
EXAMINATION TENSOR CALCULUS AND DIFFERENTIAL GEOMETRY

Course code: 2WAH0. Date: Tuesday April 10, 2018. Time: 09h00–12h00. Place: VRT 4.15 B

Read this first!

• Write your name and student identification number on each paper.

• The exam consists of 3 problems. The maximum credit for each item is indicated in the margin.

• You may consult an immaculate hardcopy of the online draft notes “Tensor Calculus and Differential
Geometry (2WAH0)” by Luc Florack. No other material or equipment may be used.

1. IDENTITIES INVOLVING DETERMINANTS.(35)

Definition. A function f ∈ C1(Rn) is called homogeneous of degree α ∈ R if

f(λx) = λαf(x) ,

for all λ ∈ R.

a. Show that such a function satisfies the p.d.e. xi∂if(x) = αf(x).(5)

The set of all n× n matrices A with R-valued entries will be denoted by Mn.

b. Let A ∈Mn. Show that det(λA) = λn detA.(5)

By cofA ∈Mn and adjA ∈Mn we denote the cofactor, respectively adjugate matrix of A ∈Mn:

(cofA)ij =
∂ detA

∂Aij
resp. (adjA)ij =

∂ detA

∂Aji
.

The trace trA ∈ R of a matrix A ∈Mn is the sum of its diagonal elements: trA def
= Aii.

Definition. Let A = Aij ei⊗ êj be the mixed tensor corresponding to the matrix A relative to a fiducial

basis. Relative to this basis we define trA def
= trA.

c. Show that trA is invariant under basis transformations.(5)

d. Prove: (i) (adjA)A = detAIn and (ii) tr ((adjA)A) = n detA. In denotes the n×n identity matrix.(5)
[Hint: Use a & b.]



Assumption. In the remainder of this problem we consider matrices A ∈ Mn that are positive-definite
and symmetric. Recall that such matrices can be diagonalized by a suitable rotation, say

∆
def
= RTAR

def
= diag (λ1, . . . , λn) ,

in which λ1, . . . , λn ∈ R+ are the eigenvalues of A.

Definition. The anisotropic Gaussian function φA ∈ C∞(Rn) is defined as

φA(x) = cAe
−xiAijxj ,

in whichA ∈Mn is a positive-definite symmetric matrix with entriesAij and cA>0 someA-dependent
normalization constant. Below you may use the following standard integral:∫

R
e−z

2
dz =

√
π .

e. Assume:
∫
Rn
φA(x) dx = 1. Find cA in terms of A.(5)

[Hint: Substitute x = Ry for a suitably chosen rotation matrix R.]

Definition. For any analytical function f ∈ Cω(R), with Taylor expansion f(x) =
∞∑
k=0

akx
k say, we

define a matrix counterpart carrying the same name, f ∈ Cω(Mn), as follows:

f(A)
def
=

∞∑
k=0

akA
k .

f1. Prove that, if λ1, . . . , λn are eigenvalues of A, then f(λ1), . . . , f(λn) are eigenvalues of f(A).(21
2 )

f2. Prove that f(RTAR) = RTf(A)R.(21
2 )

f3. Show that det eA = etrA.(5)
[Hint: Start from det eA = det(RTeAR).]

♣

2. SCALAR FIELDS AND GAUGE FIELDS IN ELECTRO-MAGNETISM.(30)

In particle physics one considers C-valued field quantities associated with manifestations of elementary
particles. Perhaps the simplest case is that of a scalar field ψ : Rn → C : x 7→ ψ(x) for a scalar boson.

Physical interactions are formulated in terms of so-called Lagrangians. For a scalar boson we stipulate
a Lagrangian of the form

Lboson(ψ, ∂ψ) = ∂µψ∗∂µψ −m2ψ∗ψ ,

in which ∂µ = gµν∂ν , with gµν the holor of the dual of a Lorentzian type metric tensor G = gµνdx
µ ⊗ dxν ,

and in which z∗ ∈ C denotes the complex conjugate of z ∈ C.



a1. Show that, if x = x(x) denotes a coordinate transformation, then ∂µ =
∂xν

∂xµ
∂ν and ∂

µ
=
∂xµ

∂xν
∂ν .(5)

Definition (Scalar Field). Let u : Rn → C : x 7→ u(x) be a scalar field. If x = x(x) is a coordinate
transformation, we set u(x)

def
= u(x).

a2. Show that Lboson is invariant under coordinate transformations, i.e. Lboson = L boson.(5)

b1. Show that Lboson is invariant under global phase shifts of the type ψ̃(x) = eiαψ(x), with α ∈ R(5)
constant.

b2. Show that Lboson is not invariant under local phase shifts, i.e. ψ̃(x) = eiα(x)ψ(x), in which now(5)
α ∈ C∞(Rn) represents a smooth real-valued scalar function.

In order to render the theory invariant under local phase shifts, a remedy has been proposed that requires
the introduction of a so-called gauge field, as follows. Instead of ordinary partial derivatives ∂µψ,
consider covariant derivatives of the form DA

µψ = ∂µψ + iqAµψ, in which q is a “coupling constant”
(a.k.a. “charge”) and in which Aµ : Rn → C : x 7→ Aµ(x) represents the (holor of the) gauge field.

To enforce the desired invariance we require D̃A
µψ̃(x) = eiα(x)DA

µψ(x) given the local transformation
ψ̃(x) = eiα(x)ψ(x) considered in b2. Here D̃A

µ = ∂µ + iqÃµ denotes the appropriately transformed
covariant derivative.

c. Show that local phase transformations ψ̃ = eiαψ induce gauge field transformations Ãµ = Aµ− 1
q∂µα.(5)

If the gauge field has any dynamics of its own, it must be incorporated into the Lagrangian in a gauge
invariant way. It is stipulated that this is accomplished by adding a term

LE.M.(A) = −1

4
Fµν(A)Fµν(A)

to the foregoing Lagrangian (besides the replacement ∂µ → DA
µ), in which

Fµν(A)
def
= ∂µAν − ∂νAµ .

d. Show that Fµν(A) (and thus LE.M.(A)) is invariant under gauge field transformations, recall c.(5)

+ All in all, gauge invariance of the bosonic Lagrangian requires a gauge field in the form of the ‘electro-magnetic’ 4-vector potential Aµ,
and the full gauge invariant Lagrangian becomes

L (ψ, ∂ψ,A) = Lboson(ψ,D
Aψ) + LE.M.(A) = DµAψ

∗DA
µψ −m2ψ∗ψ −

1

4
Fµν(A)F

µν(A) .

A is the so-called electromagnetic 4-vector potential, a relativistic vector function combining an electric scalar potential φ and a magnetic
3-vector potential A into a single four-vector A = (φ/c,A). The EM-fields (E,B) follow from these potentials by

E = −∇φ−
∂A

∂t
respectively B = ∇×A .

♣



3. LEVI-CIVITA CONNECTION & COVARIANT DERIVATIVE1.(35)

In this problem we consider a vector field v(x) = vi(x)∂i on an n-dimensional Riemannian manifold
M, locally decomposed relative to a coordinate basis {∂i = ∂/∂xi}i=1,...,n at each basepoint x ∈ M.
The Riemannian metric tensor field is given by G(x) = gij(x)dxi ⊗ dxj , with 〈dxi, ∂j〉 = δij .

We are interested in the rate of change of the vector field, dv(x(t))/dt, along a parametrized curve
x : R→M : t 7→ x(t). The local tangent at x(t) ∈M is denoted by ẋ(t) = ẋi(t)∂i, with ẋ ≡ d/dt.

A coordinate transformation x = x(x) induces a local basis transformation, with transformed basis
{∂i = ∂/∂xi}i=1,...,n and Jacobian matrices

Aij(x) =
∂xi(x)

∂xj
and Bi

j(x) =
∂xi(x)

∂xj

Treat Aij and Bi
j implicitly as functions of x, resp. x (as indicated explicitly in their definitions above).

a1. Show that vi = Aijv
j (‘vector transformation’).(21

2 )

a2. Show that gij = AkiA
`
jgk`.(21

2 )

a3. Show that ∂iAkj = ∂jA
k
i .(21

2 )

a4. Show that gk`B
`
m = gm`A

`
k.(21

2 )

Below we shall write vi and vi as shorthands for vi(x(t)) and vi(x(t)).

b. Show that the acceleration components v̇i = dvi/dt do not obey the vector transformation law.(21
2 )

c. Establish the relation between ∂kgij and ∂kgij , likewise accounting for the role of the Jacobian Aij(21
2 )

(and its derivatives). Do the partial derivatives ∂kgij constitute a tensor holor?

We define the Christoffel symbols of the first kind as follows: γijk
def
=

1

2
(∂kgij + ∂igjk − ∂jgik).

d. Prove: γijk = A`iA
m
j A

n
kγ`mn +B`

m∂kA
m
i gj`.(5)

e1. Show that v̇i = Aij v̇
j

+ ∂kA
i
mẋ

k
vm.(5)

e2. Use d to show that ∂kAimẋ
k

= Ai`γ
`
mkẋ

k −A`mγi`kẋk, in which γkij
def
= gk`γi`j .(5)

[Hint: Contract the identity in d with Aq
pg

jpẋ
k
.]

f. Use e1 and e2 to show that
Dvi

dt

def
=

dvi

dt
+ γijkv

j ẋk transforms as a vector.(5)

THE END

1Adapted from: H. Rund, The Differential Geometry of Finsler Spaces, Springer-Verlag, 1959, Chapter III, § 2.


