EXAMINATION TENSOR CALCULUS AND DIFFERENTIAL GEOMETRY

Course code: 2WAH0. Date: Tuesday April 10, 2018. Time: 09h00-12h00. Place: VRT 4.15 B

Read this first!

- Write your name and student identification number on each paper.
- The exam consists of 3 problems. The maximum credit for each item is indicated in the margin.
- You may consult an immaculate hardcopy of the online draft notes "Tensor Calculus and Differential Geometry (2WAH0)" by Luc Florack. No other material or equipment may be used.

1. IDENTITIES INVOLVING DETERMINANTS.

Definition. A function $f \in C^{1}\left(\mathbb{R}^{n}\right)$ is called homogeneous of degree $\alpha \in \mathbb{R}$ if

$$
f(\lambda x)=\lambda^{\alpha} f(x)
$$

for all $\lambda \in \mathbb{R}$.
a. Show that such a function satisfies the p.d.e. $x^{i} \partial_{i} f(x)=\alpha f(x)$.

Differentiate left and right hand sides of the equation $f(\lambda x)=\lambda^{\alpha} f(x)$ with respect to λ and then put $\lambda=1$.

The set of all $n \times n$ matrices A with \mathbb{R}-valued entries will be denoted by \mathbb{M}_{n}.
b. Let $A \in \mathbb{M}_{n}$. Show that $\operatorname{det}(\lambda A)=\lambda^{n} \operatorname{det} A$.

We have $\operatorname{det} A=\epsilon^{i_{1} \ldots i_{n}} A_{1 i_{1}} \ldots A_{n i_{n}}$, so that $\operatorname{det}(\lambda A)=\epsilon^{i_{1} \ldots i_{n}}\left(\lambda A_{1 i_{1}}\right) \ldots\left(\lambda A_{n i_{n}}\right)=\lambda^{n} \epsilon^{i_{1} \ldots i_{n}} A_{1 i_{1}} \ldots A_{n i_{n}}=\lambda^{n} \operatorname{det} A$, in which we have defined $\epsilon^{i_{1} \ldots i_{n}}=\left[i_{1}, \ldots i_{n}\right]$.

By $\operatorname{cof} A \in \mathbb{M}_{n}$ and $\operatorname{adj} A \in \mathbb{M}_{n}$ we denote the cofactor, respectively adjugate matrix of $A \in \mathbb{M}_{n}$:

$$
(\operatorname{cof} A)^{i j}=\frac{\partial \operatorname{det} A}{\partial A_{i j}} \quad \text { resp. } \quad(\operatorname{adj} A)^{i j}=\frac{\partial \operatorname{det} A}{\partial A_{j i}}
$$

The trace $\operatorname{tr} A \in \mathbb{R}$ of a matrix $A \in \mathbb{M}_{n}$ is the sum of its diagonal elements: $\operatorname{tr} A \xlongequal{\text { def }} A_{i}^{i}$.
Definition. Let $\boldsymbol{A}=A_{j}^{i} \boldsymbol{e}_{i} \otimes \hat{\boldsymbol{e}}^{j}$ be the mixed tensor corresponding to the matrix A relative to a fiducial basis. Relative to this basis we define $\operatorname{tr} A \stackrel{\text { def }}{=} \operatorname{tr} A$.
c. Show that $\operatorname{tr} A$ is invariant under basis transformations.

Suppose $\boldsymbol{f}_{i}=\Phi_{i}^{j} \boldsymbol{e}_{j}$, then $\hat{\boldsymbol{f}}^{i}=\Psi_{j}^{i} \hat{\boldsymbol{e}}^{j}$, in which $\Phi_{k}^{i} \Psi_{j}^{k}=\delta_{j}^{i}$. Suppose $\boldsymbol{A}=A_{j}^{i} \boldsymbol{e}_{i} \otimes \hat{\boldsymbol{e}}^{j}=\bar{A}_{\ell}^{k} \boldsymbol{f}_{k} \otimes \hat{\boldsymbol{f}}^{\ell}$. Substitution of the defining equations for the new basis (co-)vectors in terms of the original ones yiels $\boldsymbol{A}=\bar{A}_{\ell}^{k} \Phi_{k}^{i} \Psi_{j}^{\ell} \boldsymbol{e}_{i} \otimes \hat{\boldsymbol{e}}^{j}$, so that apparently $A_{j}^{i}=\bar{A}_{\ell}^{k} \Phi_{k}^{i} \Psi_{j}^{\ell}$ ('tensor transformation law'). Setting $i=j$ and applying summation convention we find $\operatorname{tr} A=A_{i}^{i}=\bar{A}_{\ell}^{k} \Phi_{k}^{i} \Psi_{i}^{\ell}=\bar{A}_{\ell}^{k} \delta_{k}^{\ell}=\bar{A}_{i}^{i}=\operatorname{tr} \bar{A}$.
d. Prove: $\left(\right.$ i) $(\operatorname{adj} A) A=\operatorname{det} A I_{n}$ and (ii) $\operatorname{tr}((\operatorname{adj} A) A)=n \operatorname{det} A$. I_{n} denotes the $n \times n$ identity matrix. [Hint: Use a \& b.]

We have, using $\epsilon^{i_{1} \ldots i_{n}}=\left[i_{1}, \ldots i_{n}\right]$,

$$
\tilde{A}^{k i} A_{k j}=\frac{\partial \operatorname{det} A}{\partial A_{k i}} A_{k j}=\frac{\partial}{\partial A_{k i}} \epsilon^{i_{1} \ldots i_{n}} A_{1 i_{1}} \ldots A_{n i_{n}} A_{k j}=\frac{1}{n!} \frac{\partial}{\partial A_{k i}}\left(\epsilon^{i_{1} \ldots i_{n}} \epsilon^{j_{1} \ldots j_{n}} A_{j_{1} i_{1}} \ldots A_{j_{n} i_{n}}\right) A_{k j}=\star .
$$

Applying the product rule, and indicating the omission of a factor $A_{j_{\ell} i_{\ell}}$ by $A_{\hat{\mathrm{j}} \ell \hat{\imath} \ell}$, we obtain

$$
\star=\frac{1}{n!} \epsilon^{i_{1} \ldots i_{n}} \epsilon^{j_{1} \ldots j_{n}} \sum_{\ell=1}^{n} A_{j_{1} i_{1}} \ldots A_{\hat{\jmath} \ell \hat{\imath} \ell} \ldots A_{j_{n} i_{n}} \delta_{j_{\ell}}^{k} \delta_{i_{\ell}}^{i} A_{k j}=\frac{1}{n!} \epsilon^{i_{1} \ldots i_{n}} \epsilon^{j_{1} \ldots j_{n}} \sum_{\ell=1}^{n} A_{j_{1} i_{1}} \ldots A_{j_{\ell} j \ldots} \ldots A_{j_{n} i_{n}} \delta_{i_{\ell}}^{i}
$$

Upon inspection of the r.h.s. we conclude that the only nontrivial contribution in the product can come from the choice $j=i_{\ell}$, since only this index can differ from the $n-1$ remaining contraction indices $i_{1}, \ldots, \hat{\imath}_{\ell}, \ldots, i_{n}$ in view of the factor $\epsilon^{i_{1} \ldots i_{n}}$ in front. But this implies that only $i=j$ will give a nontrivial result. Hence

$$
\star=\frac{1}{n!} \epsilon^{i_{1} \ldots i_{n}} \epsilon^{j_{1} \ldots j_{n}} A_{j_{1} i_{1}} \ldots A_{j_{\ell} i_{\ell}} \ldots A_{j_{n} i_{n}} \delta_{j}^{i}=\delta_{j}^{i} \operatorname{det} A
$$

Taking the trace immediately yields $\operatorname{tr}((\operatorname{adj} A) A)=\tilde{A}^{k i} A_{k i}=\delta_{i}^{i} \operatorname{det} A=n \operatorname{det} A$.
Assumption. In the remainder of this problem we consider matrices $A \in \mathbb{M}_{n}$ that are positive-definite and symmetric. Recall that such matrices can be diagonalized by a suitable rotation, say

$$
\Delta \stackrel{\text { def }}{=} R^{\mathrm{T}} A R \stackrel{\text { def }}{=} \operatorname{diag}\left(\lambda_{1}, \ldots, \lambda_{n}\right),
$$

in which $\lambda_{1}, \ldots, \lambda_{n} \in \mathbb{R}^{+}$are the eigenvalues of A.
Definition. The anisotropic Gaussian function $\phi_{A} \in C^{\infty}\left(\mathbb{R}^{n}\right)$ is defined as

$$
\phi_{A}(x)=c_{A} e^{-x^{i} A_{i j} x^{j}},
$$

in which $A \in \mathbb{M}_{n}$ is a positive-definite symmetric matrix with entries $A_{i j}$ and $c_{A}>0$ some A-dependent normalization constant. Below you may use the following standard integral:

$$
\int_{\mathbb{R}} e^{-z^{2}} d z=\sqrt{\pi}
$$

e. Assume: $\int_{\mathbb{R}^{n}} \phi_{A}(x) d x=1$. Find c_{A} in terms of A.
[Hint: Substitute $x=R y$ for a suitably chosen rotation matrix R.]

Following the hint we obtain, in matrix notation, using $\operatorname{det} R=1$, and choosing R such that $\Delta \stackrel{\text { def }}{=} R^{\mathrm{T}} A R \stackrel{\text { def }}{=} \operatorname{diag}\left(\lambda_{1}, \ldots, \lambda_{n}\right)$ is diagonal,

$$
\int_{\mathbb{R}^{n}} e^{-x \cdot A x} d x=\int_{\mathbb{R}^{n}} e^{-y \cdot R^{\mathrm{T}} A R y} d y=\int_{\mathbb{R}^{n}} e^{-y \cdot \Delta y} d y=\frac{1}{\sqrt{\lambda_{1} \ldots \lambda_{n}}} \int_{\mathbb{R}^{n}} e^{-\|z\|^{2}} d z=\frac{1}{\sqrt{\operatorname{det} A}}\left(\int_{\mathbb{R}} e^{-z^{2}} d z\right)^{n}=\frac{\sqrt{\pi}^{n}}{\sqrt{\operatorname{det} A}}
$$

We thus have $c_{A}=\frac{\sqrt{\operatorname{det} A}}{\sqrt{\pi}^{n}}$.

Definition. For any analytical function $f \in C^{\omega}(\mathbb{R})$, with Taylor expansion $f(x)=\sum_{k=0}^{\infty} a_{k} x^{k}$ say, we define a matrix counterpart carrying the same name, $f \in C^{\omega}\left(\mathbb{M}_{n}\right)$, as follows:

$$
f(A) \stackrel{\text { def }}{=} \sum_{k=0}^{\infty} a_{k} A^{k} .
$$

f1. Prove that, if $\lambda_{1}, \ldots, \lambda_{n}$ are eigenvalues of A, then $f\left(\lambda_{1}\right), \ldots, f\left(\lambda_{n}\right)$ are eigenvalues of $f(A)$.

Note that if v is an eigenvector of A with eigenvalue λ, then it is also an eigenvector of A^{k}, with eigenvalue $\lambda^{k}: A^{k} v=\lambda^{k} v$. As a result, $f(A) v=\sum_{k=0}^{\infty} a_{k} A^{k} v=\sum_{k=0}^{\infty} a_{k} \lambda^{k} v=f(\lambda) v$.
f2. Prove that $f\left(R^{\mathrm{T}} A R\right)=R^{\mathrm{T}} f(A) R$.
The basic observation is that in the k-fold product $\left(R^{\mathrm{T}} A R\right)^{k}=R^{\mathrm{T}} A R R^{\mathrm{T}} A R \ldots R^{\mathrm{T}} A R$ products of type $R R^{\mathrm{T}}=I$ may be discarded. As a result, $\left(R^{\mathrm{T}} A R\right)^{k}=R^{\mathrm{T}} A^{k} R$, whence $f\left(R^{\mathrm{T}} A R\right)=\sum_{k=0}^{\infty} a_{k}\left(R^{\mathrm{T}} A R\right)^{k}=\sum_{k=0}^{\infty} a_{k} R^{\mathrm{T}} A^{k} R=R^{\mathrm{T}}\left(\sum_{k=0}^{\infty} a_{k} A^{k}\right) R=R^{\mathrm{T}} f(A) R$.
f3. Show that det $e^{A}=e^{\operatorname{tr} A}$.
[Hint: Start from $\operatorname{det} e^{A}=\operatorname{det}\left(R^{\mathrm{T}} e^{A} R\right)$.]
There exists a rotation matrix such that $R^{\mathrm{T}} A R=\operatorname{diag}\left(\lambda_{1}, \ldots, \lambda_{n}\right) \stackrel{\operatorname{def}}{=} \Delta$. We have $\operatorname{det} e^{A}=\operatorname{det}\left(R^{\mathrm{T}} e^{A} R\right) \stackrel{\mathrm{f} 2}{=} \operatorname{det} e^{R^{\mathrm{T}} A R}=\operatorname{det} e^{\Delta}=$ $\operatorname{det} e^{\operatorname{diag}\left(\lambda_{1}, \ldots, \lambda_{n}\right)}=\operatorname{det} \operatorname{diag}\left(e^{\lambda_{1}}, \ldots, e^{\lambda_{n}}\right)=e^{\lambda_{1}} \ldots e^{\lambda_{n}}=e^{\lambda_{1}+\ldots+\lambda_{n}}=e^{\operatorname{tr} A}$.

2. Scalar Fields and Gauge Fields in Electro-Magnetism.

In particle physics one considers \mathbb{C}-valued field quantities associated with manifestations of elementary particles. Perhaps the simplest case is that of a scalar field $\psi: \mathbb{R}^{n} \rightarrow \mathbb{C}: x \mapsto \psi(x)$ for a scalar boson.

Physical interactions are formulated in terms of so-called Lagrangians. For a scalar boson we stipulate a Lagrangian of the form

$$
\mathscr{L}_{\text {boson }}(\psi, \partial \psi)=\partial^{\mu} \psi^{*} \partial_{\mu} \psi-m^{2} \psi^{*} \psi,
$$

in which $\partial^{\mu}=g^{\mu \nu} \partial_{\nu}$, with $g^{\mu \nu}$ the holor of the dual of a Lorentzian type metric tensor $\mathbf{G}=g_{\mu \nu} d x^{\mu} \otimes d x^{\nu}$, and in which $z^{*} \in \mathbb{C}$ denotes the complex conjugate of $z \in \mathbb{C}$.
a1. Show that, if $x=x(\bar{x})$ denotes a coordinate transformation, then $\bar{\partial}_{\mu}=\frac{\partial x^{\nu}}{\partial \bar{x}^{\mu}} \partial_{\nu}$ and $\bar{\partial}^{\mu}=\frac{\partial \bar{x}^{\mu}}{\partial x^{\nu}} \partial^{\nu}$.
By the chain rule for partial derivatives we have $\bar{\partial}_{\mu}=\frac{\partial x^{\nu}}{\partial \bar{x}^{\mu}} \partial_{\nu}$. To raise the index we need to express $\bar{g}^{\mu \nu}$ in terms of $g^{\rho \sigma}$ and Jacobian matrices. To this end consider $\bar{g}^{\mu \nu} \bar{\partial}_{\mu} \otimes \bar{\partial}_{\nu}=g^{\rho \sigma} \partial_{\rho} \otimes \partial_{\sigma}$ and apply the chain rule to the right hand side so as to obtain $\bar{g}^{\mu \nu} \bar{\partial}_{\mu} \otimes \bar{\partial}_{\nu}=$ $\frac{\partial \bar{x}^{\mu}}{\partial x^{\rho}} \frac{\partial \bar{x}^{\nu}}{\partial x^{\sigma}} g^{\rho \sigma} \bar{\partial}_{\mu} \otimes \bar{\partial}_{\nu}$, from which we read off $\bar{g}^{\mu \nu}=\frac{\partial \bar{x}^{\mu}}{\partial x^{\rho}} \frac{\partial \bar{x}^{\nu}}{\partial x^{\sigma}} g^{\rho \sigma}$. As a result, $\bar{\partial}^{\mu}=\bar{g}^{\mu \nu} \bar{\partial}_{\nu}=\frac{\partial \bar{x}^{\mu}}{\partial x^{\rho}} \frac{\partial \bar{x}^{\nu}}{\partial x^{\sigma}} g^{\rho \sigma} \frac{\partial x^{\lambda}}{\partial \bar{x}^{\nu}} \partial_{\lambda}=\frac{\partial \bar{x}^{\mu}}{\partial x^{\nu}} \partial^{\nu}$. In the last step we have used, besides trivial dummy switches, $\frac{\partial \bar{x}^{\nu}}{\partial x^{\sigma}} \frac{\partial x^{\lambda}}{\partial \bar{x}^{\nu}}=\delta_{\sigma}^{\lambda}$ and the definition of $\partial^{\nu}=g^{\nu \lambda} \partial_{\lambda}$.

Definition (Scalar Field). Let $u: \mathbb{R}^{n} \rightarrow \mathbb{C}: x \mapsto u(x)$ be a scalar field. If $x=x(\bar{x})$ is a coordinate transformation, we set $\bar{u}(\bar{x}) \stackrel{\text { def }}{=} u(x)$.
a2. Show that $\mathscr{L}_{\text {boson }}$ is invariant under coordinate transformations, i.e. $\mathscr{L}_{\text {boson }}=\overline{\mathscr{L}}_{\text {boson }}$.

Note that the invariance requirement $\mathscr{L}_{\text {boson }}=\overline{\mathscr{L}}_{\text {boson }}$ is equivalent to $\mathscr{L}_{\text {boson }}(\bar{\psi}, \overline{\partial \psi})=\mathscr{L}_{\text {boson }}(\psi, \partial \psi)$ (in which the left hand side is considered as a function of \bar{x} and the right hand side as a function of x). To verify this, consider $\mathscr{L}_{\text {boson }}(\bar{\psi}, \overline{\partial \psi})=\bar{\partial}^{\mu} \bar{\psi}^{*} \bar{\partial}_{\mu} \bar{\psi}-m^{2} \bar{\psi}^{*} \bar{\psi} \stackrel{\text { al }}{=}$ $\frac{\partial \bar{x}^{\mu}}{\partial x^{\nu}} \partial^{\nu} \psi^{*} \frac{\partial x^{\rho}}{\partial \bar{x}^{\mu}} \partial_{\rho} \psi-m^{2} \psi^{*} \psi=\partial^{\mu} \psi^{*} \partial_{\mu} \psi-m^{2} \psi^{*} \psi$. In the second last step we have used al and the fact that ψ is a scalar field (i.e. $\bar{\psi}(\bar{x})=\psi(x))$, and in the last step we have used, besides dummy switches, the identity $\frac{\partial \bar{x}^{\mu}}{\partial x^{\nu}} \frac{\partial x^{\rho}}{\partial \bar{x}^{\mu}}=\delta_{\nu}^{\rho}$.
b2. Show that $\mathscr{L}_{\text {boson }}$ is not invariant under local phase shifts, i.e. $\widetilde{\psi}(x)=e^{i \alpha(x)} \psi(x)$, in which now $\alpha \in C^{\infty}\left(\mathbb{R}^{n}\right)$ represents a smooth real-valued scalar function.

Now the first order term in the Lagrangian is no longer invariant. We have extra terms due to the x-dependence of the phase $\alpha(x)$, viz. $\delta \mathscr{L}_{\text {boson }}(\psi, \partial \psi) \stackrel{\text { def }}{=} \mathscr{L}_{\text {boson }}(\widetilde{\psi}, \partial \widetilde{\psi})-\mathscr{L}_{\text {boson }}(\psi, \partial \psi)=i \partial^{\mu} \alpha\left(\partial_{\mu} \psi^{*} \psi-\psi^{*} \partial_{\mu} \psi\right)+\partial^{\mu} \alpha \partial_{\mu} \alpha \psi^{*} \psi$.

In order to render the theory invariant under local phase shifts, a remedy has been proposed that requires the introduction of a so-called gauge field, as follows. Instead of ordinary partial derivatives $\partial_{\mu} \psi$, consider covariant derivatives of the form $D_{\mu}^{\mathrm{A}} \psi=\partial_{\mu} \psi+i q A_{\mu} \psi$, in which q is a "coupling constant" (a.k.a. "charge") and in which $A_{\mu}: \mathbb{R}^{n} \rightarrow \mathbb{C}: x \mapsto A_{\mu}(x)$ represents the (holor of the) gauge field.

To enforce the desired invariance we require $\widetilde{D}_{\mu}^{\mathrm{A}} \widetilde{\psi}(x)=e^{i \alpha(x)} D_{\mu}^{\mathrm{A}} \psi(x)$ given the local transformation $\widetilde{\psi}(x)=e^{i \alpha(x)} \psi(x)$ considered in b 2 . Here $\widetilde{D}_{\mu}^{\mathrm{A}}=\partial_{\mu}+i q \widetilde{A}_{\mu}$ denotes the appropriately transformed covariant derivative.
c. Show that local phase transformations $\widetilde{\psi}=e^{i \alpha} \psi$ induce gauge field transformations $\widetilde{A}_{\mu}=A_{\mu}-\frac{1}{q} \partial_{\mu} \alpha$.

In order to guarantee local phase invariance by a formal replacement of $\partial_{\mu} \rightarrow D_{\mu}^{\mathrm{A}}$ in the Lagrangian, we require $\widetilde{D}_{\mu}^{\mathrm{A}} \widetilde{\psi}=e^{i \alpha} D_{\mu}^{\mathrm{A}} \psi$. The right hand side equals $e^{i \alpha}\left(\partial_{\mu}+i q A_{\mu}\right) \psi$. The left hand side equals $e^{i \alpha}\left(\partial_{\mu}+i \partial_{\mu} \alpha+i q \widetilde{A}_{\mu}\right) \psi$. Enforcing equality we find for the gauge field $\widetilde{A}_{\mu}=A_{\mu}-\frac{1}{q} \partial_{\mu} \alpha$.

If the gauge field has any dynamics of its own, it must be incorporated into the Lagrangian in a gauge invariant way. It is stipulated that this is accomplished by adding a term

$$
\mathscr{L}_{\text {EM. }}(A)=-\frac{1}{4} F_{\mu \nu}(A) F^{\mu \nu}(A)
$$

to the foregoing Lagrangian (besides the replacement $\partial_{\mu} \rightarrow D_{\mu}^{\mathrm{A}}$), in which

$$
F_{\mu \nu}(A) \stackrel{\text { def }}{=} \partial_{\mu} A_{\nu}-\partial_{\nu} A_{\mu}
$$

d. Show that $F_{\mu \nu}(A)$ (and thus $\mathscr{L}_{\text {E.M. }}(A)$) is invariant under gauge field transformations, recall c.

We have $\widetilde{F}_{\mu \nu}=\partial_{\mu} \widetilde{A}_{\nu}-\partial_{\nu} \widetilde{A}_{\mu} \stackrel{\mathrm{c}}{=} \partial_{\mu}\left(A_{\nu}-\frac{1}{q} \partial_{\nu} \alpha\right)-\partial_{\nu}\left(A_{\mu}-\frac{1}{q} \partial_{\mu} \alpha\right)=\partial_{\mu} A_{\nu}-\partial_{\nu} A_{\mu}=F_{\mu \nu}$. Alternatively, note that we may replace ∂ in the definition of $F_{\mu \nu}$ by $D^{\mathrm{A}}: F_{\mu \nu}(A)=\partial_{\mu} A_{\nu}-\partial_{\nu} A_{\mu}=\left(\partial_{\mu}+i q A_{\mu}\right) A_{\nu}-\left(\partial_{\nu}+i q A_{\nu}\right) A_{\mu}=D_{\mu}^{\mathrm{A}} A_{\nu}-D_{\nu}^{\mathrm{A}} A_{\mu}$.

All in all, gauge invariance of the bosonic Lagrangian requires a gauge field in the form of the 'electro-magnetic' 4-vector potential A_{μ}, and the full gauge invariant Lagrangian becomes

$$
\mathscr{L}(\psi, \partial \psi, A)=\mathscr{L}_{\text {boson }}\left(\psi, D^{\mathrm{A}} \psi\right)+\mathscr{L}_{\text {E.M. }}(A)=D_{\mathrm{A}}^{\mu} \psi^{*} D_{\mu}^{\mathrm{A}} \psi-m^{2} \psi^{*} \psi-\frac{1}{4} F_{\mu \nu}(A) F^{\mu \nu}(A) .
$$

A is the so-called electromagnetic 4 -vector potential, a relativistic vector function combining an electric scalar potential ϕ and a magnetic 3-vector potential \boldsymbol{A} into a single four-vector $A=(\phi / c, \boldsymbol{A})$. The EM-fields $(\boldsymbol{E}, \boldsymbol{B})$ follow from these potentials by

$$
\boldsymbol{E}=-\nabla \phi-\frac{\partial \boldsymbol{A}}{\partial t} \quad \text { respectively } \quad \boldsymbol{B}=\nabla \times \boldsymbol{A}
$$

3. Levi-Civita Connection $\&$ Covariant Derivative ${ }^{1}$.

In this problem we consider a vector field $v(x)=v^{i}(x) \partial_{i}$ on an n-dimensional Riemannian manifold \mathbb{M}, locally decomposed relative to a coordinate basis $\left\{\partial_{i}=\partial / \partial x^{i}\right\}_{i=1, \ldots, n}$ at each basepoint $x \in \mathbb{M}$. The Riemannian metric tensor field is given by $G(x)=g_{i j}(x) d x^{i} \otimes d x^{j}$, with $\left\langle d x^{i}, \partial_{j}\right\rangle=\delta_{j}^{i}$.

We are interested in the rate of change of the vector field, $d v(x(t)) / d t$, along a parametrized curve $x: \mathbb{R} \rightarrow \mathbb{M}: t \mapsto x(t)$. The local tangent at $x(t) \in \mathbb{M}$ is denoted by $\dot{x}(t)=\dot{x}^{i}(t) \partial_{i}$, with ${ }^{\cdot} \equiv d / d t$.

A coordinate transformation $x=x(\bar{x})$ induces a local basis transformation, with transformed basis $\left\{\bar{\partial}_{i}=\partial / \partial \bar{x}^{i}\right\}_{i=1, \ldots, n}$ and Jacobian matrices

$$
A_{j}^{i}(\bar{x})=\frac{\partial x^{i}(\bar{x})}{\partial \bar{x}^{j}} \quad \text { and } \quad B_{j}^{i}(x)=\frac{\partial \bar{x}^{i}(x)}{\partial x^{j}}
$$

Treat A_{j}^{i} and B_{j}^{i} implicitly as functions of \bar{x}, resp. x (as indicated explicitly in their definitions above).
a1. Show that $v^{i}=A_{j}^{i} \bar{v}^{j}$ ('vector transformation').

We have $v^{i} \partial_{i}=\bar{v}^{j} \bar{\partial}_{j} \stackrel{\text { c.r. }}{=} \bar{v}^{j} \frac{\partial x^{i}}{\partial \bar{x}^{j}} \partial_{i}=\bar{v}^{j} A_{j}^{i} \partial_{i}$, whence $v^{i}=A_{j}^{i} \bar{v}^{j}$. The step marked by 'c.r.' relies on the chain rule.
a2. Show that $\bar{g}_{i j}=A_{i}^{k} A_{j}^{\ell} g_{k \ell}$.
We have $\bar{g}_{i j} d \bar{x}^{i} \otimes d \bar{x}^{j}=g_{k \ell} d x^{k} \otimes d x^{\ell} \stackrel{\text { c.r. }}{=} g_{k \ell} \frac{\partial x^{k}}{\partial \bar{x}^{i}} \frac{\partial x^{\ell}}{\partial \bar{x}^{j}} d \bar{x}^{i} \otimes d \bar{x}^{j}=A_{i}^{k} A_{j}^{\ell} g_{k \ell} d \bar{x}^{i} \otimes d \bar{x}^{j}$, from which we deduce that $\bar{g}_{i j}=A_{i}^{k} A_{j}^{\ell} g_{k \ell}$.
a3. Show that $\bar{\partial}_{i} A_{j}^{k}=\overline{\partial_{j}} A_{i}^{k}$.

This readily follows from the observation that $A_{j}^{k}=\bar{\partial}_{j} x^{k}$ and commutativity of partial differentiation.
a4. Show that $\bar{g}_{k \ell} B_{m}^{\ell}=g_{m \ell} A_{k}^{\ell}$.
This follows from a2: $\bar{g}_{k \ell} B_{m}^{\ell} \stackrel{\text { a2 }}{=} A_{k}^{n} A_{\ell}^{p} g_{n p} B_{m}^{\ell}=g_{n m} A_{k}^{n}=g_{m \ell} A_{k}^{\ell}$. The last two steps rely on $A_{\ell}^{p} B_{m}^{\ell}=\delta_{m}^{p}$, respectively symmetry of the Gram matrix and dummy switches.

Below we shall write v^{i} and \bar{v}^{i} as shorthands for $v^{i}(x(t))$ and $\bar{v}^{i}(\bar{x}(t))$.

[^0]$\left(2 \frac{1}{2}\right)$
b. Show that the acceleration components $\dot{v}^{i}=d v^{i} / d t$ do not obey the vector transformation law.

Using $v^{i}=A_{j}^{i} \bar{v}^{j}$ we find, upon taking $d / d t$ on both sides, $d v^{i} / d t=d A_{j}^{i} / d t \bar{v}^{j}+A_{j}^{i} d \bar{v}^{j} / d t=\bar{\partial}_{k} A_{j}^{i} \dot{\bar{x}}^{k} \bar{v}^{j}+A_{j}^{i} d \bar{v}^{j} / d t$. Only the last term on the r.h.s. agrees with the vector transformation law. Note that, in the anomalous term, $\bar{\partial}_{k} A_{j}^{i}=\bar{\partial}_{k j} x^{i}$ is symmetric w.r.t. $j \leftrightarrow k$.
c. Establish the relation between $\bar{\partial}_{k} \bar{g}_{i j}$ and $\partial_{k} g_{i j}$, likewise accounting for the role of the Jacobian A_{j}^{i} (and its derivatives). Do the partial derivatives $\partial_{k} g_{i j}$ constitute a tensor holor?

We have, using a2, $\bar{\partial}_{k} \bar{g}_{i j}=\bar{\partial}_{k}\left(A_{i}^{\ell} A_{j}^{m} g_{\ell m}\right)$. The Jacobian is expressed as a function of \bar{x}, whereas the metric holor on the r.h.s. is most naturally seen as a function of x. Applying product and chain rules we therefore obtain, using $\bar{\partial}_{k}=A_{k}^{n} \partial_{n}$ whenever appropriate,

$$
\bar{\partial}_{k} \bar{g}_{i j}=\left(A_{j}^{m} \bar{\partial}_{k} A_{i}^{\ell}+A_{i}^{\ell} \bar{\partial}_{k} A_{j}^{m}\right) g_{\ell m}+A_{i}^{\ell} A_{j}^{m} A_{k}^{n} \partial_{n} g_{\ell m}
$$

Only the last term should be present if $\partial_{k} g_{i j}$ were to form a tensor holor.
We define the Christoffel symbols of the first kind as follows: $\gamma_{i j k} \stackrel{\text { def }}{=} \frac{1}{2}\left(\partial_{k} g_{i j}+\partial_{i} g_{j k}-\partial_{j} g_{i k}\right)$.
d. Prove: $\bar{\gamma}_{i j k}=A_{i}^{\ell} A_{j}^{m} A_{k}^{n} \gamma_{\ell m n}+B_{m}^{\ell} \bar{\partial}_{k} A_{i}^{m} \bar{g}_{j \ell}$.

Using c we have, by cyclic changes of the free indices,

$$
\begin{aligned}
\bar{\partial}_{k} \bar{g}_{i j} & =\left(A_{j}^{m} \bar{\partial}_{k} A_{i}^{\ell}+A_{i}^{\ell} \bar{\partial}_{k} A_{j}^{m}\right) g_{\ell m}+A_{i}^{\ell} A_{j}^{m} A_{k}^{n} \partial_{n} g_{\ell m} \\
\bar{\partial}_{i} \bar{g}_{j k} & =\left(A_{k}^{m} \bar{\partial}_{i} A_{j}^{\ell}+A_{j}^{\ell} \bar{\partial}_{i} A_{k}^{m}\right) g_{\ell m}+A_{j}^{\ell} A_{k}^{m} A_{i}^{n} \partial_{n} g_{\ell m} \\
\bar{\partial}_{j} \bar{g}_{k i} & =\left(A_{i}^{m} \bar{\partial}_{j} A_{k}^{\ell}+A_{k}^{\ell} \bar{\partial}_{j} A_{i}^{m}\right) g_{\ell m}+A_{k}^{\ell} A_{i}^{m} A_{j}^{n} \partial_{n} g_{\ell m}
\end{aligned}
$$

Subtracting the first from the sum of the second and third yields

$$
\begin{aligned}
& \bar{\partial}_{i} \bar{g}_{j k}+\bar{\partial}_{j} \bar{g}_{k i}-\bar{\partial}_{k} \bar{g}_{i j}= \\
& \quad\left(A_{j}^{\ell} A_{k}^{m} A_{i}^{n}+A_{k}^{\ell} A_{i}^{m} A_{j}^{n}-A_{i}^{\ell} A_{j}^{m} A_{k}^{n}\right) \partial_{n} g_{\ell m}+\left(A_{k}^{m} \bar{\partial}_{i} A_{j}^{\ell}+A_{j}^{\ell} \bar{\partial}_{i} A_{k}^{m}+A_{i}^{m} \bar{\partial}_{j} A_{k}^{\ell}+A_{k}^{\ell} \bar{\partial}_{j} A_{i}^{m}-A_{j}^{m} \bar{\partial}_{k} A_{i}^{\ell}-A_{i}^{\ell} \bar{\sigma}_{k} A_{j}^{m}\right) g_{\ell m}
\end{aligned}
$$

Working out parentheses nine terms arise on the r.h.s. By virtue of $\bar{\partial}_{i} A_{j}^{k}=\overline{\partial_{j}} A_{i}^{k}$ (recall a3), two of these are identical (viz. $4^{\text {th }}$ and $7^{\text {th }}$), while four others cancel pairwise (viz. $5^{\text {th }}$ against $8^{\text {th }}$ and $6^{\text {th }}$ against $9^{\text {th }}$). Using the definition of the Christoffel symbols of the first kind we end up with

$$
\bar{\gamma}_{i k j}=A_{i}^{\ell} A_{j}^{m} A_{k}^{n} \gamma_{\ell n m}+A_{k}^{\ell} \bar{\partial}_{j} A_{i}^{m} g_{\ell m}
$$

Finally, using $g_{\ell m} A_{k}^{\ell}=\bar{g}_{k \ell} B_{m}^{\ell}$ (recall a4), we may rewrite this as

$$
\bar{\gamma}_{i k j}=A_{i}^{\ell} A_{j}^{m} A_{k}^{n} \gamma_{\ell n m}+B_{m}^{\ell} \bar{\partial}_{j} A_{i}^{m} \bar{g}_{k \ell}
$$

This is the desired result (after interchange of j and k).
e1. Show that $\dot{v}^{i}=A_{j}^{i} \dot{\bar{v}}^{j}+\bar{\partial}_{k} A_{m}^{i} \dot{\bar{x}}^{k} \bar{v}^{m}$.

This follows by differentiating a1, taking into account product and chain rules.
e2. Use d to show that $\bar{\partial}_{k} A_{m}^{i} \dot{\bar{x}}^{k}=A_{\ell}^{i} \bar{\gamma}_{m k}^{\ell} \dot{\bar{x}}^{k}-A_{m}^{\ell} \gamma_{\ell k}^{i} \dot{x}^{k}$, in which $\gamma_{i j}^{k} \stackrel{\text { def }}{=} g^{k \ell} \gamma_{i \ell j}$.
[Hint: Contract the identity in d with $A_{p}^{q} \bar{g}^{j p} \dot{\bar{x}}^{k}$.]

Follow the hint. Various identities and trivial dummy index replacements are needed to obtain the desired form. For instance, $A_{\ell}^{i} B_{j}^{\ell}=\delta_{j}^{i}$, $g^{m n}=A_{p}^{n} A_{j}^{m} \bar{g}^{j p}$, whence $A_{j}^{m} \bar{g}^{j p}=B_{n}^{p} g^{m n}$, etc. Slick use of such identities will reveal the result by isolating the term $\bar{\partial}_{k} A_{i}^{q} \dot{\bar{x}}^{k}$.
f. Use e 1 and e 2 to show that $\frac{D v^{i}}{d t} \stackrel{\text { def }}{=} \frac{d v^{i}}{d t}+\gamma_{j k}^{i} v^{j} \dot{x}^{k}$ transforms as a vector.

Substitution of e2 into e1, and using $\bar{v}^{m}=B_{n}^{m} v^{n}$ to eliminate the overlined holor in one of the terms (cf. a1), allows us to place original and transformed holors on either side of the equation, immediately yielding the tensor transformation law: $\dot{v}^{i}+\gamma_{\ell k}^{i} v^{\ell} \dot{x}^{k}=A_{j}^{i}\left(\dot{\bar{v}}^{j}+\bar{\gamma}_{\ell k}^{j} \bar{v}^{\ell} \dot{\bar{x}}^{k}\right)$.

The End

[^0]: ${ }^{1}$ Adapted from: H. Rund, The Differential Geometry of Finsler Spaces, Springer-Verlag, 1959, Chapter III, § 2.

