EXAMINATION TENSOR CALCULUS AND DIFFERENTIAL GEOMETRY

Course code: 2WAH0-2WAH1. Date: Tuesday April 7, 2015. Time: 13h30-16h30. Place: AUD 9.

Read this first!

- Write your name and student identification number on each paper.
- The exam consists of 2 problems. The maximum credit for each item is indicated in the margin.
- Motivate your answers.
- Einstein summation convention applies throughout for all repeated indices.
- You may consult an immaculate hardcopy of the online draft notes "Tensor Calculus and Differential Geometry (2WAH0)" by Luc Florack. No equipment may be used.

(50) 1. GEODESICS

Consider the geodesic ordinary differential equations (o.d.e.'s) on a Riemannian space with coordinates coordinates $x \in \mathbb{R}^n$ for a parametrized curve x = x(t) relative to the coordinate basis $\{\mathbf{e}_{\mu} = \partial_{\mu}\}_{\mu=1,\dots,n}$:

$$\ddot{x}^{\mu} + \Gamma^{\mu}_{\nu\rho}(x)\dot{x}^{\nu}\dot{x}^{\rho} = 0. \qquad (*)$$

A (single/double) dot indicates a $(1^{st}/2^{nd} \text{ order})$ derivative with respect to t. The Christoffel symbols $\Gamma^{\mu}_{\nu\rho}(x)$ represent the Levi-Civita connection compatible with the Riemannian metric with holor $g_{\mu\nu}(x)$.

- (10) **a1.** Show that if t = as + b for some new curve parameter $s \in \mathbb{R}$ and constants $a, b \in \mathbb{R}$, $a \neq 0$, then the geodesic equations assume the same form as those above (*) when expressed in terms of s.
- (10) **a2.** Show that this is *not* true for a general reparametrization of the form t = t(s), with $\frac{dt(s)}{ds} \neq 0$, by deriving the corresponding o.d.e.'s in terms of the general curve parameter s in this case.

A conformal metric transform is a pointwise scaling of the form $\overline{g}_{\mu\nu}(x) = e^{\alpha(x)}g_{\mu\nu}(x)$, in which $\alpha : \mathbb{R}^n \to \mathbb{R} : x \mapsto \alpha(x)$ denotes an arbitrary smooth scalar field.

(10) **b.** Show that the Christoffel symbols $\overline{\Gamma}^{\mu}_{\nu\rho}$ corresponding to the Levi-Civita connection induced by $\overline{g}_{\mu\nu}$ are given by

$$\overline{\Gamma}^{\mu}_{\nu\rho} = \Gamma^{\mu}_{\nu\rho} + A^{\mu}_{\nu\rho} \quad \text{in which} \quad A^{\mu}_{\nu\rho} = \frac{1}{2} \left(\delta^{\mu}_{\rho} \partial_{\nu} \alpha + \delta^{\mu}_{\nu} \partial_{\rho} \alpha - g^{\mu\lambda} g_{\nu\rho} \partial_{\lambda} \alpha \right) \,.$$

(5) **c1.** Provide the geodesic equations for $x^{\mu} = x^{\mu}(t)$ induced by $\{\overline{g}_{\mu\nu}, \overline{\Gamma}^{\mu}_{\nu\rho}\}$, expressed in $\{g_{\mu\nu}, \Gamma^{\mu}_{\nu\rho}, \alpha\}$.

(5) c2. State the condition on the function α such that geodesics for the metric g_{µν} coincide with those for the unscaled metric g_{µν} above (*).
(*Caveat:* This does *not* mean that the geodesic equations take the same form as (*), recall a2!)

We now consider a differential manifold of Lorentzian type. This means that we drop the positivity axiom for the metric tensor, maintaining non-degeneracy of the inner product. More precisely:

Definition. A Lorentzian inner product on an *n*-dimensional linear space V is an indefinite symmetric bilinear mapping $(\cdot | \cdot) : V \times V \to \mathbb{R}$ which satisfies the following axioms:

- $\bullet \ \forall \, \mathbf{x}, \mathbf{y} \in V: \quad (\mathbf{x} | \mathbf{y}) = (\mathbf{y} | \mathbf{x}),$
- $\forall \mathbf{x}, \mathbf{y}, \mathbf{z} \in V, \lambda, \mu \in \mathbb{R}$: $(\lambda \mathbf{x} + \mu \mathbf{y} | \mathbf{z}) = \lambda (\mathbf{x} | \mathbf{z}) + \mu (\mathbf{y} | \mathbf{z}),$
- $\forall \mathbf{x} \in V \text{ with } \mathbf{x} \neq \mathbf{0} \ \exists \mathbf{y} \in V : (\mathbf{x} | \mathbf{y}) \neq 0.$

Decomposing $\mathbf{x} = x^{\mu}\partial_{\mu}$, $\mathbf{y} = y^{\mu}\partial_{\mu}$, we have $(\mathbf{x}|\mathbf{y}) = G(\mathbf{x},\mathbf{y}) = g_{\mu\nu}x^{\mu}y^{\nu}$, in which $g_{\mu\nu} = (\partial_{\mu}|\partial_{\nu})$ are the components of the corresponding Gram matrix **G**.

(5) **d.** Show that the Gram matrix **G** of a Lorentzian inner product is invertible.(*Hint:* Hypothesize the existence of a null eigenvalue of **G**.)

In the theory of general relativity a Lorentzian inner product in 4-dimensional spacetime, with signature (--+), plays a prominent role, representing a tensor-valued gravitational potential. The signature pertains to the invariant number of positive (+) and negative (-) eigenvalues of the corresponding Gram matrix. Vectors satisfying $(\mathbf{x}|\mathbf{x}) = g_{\mu\nu}x^{\mu}x^{\nu} = 0$ are said to lie on the *light cone* and are referred to as *null vectors*. The light cone separates spacetime vectors into *spacelike* (($\mathbf{x}|\mathbf{x}) < 0$) and *timelike* (($\mathbf{x}|\mathbf{x}) > 0$) ones. The geodesic equations are formally identical to (*), but with Levi-Civita Christoffel symbols pertaining to the Lorentzian rather than Riemannian metric.

(5) **e.** Explain the meaning of the general relativistic statement that "*null geodesics are invariant under conformal metric transforms*".

(*Hint:* Reconsider your answers under c1–c2 in the context of the stipulated Lorentzian metric.)

(50) 2. CARTOGRAPHY

In this problem we model the earth's surface as the unit sphere $\mathbb{S} \subset \mathbb{E}$ embedded in Euclidean space $\mathbb{E} = \mathbb{R}^3$ by parametrizing the Cartesian coordinates $(x^1, x^2, x^3) = (x, y, z) \in \mathbb{R}^3$ of a point $\mathscr{P} \in \mathbb{S}$ in terms of polar angles $(u^1, u^2) = (\phi, \theta)$, as follows:

$$E: \mathbb{S} \to \mathbb{E}: (\phi, \theta) \mapsto (x = E^{1}(\phi, \theta), y = E^{2}(\phi, \theta), z = E^{3}(\phi, \theta)): \begin{cases} E^{1}(\phi, \theta) = \cos \phi \cos \theta \\ E^{2}(\phi, \theta) = \sin \phi \cos \theta \\ E^{3}(\phi, \theta) = \sin \theta , \end{cases}$$

with $(\phi, \theta) \in (-\pi, \pi] \times [-\frac{\pi}{2}, \frac{\pi}{2}]$. This mapping naturally induces *push-forward* and *pull-back* maps, $E_* : \mathbb{TS} \to \mathbb{TE} : \mathbf{v} \mapsto E_*\mathbf{v}$, respectively $E^* : \mathbb{T}^*\mathbb{E} \to \mathbb{T}^*\mathbb{S} : \boldsymbol{\omega} \mapsto E^*\boldsymbol{\omega}$, in which $\mathbf{v} = v^a \partial_a \in \mathbb{TS}$ and $\boldsymbol{\omega} = \omega_i dx^i \in \mathbb{T}^*\mathbb{E}$. These are defined via linear extension through their actions on basis (co-)vectors:

$$E_*\partial_a = E_a^i\partial_i$$
 respectively $E^*dx^i = E_a^idu^a$ with Jacobian $E_a^i = \frac{\partial E^i}{\partial u^a}$.

Notation. Summation convention applies to repeated indices. We use shorthands $\partial_a = \frac{\partial}{\partial u^a}$ and $\partial_i = \frac{\partial}{\partial x^i}$. Indices $a, b, c, \ldots = 1, 2$ from the beginning of the alphabet pertain to the 2-dimensional unit sphere \mathbb{S} , indices $i, j, k, \ldots = 1, 2, 3$ from the middle of the alphabet to the 3-dimensional Euclidean space \mathbb{E} .

- (5) **a1.** Express each of the 1-forms E^*dx , E^*dy , and E^*dz in terms of $d\phi$ and $d\theta$.
- (5) **a2.** Express each of the vectors $E_*\partial_{\phi}$, and $E_*\partial_{\theta}$ in terms of ∂_x , ∂_y , and ∂_z .

The Euclidean metric tensor on \mathbb{E} is given by $\mathbf{h} = h_{ij} dx^i \otimes dx^j = dx \otimes dx + dy \otimes dy + dz \otimes dz$. This metric naturally induces a *pull-back metric* $\mathbf{g} = E^* \mathbf{h} = g_{ab} du^a \otimes du^b = (h_{ij} \circ E) E^* dx^i \otimes E^* dx^j$ on \mathbb{S} . The symbol \circ denotes composition, i.e. $(h_{ij} \circ E)(\phi, \theta) = h_{ij}(E(\phi, \theta))$.

(5) **b1.** Show that, in general,
$$g_{ab} du^a \otimes du^b = \frac{\partial E^i}{\partial u^a} (h_{ij} \circ E) \frac{\partial E^j}{\partial u^b} du^a \otimes du^b$$
.

(5) **b2.** Show that, for the particular choice of the mapping *E* above, $\mathbf{g} = \cos^2 \theta d\phi \otimes d\phi + d\theta \otimes d\theta$.

The Christoffel symbols on S in *u*-coordinates are given by $\Gamma_{ab}^c = \frac{1}{2}g^{c\ell} (\partial_a g_{\ell b} + \partial_b g_{a\ell} - \partial_\ell g_{ab}).$

- (7¹/₂) **c1.** Compute the following Christoffel symbols on S: (i) $\Gamma^{\phi}_{\phi\theta}$, (ii) $\Gamma^{\phi}_{\theta\phi}$, and (iii) $\Gamma^{\theta}_{\phi\phi}$.
- $(2\frac{1}{2})$ c2. Pick one of the remaining symbols Γ_{ab}^c not considered in problem c1, and show that it vanishes.
- (5) **d1.** Provide the geodesic equations for a parametrized geodesic on \mathbb{S} : $(\phi, \theta) = (\phi(t), \theta(t))$, with $t \in \mathbb{R}$.
- (5) **d2.** Show that the equator is a geodesic, and argue why this implies that *all* great circles (intersections of planes with S through the earth's center) are geodesics.

LAMBERT CYLINDRICAL EQUAL-AREA PROJECTION (JOHANN HEINRICH LAMBERT, 1728–1777).

The Lambert cylindrical equal-area projection

$$L : \mathbb{S} \to \mathbb{M} : (\phi, \theta) \mapsto (\xi = L^1(\phi, \theta), \eta = L^2(\phi, \theta)) : \begin{cases} L^1(\phi, \theta) &= \phi \\ L^2(\phi, \theta) &= \sin \theta \end{cases},$$

with $(\phi, \theta) \in (-\pi, \pi] \times [-\frac{\pi}{2}, \frac{\pi}{2}]$, provides a flat chart \mathbb{M} of the earth's surface \mathbb{S} , cf. the figure.

TISSOT'S INDICATRICES OF DEFORMATION ARE USED TO VISUALIZE SURFACE DISTORTIONS DUE TO PROJECTION.

The unit volume form on an *n*-dimensional Riemannian space is given by $\epsilon = \sqrt{g} dz^1 \wedge \ldots \wedge dz^n$ in any coordinate basis $\{dz^1, \ldots, dz^n\}$, in which g denotes the determinant of the covariant metric tensor. Below we refer to a 2-dimensional volume form as an "area form".

(5) **e1.** Show that the unit area 2-form on the sphere S is given by $\epsilon_{S} = \cos\theta d\phi \wedge d\theta$.

We endow \mathbb{M} with a 2-dimensional Euclidean structure with Cartesian coordinates $(\xi^1 = \xi, \xi^2 = \eta)$. In terms of these coordinates the metric on \mathbb{M} takes the form $\eta = \eta_{\mu\nu} d\xi^{\mu} \otimes d\xi^{\nu} = d\xi \otimes d\xi + d\eta \otimes d\eta$, with trivial metric determinant $\eta = 1$.

(5) **e2.** Prove that Lambert cylindrical equal-area projection preserves areas, as follows. Show that the area form induced by pulling back the *unit* area form on the earth's map onto the earth's surface under L^* , i.e. $\omega_{\mathbb{S}} = L^* \epsilon_{\mathbb{M}} \stackrel{\text{def}}{=} \sqrt{\eta \circ L} L^* d\xi \wedge L^* d\eta$, is in fact the *unit* area form on \mathbb{S} , i.e. show that $\omega_{\mathbb{S}} = \epsilon_{\mathbb{S}}$.

THE END