = x(ξ), its components Aµ
relative to the new ξ-coordinate system must satisfy

Aµ =
∂xρ

∂ξµ
Aρ .

Recall the figure. We refer to the bar pattern as the foreground image (completed to cover the entire
image plane by disregarding its context), f(x) = f(x, y)σ, and to the context pattern (completed to
cover the entire image plane by disregarding the bar) as the background image, b(x) = b(x, y)σ, with
brightness amplitudes f(x, y)>0, b(x, y)>0.

Since the background appears to generate the optical illusion in the foreground, we stipulate that the
visual system fixes the gauge by “nullifying” context variations (“adaptation”) in the sense that∇b = 0.
For our stimulus we take b(x, y) = eβ(x) independent of y ∈ R, with β(x) ∈ R, β′(x) > 0, x ∈ R.

c1. Compute the components of the gauge field Aµ(x, y) in terms of β(x).(5)

c2. Compute the components of the covariant derivativeDµf(x, y) assuming f(x, y) = c>0, constant.(5)
How does your result “explain” the illusion?

THE END


