
EXAMINATION TENSOR CALCULUS AND DIFFERENTIAL GEOMETRY

Course code: 2WAH0-2WAH1. Date: Tuesday April 7, 2015. Time: 13h30–16h30. Place: AUD 9.

Read this first!

• Write your name and student identification number on each paper.

• The exam consists of 2 problems. The maximum credit for each item is indicated in the margin.

• Motivate your answers.

• Einstein summation convention applies throughout for all repeated indices.

• You may consult an immaculate hardcopy of the online draft notes “Tensor Calculus and Differential
Geometry (2WAH0)” by Luc Florack. No equipment may be used.

1. GEODESICS(50)

Consider the geodesic ordinary differential equations (o.d.e.’s) on a Riemannian space with coordinates
coordinates x ∈ Rn for a parametrized curve x=x(t) relative to the coordinate basis {eµ=∂µ}µ=1,...,n:

ẍµ + Γµνρ(x)ẋν ẋρ = 0 . (∗)

A (single/double) dot indicates a (1st/2nd order) derivative with respect to t. The Christoffel symbols
Γµνρ(x) represent the Levi-Civita connection compatible with the Riemannian metric with holor gµν(x).

a1. Show that if t = as + b for some new curve parameter s ∈ R and constants a, b ∈ R, a 6= 0, then(10)
the geodesic equations assume the same form as those above (∗) when expressed in terms of s.

By the chain rule we have
d

dt
=

1

a

d

ds
and therefore

d2

dt2
=

1

a2
d2

ds2
. Substitution into the geodesic equation (∗), expressing the solution in

terms of s, yields
1

a2

[
d2xµ

ds2
+ Γµνρ(x)

dxν

ds

dxρ

ds

]
= 0 .

Ignoring the irrelevant factor 1/a2, this o.d.e. clearly has the same form as (∗).

a2. Show that this is not true for a general reparametrization of the form t = t(s), with
dt(s)

ds
6= 0, by(10)

deriving the corresponding o.d.e.’s in terms of the general curve parameter s in this case.



By the same token the chain rule now gives
d

dt
= ṡ

d

ds
and therefore

d2

dt2
= s̈

d

ds
+ ṡ2

d2

ds2
. Substitution into the geodesic equation (∗),

expressing the solution in terms of s, yields

ṡ2
[
d2xµ

ds2
+ Γµνρ(x)

dxν

ds

dxρ

ds

]
+ s̈

dxµ

ds
= 0 . (?)

This o.d.e. differs in form from (∗) due to the presence of the last term. Note that a1 is a special case.

A conformal metric transform is a pointwise scaling of the form gµν(x) = eα(x)gµν(x), in which
α : Rn → R : x 7→ α(x) denotes an arbitrary smooth scalar field.

b. Show that the Christoffel symbols Γ
µ
νρ corresponding to the Levi-Civita connection induced by gµν(10)

are given by

Γ
µ
νρ = Γµνρ +Aµνρ in which Aµνρ =

1

2

(
δµρ∂να+ δµν ∂ρα− gµλgνρ∂λα

)
.

By definition we have Γ
µ
νρ =

1

2
gµσ

[
∂νgσρ + ∂ρgνσ − ∂σgνρ

]
. Substituting gµν = eα(x)gµν , and thus gµν = e−α(x)gµν , yields the

stated result after some elementary rewriting exploiting the product rule.

c1. Provide the geodesic equations for xµ=xµ(t) induced by {gµν ,Γ
µ
νρ}, expressed in {gµν ,Γµνρ, α}.(5)

The geodesic equation in this case is
ẍµ + Γ

µ
νρ(x)ẋν ẋρ = 0 .

Substituting Γ
µ
νρ = Γµνρ +Aµνρ, recall b, yields

ẍµ + Γµνρ(x)ẋν ẋρ + ẋν∂να ẋ
µ −

1

2
∂µαgνρẋ

ν ẋρ = 0 ,

in which ∂µ = gµλ∂λ. Note that this may also be written as

ẍµ + Γµνρ(x)ẋν ẋρ + α̇ ẋµ −
1

2
∂µα ‖ẋ‖2 = 0 . (∗∗)

c2. State the condition on the function α such that geodesics for the metric gµν coincide with those for(5)
the unscaled metric gµν above (∗).
(Caveat: This does not mean that the geodesic equations take the same form as (∗), recall a2!)

The important observation is that we must compare (∗∗) to the geodesic o.d.e. for a general parameterization, i.e. to (?), which has the same

solutions for the geodesic curves as (∗), and not to (∗), which holds only for affine parameterizations. Whereas it might be possible to remove

the linear (second last) term on the l.h.s. of ∗∗ through a suitable reparameterization (viz. such that s̈/ṡ2 ∝ α̇), the quadratic (last) term

cannot be done away with unless α happens to be a constant. In that case the geodesic equation reduces to (∗), and the solutions are clearly

the same.

We now consider a differential manifold of Lorentzian type. This means that we drop the positivity
axiom for the metric tensor, maintaining non-degeneracy of the inner product. More precisely:

Definition. A Lorentzian inner product on an n-dimensional linear space V is an indefinite symmetric
bilinear mapping ( · | · ) : V × V → R which satisfies the following axioms:



• ∀x,y ∈ V : (x|y) = (y|x),

• ∀x,y, z ∈ V, λ, µ ∈ R : (λx + µy|z) = λ (x|z) + µ (y|z),

• ∀x ∈ V with x 6= 0 ∃y ∈ V : (x|y) 6= 0.

Decomposing x = xµ∂µ, y = yµ∂µ, we have (x|y) = G(x,y) = gµνx
µyν , in which gµν = (∂µ|∂ν)

are the components of the corresponding Gram matrix G.

d. Show that the Gram matrix G of a Lorentzian inner product is invertible.(5)
(Hint: Hypothesize the existence of a null eigenvalue of G.)

If G has a zero eigenvalue, then there exists a vector x ∈ V , x 6= 0 (viz. any corresponding eigenvector), such that (x|y) = gµνxµyν = 0

for all y = yµ∂µ ∈ V . This contradicts the third (non-degeneracy) axiom for a Lorentzian inner product, thus G is invertible.

In the theory of general relativity a Lorentzian inner product in 4-dimensional spacetime, with signature
(− − −+), plays a prominent role, representing a tensor-valued gravitational potential. The signature
pertains to the invariant number of positive (+) and negative (−) eigenvalues of the corresponding
Gram matrix. Vectors satisfying (x|x) = gµνx

µxν = 0 are said to lie on the light cone and are referred
to as null vectors. The light cone separates spacetime vectors into spacelike ((x|x)< 0) and timelike
((x|x)>0) ones. The geodesic equations are formally identical to (∗), but with Levi-Civita Christoffel
symbols pertaining to the Lorentzian rather than Riemannian metric.

e. Explain the meaning of the general relativistic statement that “null geodesics are invariant under(5)
conformal metric transforms”.
(Hint: Reconsider your answers under c1–c2 in the context of the stipulated Lorentzian metric.)

The meaning of this statement becomes apparent if you interpret the term “null geodesic” as one for which the tangent vector is (everywhere)

a null vector, i.e. (ẋ|ẋ) = ‖ẋ‖2 = gµν ẋµẋν = 0. (Due to the non-positive nature of the Lorentzian inner product this no longer implies

ẋµ = 0, as opposed to the genuine Riemannian case before.) If this is the case, then the last term in (∗∗) is absent, recall c1. As noticed

before (recall c2), the term α̇ ẋµ can be matched against the term
s̈

ṡ2
dxµ

ds
in (?) through a suitable reparameterization, which shows that

the solutions of (∗∗) are in fact invariant under conformal metric transforms. This argument clearly does not hold for spacelike or timelike

geodesics.

♣

2. CARTOGRAPHY(50)

In this problem we model the earth’s surface as the unit sphere S ⊂ E embedded in Euclidean space
E = R3 by parametrizing the Cartesian coordinates (x1, x2, x3) = (x, y, z) ∈ R3 of a point P ∈ S in
terms of polar angles (u1, u2) = (φ, θ), as follows:

E : S→ E : (φ, θ) 7→ (x = E1(φ, θ), y = E2(φ, θ), z = E3(φ, θ)) :


E1(φ, θ) = cosφ cos θ
E2(φ, θ) = sinφ cos θ
E3(φ, θ) = sin θ ,



with (φ, θ) ∈ (−π, π] × [−π
2
,
π

2
]. This mapping naturally induces push-forward and pull-back maps,

E∗ : TS→ TE : v 7→ E∗v, respectively E∗ : T∗E→ T∗S : ω 7→ E∗ω, in which v = va∂a ∈ TS and
ω = ωidx

i ∈ T∗E. These are defined via linear extension through their actions on basis (co-)vectors:

E∗∂a = Eia∂i respectively E∗dxi = Eiadu
a with Jacobian Eia =

∂Ei

∂ua
.

Notation. Summation convention applies to repeated indices. We use shorthands ∂a= ∂
∂ua and ∂i= ∂

∂xi
.

Indices a, b, c, . . .= 1, 2 from the beginning of the alphabet pertain to the 2-dimensional unit sphere S,
indices i, j, k, . . .=1, 2, 3 from the middle of the alphabet to the 3-dimensional Euclidean space E.

a1. Express each of the 1-forms E∗dx, E∗dy, and E∗dz in terms of dφ and dθ.(5)

We have

E∗dx = − sinφ cos θ dφ− cosφ sin θ dθ

E∗dy = cosφ cos θ dφ− sinφ sin θ dθ

E∗dz = cos θ dθ

a2. Express each of the vectors E∗∂φ, and E∗∂θ in terms of ∂x, ∂y, and ∂z .(5)

E∗∂φ = − sinφ cos θ ∂x + cosφ cos θ ∂y

E∗∂θ = − cosφ sin θ ∂x − sinφ sin θ ∂y + cos θ ∂z

The coefficients may be expressed in terms of x, y, z with the help of the following identities:

cosφ =
x

√
1− z2

sinφ =
y

√
1− z2

cos θ =
√

1− z2 sin θ = z .

This yields:

E∗∂φ = −y ∂x + x ∂y

E∗∂θ = −
xz

√
1− z2

∂x −
yz

√
1− z2

∂y +
√

1− z2 ∂z

The Euclidean metric tensor on E is given by h = hij dx
i⊗ dxj = dx⊗ dx+ dy⊗ dy+ dz⊗ dz. This

metric naturally induces a pull-back metric g = E∗h = gab du
a ⊗ dub = (hij ◦E)E∗dxi ⊗E∗dxj on

S. The symbol ◦ denotes composition, i.e. (hij◦E)(φ, θ) = hij(E(φ, θ)).

b1. Show that, in general, gab dua ⊗ dub =
∂Ei

∂ua
(hij◦E)

∂Ej

∂ub
dua ⊗ dub.(5)

Using E∗h = (hij ◦E)E∗dxi ⊗ E∗dxj and E∗dxi = Eiadu
a we get E∗h(φ, θ) = hij(E(φ, θ))Eia(u)Ejb (u)dua ⊗ dub, in which

we recognize the above holor.



b2. Show that, for the particular choice of the mapping E above, g = cos2 θdφ⊗ dφ+ dθ ⊗ dθ.(5)

Substitution of the results found in a1 into the general expression of b1, recalling that h11 = h22 = h33 = 1 and hij = 0 if i 6= j, yields
(with abbreviations s and c denoting sin, respectively cos)

g = (−sφcθ dφ−cφsθ dθ)⊗(−sφcθ dφ−cφsθ dθ)+(cφcθ dφ−sφsθ dθ)⊗(cφcθ dφ−sφsθ dθ)+(cθ dθ)⊗(cθ dθ) = c2θdφ⊗dφ+dθ⊗dθ .

The Christoffel symbols on S in u-coordinates are given by Γcab =
1

2
gc` (∂ag`b + ∂bga` − ∂`gab).

c1. Compute the following Christoffel symbols on S: (i) Γφφθ, (ii) Γφθφ, and (iii) Γθφφ.(71
2 )

These are in fact the only non-vanishing Christoffel symbols: Γφφθ = Γφθφ = − tan θ and Γθφφ = sin θ cos θ.

c2. Pick one of the remaining symbols Γcab not considered in problem c1, and show that it vanishes.(21
2 )

This follows by careful inspection. What you need to exploit in your proof are, besides the definition of the Γ-symbols, the special properties

of the metric tensor, viz. the fact that (i) the matrix with coefficients gab is diagonal, i.e. gθφ = gφθ = 0, (ii) gφφ does not depend on φ, and

(iii) gθθ is a global constant.

d1. Provide the geodesic equations for a parametrized geodesic on S: (φ, θ) = (φ(t), θ(t)), with t ∈ R.(5)

In general üc + Γcabu̇
au̇b = 0, thus, using c1, φ̈+ 2Γφφθφ̇θ̇ = 0 and θ̈ + Γθφφφ̇

2 = 0, i.e. φ̈− 2 tan θφ̇θ̇ = 0 and θ̈ + sin θ cos θφ̇2 = 0.

d2. Show that the equator is a geodesic, and argue why this implies that all great circles (intersections(5)
of planes with S through the earth’s center) are geodesics.

One trivial solution is θ(t) = 0 and φ(t) = φ0 + ωt, with integration constants φ0, ω ∈ R. For ω 6= 0 this is the equator, which is a great

circle. By spherical symmetry this implies that any great circle must be a geodesic.

LAMBERT CYLINDRICAL EQUAL-AREA PROJECTION (JOHANN HEINRICH LAMBERT, 1728–1777).

The Lambert cylindrical equal-area projection

L :S→M : (φ, θ) 7→(ξ=L1(φ, θ), η=L2(φ, θ)) :

{
L1(φ, θ) = φ
L2(φ, θ) = sin θ ,

with (φ, θ) ∈ (−π, π]× [−π
2
,
π

2
], provides a flat chart M of the earth’s surface S, cf. the figure.



TISSOT’S INDICATRICES OF DEFORMATION ARE USED TO VISUALIZE SURFACE DISTORTIONS DUE TO PROJECTION.

The unit volume form on an n-dimensional Riemannian space is given by ε =
√
g dz1 ∧ . . . ∧ dzn in

any coordinate basis {dz1, . . . , dzn}, in which g denotes the determinant of the covariant metric tensor.
Below we refer to a 2-dimensional volume form as an “area form”.

e1. Show that the unit area 2-form on the sphere S is given by εS = cos θdφ ∧ dθ.(5)

From b2 it follows that g = cos2 θ, so
√
g = cos θ (the sign follows from the domain of definition, with −π/2 ≤ θ ≤ π/2), so with the

identifications u1 = φ, u2 = θ we find εS =
√
g du1 ∧ du2 = cos θdφ ∧ dθ.

We endow M with a 2-dimensional Euclidean structure with Cartesian coordinates (ξ1 = ξ, ξ2 =η). In
terms of these coordinates the metric on M takes the form η = ηµνdξ

µ ⊗ dξν = dξ ⊗ dξ + dη ⊗ dη,
with trivial metric determinant η = 1.

e2. Prove that Lambert cylindrical equal-area projection preserves areas, as follows. Show that the area(5)
form induced by pulling back the unit area form on the earth’s map onto the earth’s surface under L∗,
i.e. ωS = L∗εM

def
=
√
η◦LL∗dξ ∧ L∗dη, is in fact the unit area form on S, i.e. show that ωS = εS.

Using η = 1, L∗dξµ = Lµadu
a, with Lµa = ∂Lµ

∂ua
, we get L∗dξ = dφ and L∗dη = cos θdθ, whence ωS = cos θdφ ∧ dθ = εS, cf. e1.

THE END


