
EXAMINATION TENSOR CALCULUS AND DIFFERENTIAL GEOMETRY

Course code: 2WAH0. Date: Tuesday April 7, 2020. Time: 09h00–12h00. Canvas online assignment.

READ THIS FIRST!

• Write your name and student identification number on each paper, and include it in the file name(s) of any
scan you upload via Assignments in Canvas.

• The exam consists of 3 problems and a mandatory legal statement. Credits are indicated in the margin.

• Follow the legal statement instruction at the end of the exam before you scan and upload your results! This
requires you to include a written statement exactly as indicated in that clause.

• You may consult the online draft notes “Tensor Calculus and Differential Geometry (2WAH0)” by Luc
Florack to be found in the Files folder of Canvas. No other material or equipment may be used.

• The host/invigilator may ask you to temporarily share your screen promptly without undue delay at any
given moment via a chat request directly to you. Your screen should display no other items than those
permitted for this exam (online course notes, Zoom, Canvas).

• Keep your camera on and do not unmute yourself, as this may be distractive.

• You can chat with the host/invigilator (only) for urgent requests. Do not step away from the camera without
such a request and before explicit approval. Use this option only if strictly necessary. In principle, only
one short sanitary break will be allowed during the exam.

• The Einstein summation convention is in effect throughout this exam.

1. TENSOR CALCULUS MISCELLANY.(20)

Prove the following conjectures, in which V is a vector space of dimension dimV
.
= n ≥ 2:

a. A completely antisymmetric tensor T : V ×. . .×V︸ ︷︷ ︸
n copies

→ R has exactly one degree of freedom.(5)

A tensor is completely determined by its holor. Therefore, consider n arbitrary basis vectors ei1 , . . . , ein ∈ V . By virtue of antisymmetry

(exploited in ?) we may rearrange Ti1...in
.
= T (ei1 , . . . , ein )

?
= [i1 . . . in]T (e1, . . . , en)

.
= [i1 . . . in]T1,...,n, so that the single number

k
.
= T1,...,n ∈ R disambiguates the tensor completely.

b. If the holor Xij is antisymmetric, while the holor Y ij is symmetric, then XijY
ij = 0.(5)

A dummy index manipulation (◦), using the stipulated (anti)symmetry (?), reveals XijY ij
?
= XijY

ji ?= −XjiY ji
◦
= −XijY ij .

c. A rank-3 holor cannot be decomposed into symmetric and antisymmetric parts: Tijk 6= T(ijk)+T[ijk].(5)

This follows from a dimensionality argument:



• A general rank-3 holor has n3 independent components.

• A symmetric rank-3 holor has
(n+2

3

)
= 1

6
n(n+1)(n+2) independent components.

• An antisymmetric rank-3 tensor has
(n
3

)
= 1

6
n(n−1)(n−2) independent components.

• The sum of the latter two numbers equals 1
3
n(n2+2)<n3, which can be proven by induction for n≥2 (or by observing n<n3).

d. If V has a Lorentzian inner product, the Hodge star of the unit volume form ε
.
=
√
|g| ê1 ∧ . . . ∧ ên(5)

relative to a positively oriented basis {e1, . . . , en} equals ∗ε = −1. Here g .
= det g•• denotes the

determinant of the Gram matrix.

The ε tensor is an n-form, so its Hodge star ∗ε is a 0-form, i.e. a real number. Using
√
|g| ê1 ∧ . . . ∧ ên = εi1...in êi1 ⊗ . . .⊗ êin , with

tensor holor εi1...in =
√
|g| [i1 . . . in], we obtain

∗ε =
1

n!
εi1...ing

i1j1 . . . ginjnεj1...jn =
1

n!

√
|g| [i1 . . . in]gi1j1 . . . ginjn

√
|g| [j1 . . . jn] = |g| det g•• =

|g|
g

= −1 .

The last step follows from the fact that, by definition, the Gram matrix g•• of a Lorentzian inner product (and thus also its inverse g••) has

one eigenvalue of opposite sign relative to the n−1 remaining eigenvalues, whence the product of eigenvalues, and thus det g••, is negative.

♣

2. LORENTZIAN INNER PRODUCT.(30)

We consider the vector space of real symmetric 2×2 matrices,

Msym
2

.
=

{
X =

(
x11 x12

x21 x22

)∣∣∣∣xab = xba ∈ R
}
,

and furnish it with a symmetric bilinear operator ( | ) : Msym
2 ×Msym

2 → R : (X,Y ) 7→ (X|Y ). Recall
that real symmetric matrices have real eigenvalues. In order to define this bilinear operator we start out
by defining a pseudonorm ‖ ‖ : Msym

2 → R : X 7→ ‖X‖, stipulated to have the following property:

(•) ‖X‖2 .
=

1

2
(X|X) .

a. Show that, for any X,Y ∈Msym
2 , (X|Y ) is uniquely determined in terms of this pseudonorm.(5)

[Hint: Expand (X − Y |X − Y ).]

Expanding (X − Y |X − Y ) = (X|X)− 2 (X|Y ) + (Y |Y ) allows us to express (X|Y ) in terms of the pseudonorm already defined, viz.

(X|Y ) =
1

2
(X|X) +

1

2
(Y |Y )−

1

2
(X − Y |X − Y )

.
= ‖X‖2 + ‖Y ‖2 − ‖X − Y ‖2 .

Note that both bilinearity as well as symmetry of ( | ) have been used in the expansion.

We stipulate the following instance for the pseudonorm (thus also disambiguating the bilinear map):

(?) ‖X‖2 .
= detX ,

and henceforth assume this to hold. By adjY we denote the adjugate (transposed cofactor) matrix of Y .



b1. Use the definition of adjY to prove that if Y .
=

(
y11 y12

y21 y22

)
then adjY =

(
y22 −y12

−y21 y11

)
.(5)

This follows by a straightforward computation of the four elements (adjY )ab = ∂ detY/∂yba, using detY = y11y22−y21y12.

b2. Recall (•), (?). Show, by explicit computation in terms of matrix elements, that(5)

(X|Y ) = tr (XadjY ) .

According to problem a and the above instance of the pseudonorm we have

(X|Y )
a
= ‖X‖2 + ‖Y ‖2 − ‖X − Y ‖2 .

= detX + detY − det(X − Y ) .

A brute force computation of the r.h.s. in terms of matrix components, setting

X =

(
x11 x12

x21 x22

)
and Y =

(
y11 y12

y21 y22

)

with x12 = x21 and y12 = y21, yields, after a miraculous cancellation of terms,

detX + detY − det(X − Y ) = x11y22 + x22y11 − 2x12y12 .

On the other hand, using

adjY =

(
y22 −y12
−y21 y11

)
we likewise find

tr (XadjY ) = x11y22 + x22y11 − 2x12y12 .

These calculations confirm the conjectured identity (X|Y ) = tr (XadjY ).

c. Show that ( | ) is indeed symmetric bilinear. Would this be the case if we had considered Msym
n(5)

instead of Msym
2 , i.e. the vector space of real symmetric n×n matrices, with n 6= 2?

This follows from b2, since (X|Y ) = tr (XadjY ) = x11y22 + x22y11 − 2x12y12 is clearly symmetric and bilinear. Note that this result

relies explicitly on the fact that adjugation, Z(Y )
.
= adjY , is linear in Y in n = 2 dimensions, and therefore does not hold if n 6= 2.

We now interpret xA .
= xab ∈R as the contravariant ‘metarank’-one holor of the vector X ∈Msym

2 , in
which each index pair (a, b) is treated as a single, so-called multi-index A .

= (a, b).

Definition. For A .
=(a, b) the covariant ‘metarank’-one holor εA

.
= εab is defined as

εA
.
=


1 if A=(1, 2)
−1 if A=(2, 1)
0 otherwise.

Expressed in multi-index convention we stipulate a covariant ‘metarank’-two Gram matrix with holor
gAB , in which A .

= (a, b), B .
= (c, d), say, such that

(X|Y )
.
= gAB x

AyB .

d. Express gAB , with A=(a, b), B=(c, d), in terms of ε-symbols and original indices a, b, c, d=1, 2.(5)
[Hint: Problem a tells you that you may consider (X|X) = gABx

AxB without loss of generality.]



We have, using the definition of the determinant detX
.
= 1

2
εacεbdx

abxcd,

gAB x
AxB

.
= (X|X) = 2 detX

.
= εacεbd x

abxcd = εacεbdx
AxB .

Thus we must identify
gAB = εacεbd .

(Do not confuse the r.h.s. with the tensor product εAεB .) By problem a this implies (X|Y ) = gAB x
AyB . As an aside, note that if we

would agree on an index lowering convention in which xbc
.
= εacxab, then we may also write (X|Y ) = xbcy

c
b , which is just the standard

inner product on the linear space of traceless mixed matrices, the natural counterparts of our symmetric contravariant matrices.

e. Show that ( | ) is a nondegenerate Lorentzian inner product.(5)

Symmetry and bilinearity have been proven in c. Suppose furthermore thatX ∈ Msym
2 is a nonzero matrix. Then at least one of the coefficients

xab in the expression (X|Y ) = x11y22 + x22y11 − 2x12y12 must be nozero. As a result there exists a nonzero matrix Y ∈ Msym
2 such

that the r.h.s. does not vanish, so that the inner product is of pseudo-Riemannian type. In fact, from (X|X) = 2 detX it follows that (X|X)

may be positive, zero, or negative, depending on the matrix X , and since dimMsym
2 = 3, its signature must be Lorentzian.

♣

3. RETINO-CORTICAL MAP.(50)

We consider a geometric model of the retino-cortical map, the neural pathway that transfers optical input
signals from retina to cortical surface (both viewed as compact subsets of R2). This map is topology
preserving, but distortive in the sense that it has an eccentricity dependent effect on area measures.

Notation:

• (x, y) ∈ R2: Cartesian coordinates in 2-dimensional Euclidean space;

• (dx, dy) ∈ T∗R2
(x,y): coordinate 1-forms;

• a > 0: size parameter (a physical constant);

• (r, φ) ∈ R+
0 × [φ0, φ0+2π): polar coordinates, with (x, y) = (r cosφ, r sinφ), φ0∈R fixed.

Consider the following two non-exact one-form fields, in which a > 0 is a parameter:

d̄ξ =
dx√

x2 + y2 + a2
and d̄η =

dy√
x2 + y2 + a2

,

The barred symbol d̄ stresses the non-exact nature of the one-forms (dd̄ 6= 0).

Let v = vx∂x+vy∂y be an arbitrary vector field, with component functions vx, vy ∈ C∞(R2).

a. Compute d̄ξ(v) and d̄η(v) as functions of x and y.(5)

Using linearity and duality, dx(∂x) = dy(∂y) = 1, dx(∂y) = dy(∂x) = 0, in the expressions for d̄ξ(v) and d̄η(v) yields

d̄ξ(v)(x, y) =
vx(x, y)√
x2 + y2 + a2

and d̄η(v)(x, y) =
vy(x, y)√
x2 + y2 + a2

.



b. Compute dd̄ξ and dd̄η in terms of x, y, dx, dy to reveal the non-exact nature of d̄ξ and d̄η.(5)

Using dd .
= d ◦ d = 0 and antisymmetry of the ∧-product we find

dd̄ξ =
y dx ∧ dy

(x2 + y2 + a2)
3
2

and dd̄η =
−x dx ∧ dy

(x2 + y2 + a2)
3
2

The latter follows by symmetry (x, y)↔ (y, x) from the former. Apparently the one-forms d̄ξ and d̄η are not closed and therefore non-exact.

We stipulate a Riemannian structure, with Gram matrix gij still to be determined, such that

ε =
√
g dx ∧ dy .

= d̄ξ ∧ d̄η .

Here ε denotes the Riemannian unit area form, or Levi-Civita tensor, and g .
= det(gij)1≤i,j≤2.

c. Compute
√
g as a function of x and y.(5)

Using bilinearity and the definitions of d̄ξ and d̄η in terms of x, y, dx, dy we obtain

d̄ξ ∧ d̄η =
dx ∧ dy

x2 + y2 + a2
.
=
√
g dx ∧ dy ,

from which we read off the factor
√
g(x, y) =

1

x2 + y2 + a2

d1. Compute the area δV (r)
.
=

∫ ∫
δΩ(r)

d̄ξ ∧ d̄η of the narrow ring δΩ(r) : r<
√
x2+y2<r+δr, for(21

2 )

some constants r>0 and δr>0.

Expressing the area form in (x, y)-coordinates as in c, and switching to polar coordinates (x, y)=(ρ cosφ, ρ sinφ), yields

δV (r) =
2πrδr

r2 + a2
.

d2. Infer from this the retino-cortical magnification V ′(r) =
dV (r)

dr
and show that its integral V (r),(21

2 )

subject to the condition V (0)=0, is given by

V (r) = π ln

(
1 +

(r
a

)2
)
.

Taking the limit δr → 0 in d1 produces

V ′(r) =
2πr

r2 + a2
.

Integration, subject to V (0)=0, readily yields

V (r) =

∫ r

0
V ′(ρ) dρ = π ln

(
1 +

( r
a

)2)
.

We assume the compact retinal domain to be the disc Ω : 0≤r≤R for some radius R� a.



d3. Compute the radius r1/2 of the foveal region Ω1/2 : 0≤r≤r1/2 that claims half of the cortical area,(21
2 )

i.e. such that V (r1/2)
.
=

1

2
V (R).

[Hint: You may approximate r1/2 to lowest order using R�a.]

Solving the equation V (r1/2) = 1
2
V (R) for r1/2, using R�a, yields r1/2≈

√
aR, i.e. the geometric average of a and R.

Eccentricity is a measure for distance relative to the foveal centre, conventionally expressed in degrees
of visual field, which is proportional to the radial coordinate r. Connolly and Van Essen claim that the
central 5 degrees of visual field claim about 40% of the visual cortex (shaded area, cf. the illustration).

MAPPING OF THE VISUAL FIELD FROM RETINA (LEFT) TO STRIATE CORTEX (RIGHT) IN MONKEY AC-
CORDING TO CONNOLLY AND VAN ESSEN ( c© MICHAEL CONNOLLY AND DAVID VAN ESSEN, J.
COMP. NEUROL. 226:4, 544–564,1984). THE REPRESENTATION OF THE CENTRAL 5 DEGREES OF
THE RETINAL VISUAL FIELD OCCUPIES ABOUT 40% OF THE CORTEX (SHADED AREA ON THE RIGHT).

IN THE GEOMETRIC MODEL BY FLORACK (AXIOMS 3:1, 70–81, 2014) THE AREA FORM ε = d̄ξ ∧ d̄η
REPRESENTS THE SURFACE ELEMENT ON THE STRIATE CORTEX RETINOTOPICALLY CONNECTED TO A

UNIT SURFACE ELEMENT dx ∧ dy ON THE RETINA.

Based on the figure we consider the radius r5◦ of a disc corresponding to the central 5 degrees of visual
field, taking the full visual field to have an eccentricity of approximately 80 degrees, so that r80◦

.
= R.

Introducing dimensionless coordinates we set r5◦
.
= αR, with α = r5◦/R = r5◦/r80◦ = 5/80. We

furthermore introduce the dimensionless parameter β via V (αR)
.
=βV (R).

d4.. Verify whether Connolly and Van Essen’s observation, viz. that β ≈ 40%, is indeed consistent(21
2 )

with our geometric model if we choose α=5/80. Use the approximation R/a� 1.

Set t .= R/a� 1 for convenience. Solving V (αR)/V (R) = β for β, given α, yields the equation ln(1 +α2t2) = β ln(1 + t2), whence



1 + α2t2 = (1 + t2)β ≈ 1 + βt2, from which we conclude that β ≈ α2 = (5/80)2 ≈ 39%, remarkably close to Connolly and Van

Essen’s observation.

e. Compute the area form ε in terms of the ‘canonical’ coordinates (p, q), defined relative to the (slightly(5)
modified) polar coordinates (r, φ), with 0≤r≤R and −π

2 < φ< π
2 (one visual hemisphere) by

p = arcsinh
(r
a

)
q =

rφ√
r2 + a2

.

[Hint: You may use the identity arcsinh(t) = ln(t+
√

1 + t2).]

We have ε = dp ∧ dq, which explains the attribute ‘canonical’.

We furthermore stipulate a retino-cortical metric of the form (with 1 ≤ i, j ≤ 2)

gij dx
i ⊗ dxj .= d̄ξ ⊗ d̄ξ + d̄η ⊗ d̄η .

f. Compute gij as a function of x and y, and show that it is consistent with your answer under c.(5)

Using once again the definitions of d̄ξ and d̄η in terms of x, y, dx, dy we obtain[
gxx(x, y) gx,y(x, y)
gyx(x, y) gyy(x, y)

]
=

[
1

x2+y2+a2
0

0 1
x2+y2+a2

]
.

Clearly g(x, y) =
1

(x2 + y2 + a2)2
is consistent with c.

Lemma. In dimension 2 the covariant Riemann tensor takes the form Rijk` = K(gikgj` − gi`gjk) for
some scalar K.

Definition. The Ricci tensor is defined by its holor Rij
.
= gk`Rki`j . The Ricci scalar is R .

= gijRij .

g1. Show that the Ricci tensor is given by Rij = K gij .(21
2 )

Taking the trace as indicated we have Rij
.
= gk`Rki`j = K gk`(gk`gij − gkjgi`) = K(2gij − gij) = Kgij . Note the factor 2 arising

from gk`gk` = n = 2.

g2. Show that K =
1

2
R, in which R is the Ricci scalar.(21

2 )

Contracting indices of the Ricci tensor to obtain the Ricci scalar yields, using the result of g1, R .
= gijRij = Kgijgij = 2K, where we

have used once again the observation gijgij = n = 2.

h. Show that if two metric tensors are related according to gij = e2α hij , in which α ∈ C∞(R2) is(5)
some scalar field, then their Christoffel symbols of the second kind, Γkij and Hk

ij say, are related by

Γkij = Hk
ij + δki ∂jα+ δkj ∂iα− hij∂kα .

This follows straightforwardly from the formula of the Levi-Civita connection symbols Γkij in terms of gij and ∂kgij , using the product rule

for differentiation and setting gij = e2α hij . (The symbols Hk
ij are clearly those corresponding to hij .)



i. Compute the Ricci scalar R(x, y) for the retino-cortical metric gij(x, y) and show that it is bounded.(5)

Apparently the covariant Riemann tensor has only one independent component, which we may take to be Rxyxy , so that, using the fact that
gxy = gyx = 0, we have Rgxx gyy = 2Rxyxy . Evaluating Rxyxy in terms of the Γ-symbols from problem h, with Hk

ij = 0 (Euclidean

space, Cartesian coordinates) and e2α(x,y) = 1
x2+y2+a2

, yields

R(x, y) =
4a2

x2 + y2 + a2
.

Clearly we have 0 ≤ R(x, y) ≤ R(0, 0) = 4.

♣

+ INSTRUCTION FOR LEGAL STATEMENT. Please read the following paragraph carefully, and
copy the text below it verbatim to your answer sheet.

By testing you remotely in this fashion, we express our trust that you will adhere to the ethical standard
of behaviour expected of you. This means that we trust you to answer the questions and perform the
assignments in this test to the best of your own ability, without seeking or accepting the help of any
source that is not explicitly allowed by the conditions of this test.

Text to be copied (with optional remarks):

- I made this test to the best of my own ability, without seeking or accepting the help of any source not
explicitly allowed by the conditions of the test.

Remarks from the student: . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

THE END


