
EXAMINATION TENSOR CALCULUS AND DIFFERENTIAL GEOMETRY

Course code: 2WAH0-2WAH1. Date: Tuesday April 7, 2015. Time: 13h30–16h30. Place: AUD 9.

Read this first!

• Write your name and student identification number on each paper.

• The exam consists of 2 problems. The maximum credit for each item is indicated in the margin.

• Motivate your answers.

• Einstein summation convention applies throughout for all repeated indices.

• You may consult an immaculate hardcopy of the online draft notes “Tensor Calculus and Differential
Geometry (2WAH0)” by Luc Florack. No equipment may be used.

1. GEODESICS(50)

Consider the geodesic ordinary differential equations (o.d.e.’s) on a Riemannian space with coordinates
coordinates x ∈ Rn for a parametrized curve x=x(t) relative to the coordinate basis {eµ=∂µ}µ=1,...,n:

ẍµ + Γµνρ(x)ẋν ẋρ = 0 . (∗)

A (single/double) dot indicates a (1st/2nd order) derivative with respect to t. The Christoffel symbols
Γµνρ(x) represent the Levi-Civita connection compatible with the Riemannian metric with holor gµν(x).

a1. Show that if t = as + b for some new curve parameter s ∈ R and constants a, b ∈ R, a 6= 0, then(10)
the geodesic equations assume the same form as those above (∗) when expressed in terms of s.

a2. Show that this is not true for a general reparametrization of the form t = t(s), with
dt(s)

ds
6= 0, by(10)

deriving the corresponding o.d.e.’s in terms of the general curve parameter s in this case.

A conformal metric transform is a pointwise scaling of the form gµν(x) = eα(x)gµν(x), in which
α : Rn → R : x 7→ α(x) denotes an arbitrary smooth scalar field.

b. Show that the Christoffel symbols Γ
µ
νρ corresponding to the Levi-Civita connection induced by gµν(10)

are given by

Γ
µ
νρ = Γµνρ +Aµνρ in which Aµνρ =

1

2

(
δµρ∂να+ δµν ∂ρα− gµλgνρ∂λα

)
.



c1. Provide the geodesic equations for xµ=xµ(t) induced by {gµν ,Γ
µ
νρ}, expressed in {gµν ,Γµνρ, α}.(5)

c2. State the condition on the function α such that geodesics for the metric gµν coincide with those for(5)
the unscaled metric gµν above (∗).
(Caveat: This does not mean that the geodesic equations take the same form as (∗), recall a2!)

We now consider a differential manifold of Lorentzian type. This means that we drop the positivity
axiom for the metric tensor, maintaining non-degeneracy of the inner product. More precisely:

Definition. A Lorentzian inner product on an n-dimensional linear space V is an indefinite symmetric
bilinear mapping ( · | · ) : V × V → R which satisfies the following axioms:

• ∀x,y ∈ V : (x|y) = (y|x),

• ∀x,y, z ∈ V, λ, µ ∈ R : (λx + µy|z) = λ (x|z) + µ (y|z),

• ∀x ∈ V with x 6= 0 ∃y ∈ V : (x|y) 6= 0.

Decomposing x = xµ∂µ, y = yµ∂µ, we have (x|y) = G(x,y) = gµνx
µyν , in which gµν = (∂µ|∂ν)

are the components of the corresponding Gram matrix G.

d. Show that the Gram matrix G of a Lorentzian inner product is invertible.(5)
(Hint: Hypothesize the existence of a null eigenvalue of G.)

In the theory of general relativity a Lorentzian inner product in 4-dimensional spacetime, with signature
(− − −+), plays a prominent role, representing a tensor-valued gravitational potential. The signature
pertains to the invariant number of positive (+) and negative (−) eigenvalues of the corresponding
Gram matrix. Vectors satisfying (x|x) = gµνx

µxν = 0 are said to lie on the light cone and are referred
to as null vectors. The light cone separates spacetime vectors into spacelike ((x|x)< 0) and timelike
((x|x)>0) ones. The geodesic equations are formally identical to (∗), but with Levi-Civita Christoffel
symbols pertaining to the Lorentzian rather than Riemannian metric.

e. Explain the meaning of the general relativistic statement that “null geodesics are invariant under(5)
conformal metric transforms”.
(Hint: Reconsider your answers under c1–c2 in the context of the stipulated Lorentzian metric.)



2. CARTOGRAPHY(50)

In this problem we model the earth’s surface as the unit sphere S ⊂ E embedded in Euclidean space
E = R3 by parametrizing the Cartesian coordinates (x1, x2, x3) = (x, y, z) ∈ R3 of a point P ∈ S in
terms of polar angles (u1, u2) = (φ, θ), as follows:

E : S→ E : (φ, θ) 7→ (x = E1(φ, θ), y = E2(φ, θ), z = E3(φ, θ)) :


E1(φ, θ) = cosφ cos θ
E2(φ, θ) = sinφ cos θ
E3(φ, θ) = sin θ ,

with (φ, θ) ∈ (−π, π] × [−π
2
,
π

2
]. This mapping naturally induces push-forward and pull-back maps,

E∗ : TS→ TE : v 7→ E∗v, respectively E∗ : T∗E→ T∗S : ω 7→ E∗ω, in which v = va∂a ∈ TS and
ω = ωidx

i ∈ T∗E. These are defined via linear extension through their actions on basis (co-)vectors:

E∗∂a = Eia∂i respectively E∗dxi = Eiadu
a with Jacobian Eia =

∂Ei

∂ua
.

Notation. Summation convention applies to repeated indices. We use shorthands ∂a= ∂
∂ua and ∂i= ∂

∂xi
.

Indices a, b, c, . . .= 1, 2 from the beginning of the alphabet pertain to the 2-dimensional unit sphere S,
indices i, j, k, . . .=1, 2, 3 from the middle of the alphabet to the 3-dimensional Euclidean space E.

a1. Express each of the 1-forms E∗dx, E∗dy, and E∗dz in terms of dφ and dθ.(5)

a2. Express each of the vectors E∗∂φ, and E∗∂θ in terms of ∂x, ∂y, and ∂z .(5)

The Euclidean metric tensor on E is given by h = hij dx
i⊗ dxj = dx⊗ dx+ dy⊗ dy+ dz⊗ dz. This

metric naturally induces a pull-back metric g = E∗h = gab du
a ⊗ dub = (hij ◦E)E∗dxi ⊗E∗dxj on

S. The symbol ◦ denotes composition, i.e. (hij◦E)(φ, θ) = hij(E(φ, θ)).

b1. Show that, in general, gab dua ⊗ dub =
∂Ei

∂ua
(hij◦E)

∂Ej

∂ub
dua ⊗ dub.(5)

b2. Show that, for the particular choice of the mapping E above, g = cos2 θdφ⊗ dφ+ dθ ⊗ dθ.(5)

The Christoffel symbols on S in u-coordinates are given by Γcab =
1

2
gc` (∂ag`b + ∂bga` − ∂`gab).

c1. Compute the following Christoffel symbols on S: (i) Γφφθ, (ii) Γφθφ, and (iii) Γθφφ.(71
2 )

c2. Pick one of the remaining symbols Γcab not considered in problem c1, and show that it vanishes.(21
2 )

d1. Provide the geodesic equations for a parametrized geodesic on S: (φ, θ) = (φ(t), θ(t)), with t ∈ R.(5)

d2. Show that the equator is a geodesic, and argue why this implies that all great circles (intersections(5)
of planes with S through the earth’s center) are geodesics.



LAMBERT CYLINDRICAL EQUAL-AREA PROJECTION (JOHANN HEINRICH LAMBERT, 1728–1777).

The Lambert cylindrical equal-area projection

L :S→M : (φ, θ) 7→(ξ=L1(φ, θ), η=L2(φ, θ)) :

{
L1(φ, θ) = φ
L2(φ, θ) = sin θ ,

with (φ, θ) ∈ (−π, π]× [−π
2
,
π

2
], provides a flat chart M of the earth’s surface S, cf. the figure.

TISSOT’S INDICATRICES OF DEFORMATION ARE USED TO VISUALIZE SURFACE DISTORTIONS DUE TO PROJECTION.

The unit volume form on an n-dimensional Riemannian space is given by ε =
√
g dz1 ∧ . . . ∧ dzn in

any coordinate basis {dz1, . . . , dzn}, in which g denotes the determinant of the covariant metric tensor.
Below we refer to a 2-dimensional volume form as an “area form”.

e1. Show that the unit area 2-form on the sphere S is given by εS = cos θdφ ∧ dθ.(5)

We endow M with a 2-dimensional Euclidean structure with Cartesian coordinates (ξ1 = ξ, ξ2 =η). In
terms of these coordinates the metric on M takes the form η = ηµνdξ

µ ⊗ dξν = dξ ⊗ dξ + dη ⊗ dη,
with trivial metric determinant η = 1.

e2. Prove that Lambert cylindrical equal-area projection preserves areas, as follows. Show that the area(5)
form induced by pulling back the unit area form on the earth’s map onto the earth’s surface under L∗,
i.e. ωS = L∗εM

def
=
√
η◦LL∗dξ ∧ L∗dη, is in fact the unit area form on S, i.e. show that ωS = εS.

THE END


