
EXAMINATION TENSOR CALCULUS AND DIFFERENTIAL GEOMETRY

Course code: 2WAH0. Date: Tuesday April 9, 2019. Time: 09h00–12h00. Place: Atlas 8.340.

Read this first!

• Write your name and student identification number on each paper.

• The exam consists of 3 problems. Credits are indicated in the margin.

• Items marked with - may be relatively time consuming. It is safe to postpone them until the end.

• You may consult an immaculate hardcopy of the online draft notes “Tensor Calculus and Differential
Geometry (2WAH0)” by Luc Florack. No other material or equipment may be used.

• The Einstein summation convention is in effect throughout this exam.

1. TENSOR CALCULUS MISCELLANY.(25)

We consider a 2-dimensional real positive definite inner product space V with basis {e1, e2}. The
metric tensor is given by g = gij ê

i ⊗ êj .

Let Acov = Aij ê
i ⊗ êj be a real symmetric covariant tensor relative to the dual basis {ê1, ê2}, and

Amix = Aij ei ⊗ êj the associated mixed tensor with Aij = gikAkj , with gikgkj = δij .

The 2×2 matrix Acov is defined in terms of the real-valued holor Aij of Acov, viz.

Acov =

(
A11 A12

A21 A22

)
, with A21 = A12.

The 2×2 matrix Amix is defined in terms of the holor Aij of Amix = Aij ei ⊗ êj , viz.

Amix =

(
A1

1 A1
2

A2
1 A2

2

)
.

a. Is the matrix Amix symmetric?(5)

Typically not. We have Aij = gikAkj , so A1
2 = g11A12 + g12A22 6= g21A11 + g22A21 = g12A11 + g22A12 = A2

1, unless the

Gram matrix satisfies additional constraints beyond symmetry (notably g11 = g22 and g12 = g21 = 0). Note that we have fully exploited

symmetry of g and Acov by eliminating the dependent coefficients g21 and A21 in favor of g12 and A12.

Below we consider the generic situation in which the matrix Acov is nonsingular, so that detAcov 6= 0.



b. Does this imply that the matrix Amix is nonsingular?(5)

Yes. Writing det gij , det gij , detAij and detAij for detg, det(g−1), detAcov and detAmix by abuse of notation, we have detAij =

det(gikAkj) = det gik detAkj = det(g−1) detAcov = (detg)−1 detAcov 6= 0.

Definition. An eigenvector v = viei ∈ V of Amix is a nonzero vector satisfying Amix v = λv for some
eigenvalue λ ∈ C, in which v ∈ C2 is the column vector defined in terms of the holor vi of v, i.e.

v =

(
v1

v2

)
.

Thus in the sense of classical matrix theory the column vector v ∈ C2 is an eigenvector of the matrix
Amix with eigenvalue λ ∈ C.

c. Show that, if λ ∈ C is an eigenvalue of Amix, then det(Amix − λI) = 0, in which I is the 2×2(5)
identity matrix.

The system Amix v = λv is equivalent to (Amix − λI)v = 0 ∈ C2. Since v 6= 0 this implies that the matrix Amix − λI must be singular,

whence det(Amix − λI) = 0.

Definition. The trace trAmix is the sum of the diagonal elements of Amix, i.e. trAmix = Aii.

d. Show that, in our 2-dimensional case and for general λ ∈ C (not necessarily an eigenvalue),(5)

det(Amix − λI) = λ2 − trAmix λ+ detAmix .

[Hint: Recall δk`ij = [ij][k`] = δki δ
`
j − δkj δ`i .]

Using the definition of the determinant for dimension n = 2 we have

det(Amix − λI) =
1

2
δk`ij (Aik − λδ

i
k)(Aj` − λδ

j
` ) =

1

2
δk`ij (AikA

j
` − λA

i
kδ
j
` − λA

j
`δ
i
k + λ2δikδ

j
` ) .

Working out the parentheses we recognize as the first term 1
2
δk`ij A

i
kA

j
` = detAij (with the same remark on the r.h.s. notation as in the

solution to problem b). For the remaining three terms it is helpful to rewrite

δk`ij = δki δ
`
j − δkj δ`i .

As a result we find for the second and third term − 1
2
λδk`ij (Aikδ

j
` + Aj`δ

i
k) = − 1

2
λ(δki δ

`
j − δkj δ`i )(Aikδ

j
` + Aj`δ

i
k) = −λAii, and for the

last term 1
2
λ2δk`ij δ

i
kδ
j
` = 1

2
λ2(δki δ

`
j − δkj δ`i )δikδ

j
` = λ2. In these computations we have used δii = n = 2. Putting all terms together yields

the stated identity.

Definition. We define the set S of scalar invariants associated with the tensor Amix as follows:

S = {tk ∈ R | tk
.
= tr (Amix . . .Amix︸ ︷︷ ︸

k-th matrix power

) = δ
`k+1

`1
A`1`2A

`2
`3
. . . A`k`k+1

}k∈N .

e. Prove that each tk is indeed invariant in the sense of being independent of the basis {e1, e2} of V .(5)

Let ei = T `i f` be a basis transformation. Then êi = Sik f̂
k , with T ikS

k
j = δij , andAmix = Aij ei⊗ êj = Aij S

j
k T

`
i f`⊗ f̂k = A

`
k f`⊗ f̂k .

We recognize the holor ofAmix relative to the new basis asA`k = Aij S
j
k T

`
i . Inserting this in the formula for tk = A

`k+1

`2
A
`2
`3
. . . A

`k
`k+1

=



Aj1i1A
j2
i2
. . . A

jk
ik
Si1`2

Si2`3
. . . S

ik
`k+1

T
`k+1
j1

T `2j2 . . . T
`k
jk

= Aj1i1A
j2
i2
. . . A

jk
ik
δi1j2δ

i2
j3
. . . δ

ik
j1

= Aj1j2A
j2
j2
. . . A

jk
j1

= tk . A less cumbersome

proof relies on induction, in which case it suffices to prove that Xi
i = Xi

i is invariant for any mixed tensor Xi
j with invariant components.

♣

2. AREA TWO-FORMS.(25)

The wedge product of two covectors v̂, ŵ ∈ V ∗, i.e. v̂ ∧ ŵ, may be interpreted as an antisymmetric
cotensor of rank 2, i.e. a bilinear map v̂ ∧ ŵ : V × V → R : (a,b) 7→ (v̂ ∧ ŵ)(a,b), given by

(v̂ ∧ ŵ)(a,b) = det

(
〈v̂,a〉 〈v̂,b〉
〈ŵ,a〉 〈ŵ,b〉

)
.

That is, v̂ ∧ ŵ ∈ V ∗ ⊗A V ∗
.
=
∧

2(V ).

Similarly we may define the wedge product of two vectors, a,b ∈ V , i.e. a ∧ b, as an antisymmetric
contratensor of rank 2, i.e. a bilinear map a ∧ b : V ∗ × V ∗ → R : (v̂, ŵ) 7→ (a ∧ b)(v̂, ŵ), given by

(a ∧ b)(v̂, ŵ) = det

(
〈v̂,a〉 〈ŵ,a〉
〈v̂,b〉 〈ŵ,b〉

)
.

That is, a ∧ b ∈ V ⊗A V
.
=
∧2(V ).

a. Prove that (v̂ ∧ ŵ)(a,b) actually depends only on a ∧ b, rather than independently on a and b.(10)

From the fact that the determinant of a matrix equals that of the transposed matrix it follows that (v̂ ∧ ŵ)(a,b) = (a ∧ b)(v̂, ŵ). This

shows that the independent variable for v̂∧ ŵ is actually the single two-form a∧b ∈ V ⊗A V rather than the vector pair (a,b) ∈ V ×V .

b. Explain the meaning of the identification V ∗ ⊗A V ∗ = (V ⊗A V )∗.(10)

The l.h.s. denotes the linear space of antisymmetric bilinear mappings of type V ×V → R, as formulated above. The r.h.s. denotes the linear

space of linear mappings of type V ⊗A V → R. The statement φ ∈ V ∗ ⊗A V ∗ says that φ : V × V → R is an antisymmetric bivariate

function of two vector arguments, a and b say. The statement φ ∈ (V ⊗A V )∗ says that φ : V ⊗A V → R is a linear function of a single

variable, viz. a vector in the form of an antisymmetric contratensor of rank 2, i.c. a ∧ b. The identification is justified by the observation in

problem a, and boils down to the identification of equivalence classes of vector pairs (a,b) ∼ (a′,b′) for which a ∧ b = a′ ∧ b′.

We consider a linear transformation L : V × V → V × V : (a,b) 7→ (a′,b′) = L(a,b), given by(
a′

b′

)
= L

(
a
b

)
in which L is a 2×2 matrix.

c. Under which conditions on L do we have a ∧ b = a′ ∧ b′?(5)

Set

L =

(
λ µ
ν ρ

)
.

Assuming a and b are nonzero vectors (otherwise no conditions need to be imposed on L), we have a′ ∧ b′ = (λa ∧ µb) ∧ (νa ∧ ρb) =

(λρ− µν)a ∧ b = detLa ∧ b, whence detL = 1.

♣



3. NEWTONIAN LIMIT OF EINSTEIN GRAVITY.(50)

Summation convention. In this problem we distinguish between two types of indices. Latin, or spatial
indices i, j, k, . . . take values in the range {1, 2, 3}. Greek, or spatiotemporal indices µ, ν, ρ, . . . take
values in the range {0, 1, 2, 3}. The summation convention for identical pairs of indices is in effect
throughout this problem, with this tacit assumption on index range.

Gravity according to Newton. Newton regards spacetime as the product space of a flat Euclidean
3-space and 1-dimensional ‘absolute time’. In 3-space inertial coordinates (x1, x2, x3)

.
= (x, y, z) exist

such that the metric holor is ηij
.
= (∂i|∂j) = δij relative to the induced coordinate basis {∂i}i=1,2,3.

According to Newton, absolute time t progresses at a constant pace independently of any observer.

Kinematics. In Newtonian gravity one explains the response of matter to gravity in terms of a scalar
gravitational potential field Φ entering Newton’s second law of motion:

d2xi

dt2
= −ηij∂jΦ . (1)

The classical 3-velocity has components vi .= dxi/dt (i = 1, 2, 3). The r.h.s. represents the classical
gravitational force field gi = −ηij∂jΦ experienced by a test particle.

Dynamics. In turn, Φ originates from the spatial distribution of matter via the Poisson equation:

∆Φ = 4πGρ . (2)

Here ∆ = ∂xx + ∂yy + ∂zz (in Cartesian coordinates) is the Laplacian operator, ρ denotes mass density
and G ≈ 6.674 10−11 m3kg−1s−2 is the universal gravitational constant.

Gravity according to Einstein. According to Einstein, on the other hand, the gravitational potential is a
symmetric rank-2 covariant tensor field identified with the Lorentzian spacetime metric gµν = (∂µ|∂ν)
with signature (−,+,+,+) in 4-dimensional spacetime relative to a coordinate basis {∂µ}µ=0,1,2,3

induced by arbitrary coordinates (x0, x1, x2, x3)
.
= (ct, x, y, z), with c .= 299 792 458 ms−1.

Kinematics. The relativistic counterpart of (1) takes the form of a geodesic equation dictated by the
metric gµν via the Levi-Civita connection:

d2xµ

ds2
+ Γµνρ

dxν

ds

dxρ

ds
= 0 . (3)

The observer independent affine parameter s is related to so-called ‘proper time’ τ via s
.
= cτ . The

vector with coefficients V µ .
= dxµ/dτ is the (relativistic) 4-velocity, so we may equivalently write

dV µ

dτ
+ Γµνρ V

ν V ρ = 0 . (3)

Its relation to the classical 3-velocity vi = dxi/dt (i = 1, 2, 3) is given by (V 0;V i) = γ(v)(c; vi), with
time dilation factor

γ(v) =
dct

ds
=
dt

dτ
=

1√
1− v2/c2

,

depending on the particle’s Euclidean 3-velocity magnitude v. Note that, despite its extra dimension,
the 4-velocity V µ has the same three degrees of freedom as the 3-velocity vi.



Dynamics. The counterpart of (2) is the Einstein field equation,

Rµν −
1

2
gµνR =

8πG

c4
Tµν , (4)

in which Tµν is the stress-energy tensor. The left hand side of (4) is known as the Einstein tensor. We
henceforth consider a stationary matter-energy distribution, for which T00 = ρ c2, in which ρ denotes
mass density, and Tµν = 0 otherwise.

a. Assuming the holor gµν of the metric g = gµνdx
µ⊗dxν to be dimensionless, determine the physical(5)

units of the tensors listed below. Write the relevant dimensions in terms of monomials in L (length), T
(time), M (mass), or use corresponding SI units m (meter), s (second), kg (kilogram).

[Example: G has dimension L3M−1T−2 (SI: m3kg−1s−2); ‖u‖2 .
= g(u, u) has dimension L2 (SI: m2) if u is a

spatiotemporal displacement vector, etc. ]

a1. Riemann curvature tensor Rρµσν ;

a2. Ricci curvature tensor Rµν = Rρµρν ;

a3. Ricci curvature scalar R = gµνRµν ;

a4. Stress-energy tensor Tµν .

Since gµν is dimensionless, so is gµν . From the formula of the Christoffel symbols of the second kind it then follows that Γµνρ and ∂σΓµνρ

have physical dimensions L−1 (SI: m−1), respectively L−2 (SI: m−2). a1: From the definition of Rρµσν in terms of the Christoffel symbols

of the second kind and their spatial derivatives it follows that L−2 (SI: m−2) is also the physical dimension of Rρµσν . a2–a3: Since taking a

trace does not affect physical dimension,Rµν = Rρµρν andR = gµνRµν also have dimension L−2 (SI: m−2). a4: Inserting the dimensions

ofG and c it then follows that Tµν has the dimension ML−1T−2 (SI: kg m−1s−2 (momentum flux), or N m−2 (pressure), or J m−3 (energy

density)).

In order to understand the non-relativistic limit of (3–4) and relate it to the Newtonian model (1–2) we
consider the weak field approximation, in which

gµν = ηµν + hµν ,

in which η00 = −1, η11 = η22 = η33 = 1 and all other ηµν = 0 in suitable coordinates (‘Minkowski
background metric’) and hµν is a sufficiently small non-constant perturbation field.

b. Show that gµν ≈ ηµν − hµν , in which ηµρηρν = δµν .(5)

c. Express the Christoffel symbols of the second kind in terms of the Minkowski background metric(5)
and the perturbation field, up toO(h) linear approximation in hµν , ∂ρhµν , and higher order derivatives.

We have
Γρµν =

1

2
gρλ

(
−∂λgµν + ∂µgλν + ∂νgµλ

)
≈

1

2
ηρλ

(
−∂λhµν + ∂µhλν + ∂νhµλ

)
.

d. - Do the same for the Riemann tensor, the Ricci tensor and the Ricci scalar, and show that this(10)



yields a linearized Einstein tensor

Rµν −
1

2
gµνR ≈

1

2

(
∂ρµh

ρ
ν − ∂µνhρρ − ∂ρ∂ρhµν + ∂ν∂

ρhµρ − ηµν∂ρσhρσ + ηµν∂ρ∂
ρhσσ
)
.

[Hint: Avoid redundant computations by considering relevant O(h) terms only.]

Riemann tensor:

Rρµσν = ∂σΓρµν − ∂νΓρµσ + ΓρλσΓλµν − ΓρλνΓλµσ ≈
1

2
(∂σµh

ρ
ν − ∂µνhρσ − ∂σ∂ρhµν + ∂ν∂

ρhµσ) ,

in which index raising is carried out with the constant dual Minkowski background metric ηµν , i.e. hµν
.
= ηµρhρν and ∂µ .

= ηµν∂ν . Note
that all Γ-symbols are of orderO(h), thus in particular we may discard allO(hh) ΓΓ-terms in the linear approximation. Ricci tensor:

Rµν = Rρµρν ≈
1

2

(
∂ρµh

ρ
ν − ∂µνhρρ − ∂ρ∂ρhµν + ∂ν∂

ρhµρ
)
.

Ricci scalar:
R = gµνRµν ≈ ∂µνhµν − ∂µ∂µhνν .

Putting things together, and using once more gµν = ηµν +O(h), we obtain for the linearized Einstein tensor

Rµν −
1

2
gµνR ≈

1

2

(
∂ρµh

ρ
ν − ∂µνhρρ − ∂ρ∂ρhµν + ∂ν∂

ρhµρ − ηµν∂ρσhρσ + ηµν∂ρ∂
ρhσσ

)
.

We assume mass to be statically distributed over a compact region, i.e. ρ = ρ(x, y, z) independent of t
and zero if x2+y2+z2>R2 for some R>0.

e. Show that Minkowski spacetime, gµν = ηµν , provides an exact solution of the Einstein equation (4)(5)
in vacuum (i.e. all Tµν =0 on the r.h.s.).

For this we need to verify that gµν = ηµν satisfies (4) when Tµν = 0, in which case the p.d.e. system reduces to Rµν = 0 (contract with

gµν to see this). Since Rµν = Rλµλν with Rρµσν = ∂σΓρµν − ∂νΓρµσ + ΓρλσΓλµν − ΓρλνΓλµσ , and since all Γ-symbols vanish identically

in Minkowski coordinates due to constancy of ηµν , it follows that Rµν = 0.

For the stationary case we stipulate that gµν is time independent. Moreover, we postulate (without
further motivation here) a perturbation field of the form hµν = Ψδµν , in which Ψ is some scalar field
and δµν the 4-dimensional Kronecker symbol.

f. - Show that the (µ, ν)=(0, 0) component of the linearized Einstein equation (4) reduces to Newton’s(5)
equation (2), and establish a relation between Ψ and the Newtonian potential Φ.

Evaluating the (µ, ν)=(0, 0)-component of the linearized Einstein tensor obtained in problem d we find

R00 −
1

2
η00R ≈

1

2

(
∂ρ0h

ρ
0 − ∂00h

ρ
ρ − ∂ρ∂ρh00 + ∂0∂

ρh0ρ − η00∂ρσhρσ + η00∂ρ∂
ρhσσ

)
.

Inserting η00 = η00 = −1, ηij = ηij = δij , ∂0 = c−1∂t, ∂0 = −c−1∂t, ∂i = ∂i, and dropping all ∂t-derivatives, yields

R00 −
1

2
η00R ≈ −∆Ψ .

Comparison with (2) and (4), using T00 = ρc2, viz.

2

c2
∆Φ

(2)
=

2

c2
4πGρ =

8πG

c4
ρc2

(4)&d
≈ R00 −

1

2
η00R

f
= −∆Ψ ,



allows us to conclude
Φ = −

1

2
c2Ψ +H ,

in which H is an arbitrary harmonic function, i.e. ∆H = 0. The latter can be adjusted to asymptotic conditions; we set H = 0. Using
g00 = −1 + h00, we may rewrite this as

g00 = −
(

1 +
2Φ

c2

)
.

(The motivation for the ansatz hµν = Ψδµν requires a consistency check by verifying all other components of the Einstein equation.)

Light velocity c does not enter in the Newtonian theory. It is stipulated that Newton’s theory emerges
from Einstein’s theory in the limit v/c→ 0 under the weak field assumption.

g. Before establishing the kinematic relationship between (1) and (3), consider the following questions:

g1. Argue why V i � V 0 in the Newtonian limit.(2)
[Hint: Recall the relation between relativistic 4-velocity V µ and classical 3-velocity vi.]

V µ = (V 0;V i) = γ(v)(c; vi), whence V i = γ(v)vi � γ(v)c = V 0. Note that vi � c amounts to γ(v) ≈ 1
.
= γ(0).

g2. Show that this implies that we may approximate (3) by
dV µ

dτ
+ Γµ00

(
V 0
)2

= 0.(2)

All Γ-symbols are O(h) in the weak field approximation. Based on g1, Γ-terms with ν = ρ = 0 in (3) will dwarf all other terms in the

Newtonian limit v/c→ 0.

g3. Use the weak field approximation to show that
dV µ

dτ
=

1

2
ηµν∂νh00

(
V 0
)2.(2)

This follows by inserting theO(h)-approximation of Γµ00 as derived in problem c in the expression under g2.

g4. Argue why we may assume V 0 to be approximately constant if the gravitational field is static.(2)

Taking µ = 0 in the equation under g3 and using the static assumption ∂0h00 = 0 we find
dV 0

dτ
= 0.

g5. Argue why this explains Newton’s ‘absolute time’ paradigm.(2)

Recall that V µ = dxµ/dτ , whence V 0 = dx0/dτ = cdt/dτ = constant. Since the parameter τ is observer independent, any observer

will see the same steady rate of progression of time t up to an arbitrary offset (‘absolute time’). Note that, by definition, the constant equals

cγ(0)=c, cf. g1. Thus with a suitable offset to gauge clocks, observer time t will always coincide with observer independent proper time τ .

h. Establish the relation between (1) and (3) by relating the classical scalar gravitational potential Φ to(5)
the relativistic metric tensor gµν in the Newtonian limit. Is it consistent with your result under f?
[Hint: Consider µ= i=1, 2, 3 in g3 in the Newtonian limit.]

Take t = τ (recall g5) so that we may replace d/dτ → d/dt, γ → 1, V 0 → c and V i → vi in the equation under g3. Then for
µ = i = 1, 2, 3 we obtain, using diagonality of the dual metric ηµν ,

dvi

dt
=

1

2
c2ηij∂jh00 .

Comparison with (1) suggests that we take ∂jΦ = − 1
2
c2∂jh00. We may therefore take Φ = − 1

2
c2h00 (up to an integration constant), i.e.

g00 = −
(

1 +
2Φ

c2

)
,



consistent with the result under f. Note that one is always free to add a constant to the potential in the kinematic equations, since only

derivatives have physical significance.

NEWTON (1643–1727) AND EINSTEIN (1879–1955).

THE END


