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EXAMINATION TENSOR CALCULUS AND DIFFERENTIAL GEOMETRY

Course code: 2WAHO. Date: Tuesday April 9, 2019. Time: 09h00—12h00. Place: Atlas 8.340.

Read this first!

e Write your name and student identification number on each paper.
e The exam consists of 3 problems. Credits are indicated in the margin.
e [tems marked with # may be relatively time consuming. It is safe to postpone them until the end.

e You may consult an immaculate hardcopy of the online draft notes “Tensor Calculus and Differential
Geometry (2WAHO0)” by Luc Florack. No other material or equipment may be used.

e The Einstein summation convention is in effect throughout this exam.

1. TENSOR CALCULUS MISCELLANY.

We consider a 2-dimensional real positive definite inner product space V' with basis {e;,e2}. The
metric tensor is given by g = g;; €' ® &’.

Let A" = A;;é' ® & be a real symmetric covariant tensor relative to the dual basis {é', &%}, and
AM* = A e; ® € the associated mixed tensor with A} = g““Akj, with g% Gkj = 05

The 2 x 2 matrix A° is defined in terms of the real-valued holor A;; of A, viz.

ACOV_<ﬁi e ) with Asy = Ay,

The 2 x 2 matrix A™* is defined in terms of the holor A; of Amix — A} e; ® &, viz.

. Al Al )
AmIX — 1 2 .
(a5

a. s the matrix A™* symmetric?
Typically not. We have A; = g% Agj, s0 AL = gllA1p + g12A9y # g2t A1 + 9?2491 = ¢'2A11 + 9?2412 = A2, unless the
Gram matrix satisfies additional constraints beyond symmetry (notably g11 = g22 and g12 = g21 = 0). Note that we have fully exploited

symmetry of g and ACOV by eliminating the dependent coefficients g21 and Ag; in favor of g12 and Aj2.

Below we consider the generic situation in which the matrix A" is nonsingular, so that det A #£ 0.
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b. Does this imply that the matrix A™X is nonsingular?

Yes. Writing det g;;, det g¥, det A;; and det A; for det g, det(g~1), det A% and det A™* by abuse of notation, we have det A; =
det(gikAkj) = det g** det A = det(g™1) det A = (det g) ! det A # 0.

Definition. An eigenvector v = v'e; € V of A™X is a nonzero vector satisfying A™* v = \v for some
eigenvalue A € C, in which v € C?2 is the column vector defined in terms of the holor v of v, i.e.

v_(gg).

Thus in the sense of classical matrix theory the column vector v € C? is an eigenvector of the matrix
A™* with eigenvalue A € C.

c. Show that, if A € C is an eigenvalue of A™*, then det(A™* — XI) = 0, in which I is the 2 x 2
identity matrix.

The system A™Xv = \v is equivalent to (A™* — X\I)v = 0 € C2. Since v # O this implies that the matrix A™* — \T must be singular,
whence det(A™* — \I) = 0.

Definition. The trace tr A™* is the sum of the diagonal elements of A™*, i.e. tr A™* = A‘.

d. Show that, in our 2-dimensional case and for general A € C (not necessarily an eigenvalue),

det(A™* — XI) = \2 — tr A™X \ 4 det A™X .

H ke _ [, _ Skgt kst
[Hint: Recall §;; = [ij][kl] = 6;05 — 0765 .]
Using the definition of the determinant for dimension n = 2 we have
det(A™* — AT) = 555}(% — ML) (A] — A8)) = 555’5 (ALA] — NALST — NATSE + X26857) .

Working out the parentheses we recognize as the first term %JffA}; A% = det A; (with the same remark on the r.h.s. notation as in the
solution to problem b). For the remaining three terms it is helpful to rewrite ’

ke _ skl kst
Sk = okat — skt

As aresult we find for the second and third term —%A(S%(A};(Sg + Af_;&};) = —%A(ékéf - 6565)(14’;;65 + A%éi) = —AAZ, and for the

K2
last term %)\26%6265 = %)\2 (655? — 6;?61@)6};65 = A2. In these computations we have used 62 = n = 2. Putting all terms together yields

the stated identity.

Definition. We define the set S of scalar invariants associated with the tensor A™* as follows:

- mix mix £ J4 J4 y4
S={tk €R |ty =tr(A™ . A™) = ARAR AP Ypen.

k-th matrix power

e. Prove that each ¢, is indeed invariant in the sense of being independent of the basis {e1,e2} of V.

Lete; = T'f; be a basis transformation. Then & = Sif*, with TiSk = 5%, and A™X = Ale; @& = Al SIT @k = A £, @ 4.
Ly,

. mi . . —4 i o . - - —L —£ —
We recognize the holor of A™* relative to the new basis as A, = A% S] :FZ Inserting this in the formula for tk =A k+1 A 2 LA =
g k g £ 4
Ik T Lo 3 k+1
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J1 AJ2 Jk g1 Q2 1k k+1pta k — AJ1 AJ2 Jk §t1 52 k — AJ1 AJ2 Ik —
A%.IAZ.2 ...AiksezséS...Szk+1le sz "‘Tjk = Ai1Ai2 "'Aik5j25j3"‘§j1 = 14].2Aj2...14j1 = t3. A less cumbersome

proof relies on induction, in which case it suffices to prove that X; = X} is invariant for any mixed tensor X;. with invariant components.

[ )

2. AREA TWO-FORMS.

The wedge product of two covectors v, w € V* i.e. V A W, may be interpreted as an antisymmetric
cotensor of rank 2, i.e. abilinearmapv Aw : V x V — R: (a,b) — (v A W)(a, b), given by

(0AWX&b)=da<<“a> WJ”).

(w,a) (w,b)

Thatis, VAW € V¥®4 V* = A\ (V).

Similarly we may define the wedge product of two vectors, a,b € V, i.e. a A b, as an antisymmetric
contratensor of rank 2, i.e. abilinearmapaAb: V* x V* - R: (V,W) — (aAb)(V, W), given by

"o (v,a) (w,a)
(aADb)(V,W) = det < vb) (w.b) )
Thatis,aAb eV @4V = A*(V).
a. Prove that (v A w)(a, b) actually depends only on a A b, rather than independently on a and b.

From the fact that the determinant of a matrix equals that of the transposed matrix it follows that (v A w)(a,b) = (a A b)(¥, w). This
shows that the independent variable for ¥ A W is actually the single two-forma Ab € V ® 4 V rather than the vector pair (a,b) € V x V.

b. Explain the meaning of the identification V* @4 V* = (V @4 V)*.

The Lh.s. denotes the linear space of antisymmetric bilinear mappings of type V' x V' — R, as formulated above. The r.h.s. denotes the linear
space of linear mappings of type V ® 4 V' — R. The statement ¢ € V* ® 4 V* saysthat ¢ : V x V — R is an antisymmetric bivariate
function of rwo vector arguments, a and b say. The statement ¢ € (V ® 4 V)* saysthat ¢ : V ®4 V — R is a linear function of a single
variable, viz. a vector in the form of an antisymmetric contratensor of rank 2, i.c. a A b. The identification is justified by the observation in

problem a, and boils down to the identification of equivalence classes of vector pairs (a,b) ~ (a’,b’) for whicha Ab =a’ A b’.

We consider a linear transformation L : V x V — V x V : (a,b) — (a’,b’) = L(a, b), given by
a’ a : . : .
<b’) _L(b> in which L is a 2 X 2 matrix.

c. Under which conditions on L do we havea Ab = a’ A b’?

(1)

Assuming a and b are nonzero vectors (otherwise no conditions need to be imposed on L), we have a’ A b’ = (Aa A ub) A (va A pb) =

(Ap—pv)aAb=detLaAb, whencedetL = 1.

Set
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3. NEWTONIAN LIMIT OF EINSTEIN GRAVITY.

Summation convention. In this problem we distinguish between two types of indices. Latin, or spatial
indices i, j, k, ... take values in the range {1,2,3}. Greek, or spatiotemporal indices v, p, ... take
values in the range {0, 1,2,3}. The summation convention for identical pairs of indices is in effect
throughout this problem, with this tacit assumption on index range.

Gravity according to Newton. Newton regards spacetime as the product space of a flat Euclidean
3-space and 1-dimensional ‘absolute time’. In 3-space inertial coordinates (z!, 22, 23) = (z, v, 2) exist
such that the metric holor is n;; = (0;|0;) = ¢;; relative to the induced coordinate basis {0; }i—1,2,3.

According to Newton, absolute time ¢ progresses at a constant pace independently of any observer.
Kinematics. In Newtonian gravity one explains the response of matter to gravity in terms of a scalar

gravitational potential field ¢ entering Newton’s second law of motion:

2zt
dt?

=-0"70;®. (1)

The classical 3-velocity has components v* = dz’/dt (i = 1,2,3). The r.h.s. represents the classical
gravitational force field g’ = —n% 0;® experienced by a test particle.

Dynamics. In turn, ® originates from the spatial distribution of matter via the Poisson equation:
AD = 47Gp. 2

Here A = 0, + 0y, + 0. (in Cartesian coordinates) is the Laplacian operator, p denotes mass density
and G ~ 6.674 10~ m®kg~!s2 is the universal gravitational constant.

Gravity according to Einstein. According to Einstein, on the other hand, the gravitational potential is a
symmetric rank-2 covariant tensor field identified with the Lorentzian spacetime metric g, = (9,|0,)
with signature (—, +,+, +) in 4-dimensional spacetime relative to a coordinate basis {0, },—0,1,2,3
induced by arbitrary coordinates (2, x!, 22, 23) = (ct, z,y, 2), with ¢ = 299 792458 ms~ 1.

Kinematics. The relativistic counterpart of (1) takes the form of a geodesic equation dictated by the
metric g,,,, via the Levi-Civita connection:

x|, da¥ da?

ds? M ds ds

=0. 3)

The observer independent affine parameter s is related to so-called ‘proper time’ 7 via s = cr. The
vector with coefficients V# = dz# /dr is the (relativistic) 4-velocity, so we may equivalently write
avt
—+IH VYV, =0. 3)
dr L
Its relation to the classical 3-velocity v* = dx'/dt (i = 1,2, 3) is given by (V°; V) = y(v)(c; v?), with

time dilation factor
dct dt 1

V(U):E:%:il—qﬂ/c?’

depending on the particle’s Euclidean 3-velocity magnitude v. Note that, despite its extra dimension,
the 4-velocity V# has the same three degrees of freedom as the 3-velocity v*.
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Dynamics. The counterpart of (2) is the Einstein field equation,

1 8rG
s = e ==

5 T, “)

in which T, is the stress-energy tensor. The left hand side of (4) is known as the Einstein tensor. We
henceforth consider a stationary matter-energy distribution, for which Tyg = p c?, in which p denotes
mass density, and 7}, = 0 otherwise.

a. Assuming the holor g,,,, of the metric g = g,,, do* ® dx” to be dimensionless, determine the physical
units of the tensors listed below. Write the relevant dimensions in terms of monomials in L (length), T
(time), M (mass), or use corresponding SI units m (meter), s (second), kg (kilogram).

[Example: G has dimension L*M T2 (SI: m®kg ™ 's~2); ||u||? = g(u,u) has dimension L? (SI: m?) if u is a

spatiotemporal displacement vector, etc. ]
al. Riemann curvature tensor R}y ;
a2. Ricci curvature tensor R, = Rf, 0
a3. Ricci curvature scalar R = g""R,,,;
ad. Stress-energy tensor 7},,,.

Since g, is dimensionless, so is g"*. From the formula of the Christoffel symbols of the second kind it then follows that F‘,,‘p and O, T4 0
have physical dimensions L1 (SEm™1), respectively L—2 (SI: m—2). al: From the definition of Rﬁw in terms of the Christoffel symbols
of the second kind and their spatial derivatives it follows that L~2 (SI: m~2) is also the physical dimension of wal,. a2-a3: Since taking a
trace does not affect physical dimension, Ry, = RZ pv and R = gh*¥ R,,,, also have dimension L2 (SI: m*Q)A a4: Inserting the dimensions
of G and c it then follows that T},,, has the dimension ML~1T~2 (SI: kg m~'s~2 (momentum flux), or N m~2 (pressure), or J m~3 (energy

density)).

In order to understand the non-relativistic limit of (3—4) and relate it to the Newtonian model (1-2) we
consider the weak field approximation, in which

Guv = Nuv + huu )

in which ngp = —1, 111 = 122 = 133 = 1 and all other 7, = 0 in suitable coordinates (‘Minkowski
background metric’) and h,, is a sufficiently small non-constant perturbation field.

b. Show that g"” ~ n* — h*”_ in which n**1),, = &}.

c. Express the Christoffel symbols of the second kind in terms of the Minkowski background metric
and the perturbation field, up to O(h) linear approximation in h,,,,, 9,h,,,, and higher order derivatives.

We have 1 1
FZV = 5gp)\ (78/\guv + Ougny + al/gp)\) ~ 577;7)\ (78Ah,uv + Opha, + al/hu/\) .

d. # Do the same for the Riemann tensor, the Ricci tensor and the Ricci scalar, and show that this
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yields a linearized Einstein tensor

1 1
Ry — §g,wR ~ 5 (D, — Oty — 0,0” by, + 9,0 hyup — 10 hpo + Nuw0p0°hT) .

[Hint: Avoid redundant computations by considering relevant O(h) terms only.]

Riemann tensor:

—

R, = 0,15, — 0,10, + T8 T, —T% Thy & = (8ouhl — Ouvhf — 850 hyy + 0,0°huo)

[\

in which index raising is carried out with the constant dual Minkowski background metric n*%, i.e. hY = n#Ph,, and O* = n**9,. Note
that all I"-symbols are of order O(h), thus in particular we may discard all O(hh) I'T'-terms in the linear approximation. Ricci tensor:

1
Ry = Rf,, =~ 5 (8puh{f — Ouvhf) — 0p0Phyw + 8V6phup) .
Ricci scalar:
R =g"" Ry, ~ 0" hyy — 0,0"hy, .
Putting things together, and using once more g, = 1. + O(h), we obtain for the linearized Einstein tensor

1

Ry, — §9uuR R = (Bpphl — Buuhl) — 8p8Phyy + 8,0 hyup — 1w O hpo + 1w BpdPh) .

1
2

We assume mass to be statically distributed over a compact region, i.e. p = p(x,y, z) independent of ¢
and zero if 22 +y?+2% > R? for some R > 0.

e. Show that Minkowski spacetime, ¢,,, = 7, provides an exact solution of the Einstein equation (4)
in vacuum (i.e. all T}, =0 on the r.h.s.).

For this we need to verify that g,,,, = 7, satisfies (4) when T),,, = 0, in which case the p.d.e. system reduces to R,,,, = 0 (contract with
gM to see this). Since Ry = R?MV with Rf5, = 0,70, — O.The + FiUFi;U — Fiyl“;)a, and since all I'-symbols vanish identically
in Minkowski coordinates due to constancy of 17,,,, it follows that R, = 0.

For the stationary case we stipulate that g, is time independent. Moreover, we postulate (without
further motivation here) a perturbation field of the form h,, = ¥d,,, in which ¥ is some scalar field
and 0, the 4-dimensional Kronecker symbol.

f. #> Show that the (1, ) = (0, 0) component of the linearized Einstein equation (4) reduces to Newton’s
equation (2), and establish a relation between ¥ and the Newtonian potential .

Evaluating the (i, v) = (0, 0)-component of the linearized Einstein tensor obtained in problem d we find

(9p0hf — ookt — 3,0 hoo + 000" hop — M000”° b + 1000,07hT) -

R, ! R~1
00 = 500 o

Inserting 70 = n°° = —1, Nij = n = 05,00 = ¢ 10, 80 = —c=19;, 0" = 9;, and dropping all d;-derivatives, yields
1
Roo — 57700R ~ —AV.
Comparison with (2) and (4), using Too = ch, viz.
@ 2 871G 5 H&d 1 £
1 re
c

2
— AP = — 471'Gp = ~ ROO — 77]00R = —A‘l/,
c? c? 2
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allows us to conclude 1
o= —502\1/ +H,

in which H is an arbitrary harmonic function, i.e. AH = 0. The latter can be adjusted to asymptotic conditions; we set H = 0. Using
goo = —1 + hoo, we may rewrite this as
2®
goo=—|1+—5 1.
c

(The motivation for the ansatz h;,,, = W, requires a consistency check by verifying all other components of the Einstein equation.)

Light velocity ¢ does not enter in the Newtonian theory. It is stipulated that Newton’s theory emerges
from Einstein’s theory in the limit v/c — 0 under the weak field assumption.

g. Before establishing the kinematic relationship between (1) and (3), consider the following questions:

gl. Argue why V'’ < V0 in the Newtonian limit.

[Hint: Recall the relation between relativistic 4-velocity V# and classical 3-velocity v°.]

VH = (VO V) = y(v)(c; v?*), whence V? = y(v)v? < v(v)e = V0. Note that v* < ¢ amounts to y(v) ~ 1 = ~(0).

av
g2. Show that this implies that we may approximate (3) by o +T'f, (V0)2 =0.

All I-symbols are O(h) in the weak field approximation. Based on gl, I'-terms with v = p = 0 in (3) will dwarf all other terms in the

Newtonian limit v/c — 0.

dvt 1
g3. Use the weak field approximation to show that - = 5?7“ YO, hoo (VO)Q.
T

This follows by inserting the O(h)-approximation of F(‘]‘O as derived in problem c in the expression under g2.

g4. Argue why we may assume V¥ to be approximately constant if the gravitational field is static.

dvO
Taking 1 = 0 in the equation under g3 and using the static assumption dphoo = 0 we find e =0.
T

g5. Argue why this explains Newton’s ‘absolute time’ paradigm.

Recall that V# = dx# /dT, whence VO = dx®/dr = cdt/dr = constant. Since the parameter T is observer independent, any observer
will see the same steady rate of progression of time ¢ up to an arbitrary offset (‘absolute time’). Note that, by definition, the constant equals

¢y(0) =c, cf. gl. Thus with a suitable offset to gauge clocks, observer time ¢ will always coincide with observer independent proper time 7.

h. Establish the relation between (1) and (3) by relating the classical scalar gravitational potential ® to
the relativistic metric tensor g, in the Newtonian limit. Is it consistent with your result under {?
[Hint: Consider p=i=1,2,3 in g3 in the Newtonian limit.]

Take t = 7 (recall g5) so that we may replace d/dr — d/dt, vy — 1, VO — cand V¥ — v in the equation under g3. Then for
pn =1 =1,2,3 we obtain, using diagonality of the dual metric n*",
dv? 1

= =¢c®n¥8,hoo .
dr ¢ im0

Comparison with (1) suggests that we take 9;® = — %02@- hoo. We may therefore take & = —%czhoo (up to an integration constant), i.e.

2P
goo=—\1+— ),
C



consistent with the result under f. Note that one is always free to add a constant to the potential in the kinematic equations, since only

derivatives have physical significance.

NEWTON (1643—1727) AND EINSTEIN (1879-1955).

THE END



