EXAMINATION TENSOR CALCULUS AND DIFFERENTIAL GEOMETRY

Course code: 2WAH0. Date: Tuesday April 10, 2018. Time: 09h00-12h00. Place: VRT 4.15 B

Read this first!

- Write your name and student identification number on each paper.
- The exam consists of 3 problems. The maximum credit for each item is indicated in the margin.
- You may consult an immaculate hardcopy of the online draft notes "Tensor Calculus and Differential Geometry (2WAH0)" by Luc Florack. No other material or equipment may be used.

(35) **1. IDENTITIES INVOLVING DETERMINANTS.**

Definition. A function $f \in C^1(\mathbb{R}^n)$ is called homogeneous of degree $\alpha \in \mathbb{R}$ if

$$f(\lambda x) = \lambda^{\alpha} f(x) \,,$$

for all $\lambda \in \mathbb{R}$.

(5) **a.** Show that such a function satisfies the p.d.e. $x^i \partial_i f(x) = \alpha f(x)$.

The set of all $n \times n$ matrices A with \mathbb{R} -valued entries will be denoted by \mathbb{M}_n .

(5) **b.** Let $A \in \mathbb{M}_n$. Show that $\det(\lambda A) = \lambda^n \det A$.

By $cof A \in \mathbb{M}_n$ and $adj A \in \mathbb{M}_n$ we denote the *cofactor*, respectively *adjugate matrix* of $A \in \mathbb{M}_n$:

$$(\operatorname{cof} A)^{ij} = \frac{\partial \det A}{\partial A_{ij}}$$
 resp. $(\operatorname{adj} A)^{ij} = \frac{\partial \det A}{\partial A_{ji}}$

The *trace* tr $A \in \mathbb{R}$ of a matrix $A \in \mathbb{M}_n$ is the sum of its diagonal elements: tr $A \stackrel{\text{def}}{=} A_i^i$.

Definition. Let $\mathbf{A} = A_j^i \mathbf{e}_i \otimes \hat{\mathbf{e}}^j$ be the mixed tensor corresponding to the matrix A relative to a fiducial basis. Relative to this basis we define tr $\mathbf{A} \stackrel{\text{def}}{=} \text{tr } A$.

- (5) **c.** Show that tr A is invariant under basis transformations.
- (5) **d.** Prove: (i) $(adjA)A = \det A I_n$ and (ii) tr $((adjA)A) = n \det A$. I_n denotes the $n \times n$ identity matrix. [*Hint:* Use a & b.]

Assumption. In the remainder of this problem we consider matrices $A \in \mathbb{M}_n$ that are *positive-definite* and *symmetric*. Recall that such matrices can be diagonalized by a suitable rotation, say

$$\Delta \stackrel{\text{\tiny def}}{=} R^{\mathrm{T}} A R \stackrel{\text{\tiny def}}{=} \operatorname{diag}\left(\lambda_{1}, \ldots, \lambda_{n}\right)$$

in which $\lambda_1, \ldots, \lambda_n \in \mathbb{R}^+$ are the eigenvalues of A.

Definition. The anisotropic Gaussian function $\phi_A \in C^{\infty}(\mathbb{R}^n)$ is defined as

$$\phi_A(x) = c_A e^{-x^i A_{ij} x^j},$$

in which $A \in \mathbb{M}_n$ is a positive-definite symmetric matrix with entries A_{ij} and $c_A > 0$ some A-dependent normalization constant. Below you may use the following standard integral:

$$\int_{\mathbb{R}} e^{-z^2} dz = \sqrt{\pi} \,.$$

(5) **e.** Assume: $\int_{\mathbb{R}^n} \phi_A(x) dx = 1$. Find c_A in terms of A. [*Hint:* Substitute x = Ry for a suitably chosen rotation matrix R.]

Definition. For any analytical function $f \in C^{\omega}(\mathbb{R})$, with Taylor expansion $f(x) = \sum_{k=0}^{\infty} a_k x^k$ say, we define a matrix counterpart carrying the same name, $f \in C^{\omega}(\mathbb{M}_n)$, as follows:

$$f(A) \stackrel{\text{def}}{=} \sum_{k=0}^{\infty} a_k A^k$$

- $(2\frac{1}{2})$ **f1.** Prove that, if $\lambda_1, \ldots, \lambda_n$ are eigenvalues of A, then $f(\lambda_1), \ldots, f(\lambda_n)$ are eigenvalues of f(A).
- $(2\frac{1}{2})$ **f2.** Prove that $f(R^{T}AR) = R^{T}f(A)R$.
- (5) **f3.** Show that det $e^A = e^{\text{tr}A}$. [*Hint:* Start from det $e^A = \det(R^{\mathsf{T}}e^AR)$.]

÷

(30) 2. SCALAR FIELDS AND GAUGE FIELDS IN ELECTRO-MAGNETISM.

In particle physics one considers \mathbb{C} -valued field quantities associated with manifestations of elementary particles. Perhaps the simplest case is that of a scalar field $\psi : \mathbb{R}^n \to \mathbb{C} : x \mapsto \psi(x)$ for a scalar boson.

Physical interactions are formulated in terms of so-called Lagrangians. For a scalar boson we stipulate a Lagrangian of the form

$$\mathscr{L}_{ ext{boson}}(\psi,\partial\psi) = \partial^{\mu}\psi^{*}\partial_{\mu}\psi - m^{2}\psi^{*}\psi\,,$$

in which $\partial^{\mu} = g^{\mu\nu} \partial_{\nu}$, with $g^{\mu\nu}$ the holor of the dual of a Lorentzian type metric tensor $\mathbf{G} = g_{\mu\nu} dx^{\mu} \otimes dx^{\nu}$, and in which $z^* \in \mathbb{C}$ denotes the complex conjugate of $z \in \mathbb{C}$.

(5) **a1.** Show that, if $x = x(\overline{x})$ denotes a coordinate transformation, then $\overline{\partial}_{\mu} = \frac{\partial x^{\nu}}{\partial \overline{x}^{\mu}} \partial_{\nu}$ and $\overline{\partial}^{\mu} = \frac{\partial \overline{x}^{\mu}}{\partial x^{\nu}} \partial^{\nu}$.

Definition (Scalar Field). Let $u : \mathbb{R}^n \to \mathbb{C} : x \mapsto u(x)$ be a scalar field. If $x = x(\overline{x})$ is a coordinate transformation, we set $\overline{u}(\overline{x}) \stackrel{\text{def}}{=} u(x)$.

- (5) **a2.** Show that $\mathscr{L}_{\text{boson}}$ is invariant under coordinate transformations, i.e. $\mathscr{L}_{\text{boson}} = \overline{\mathscr{L}}_{\text{boson}}$.
- (5) **b1.** Show that $\mathscr{L}_{\text{boson}}$ is invariant under *global* phase shifts of the type $\tilde{\psi}(x) = e^{i\alpha}\psi(x)$, with $\alpha \in \mathbb{R}$ constant.
- (5) **b2.** Show that $\mathscr{L}_{\text{boson}}$ is *not* invariant under *local* phase shifts, i.e. $\tilde{\psi}(x) = e^{i\alpha(x)}\psi(x)$, in which now $\alpha \in C^{\infty}(\mathbb{R}^n)$ represents a smooth real-valued scalar function.

In order to render the theory invariant under local phase shifts, a remedy has been proposed that requires the introduction of a so-called *gauge field*, as follows. Instead of ordinary partial derivatives $\partial_{\mu}\psi$, consider covariant derivatives of the form $D^{A}_{\mu}\psi = \partial_{\mu}\psi + iqA_{\mu}\psi$, in which q is a "coupling constant" (a.k.a. "charge") and in which $A_{\mu} : \mathbb{R}^{n} \to \mathbb{C} : x \mapsto A_{\mu}(x)$ represents the (holor of the) gauge field.

To enforce the desired invariance we require $\widetilde{D}^{\text{A}}_{\mu}\widetilde{\psi}(x) = e^{i\alpha(x)}D^{\text{A}}_{\mu}\psi(x)$ given the local transformation $\widetilde{\psi}(x) = e^{i\alpha(x)}\psi(x)$ considered in b2. Here $\widetilde{D}^{\text{A}}_{\mu} = \partial_{\mu} + iq\widetilde{A}_{\mu}$ denotes the appropriately transformed covariant derivative.

(5) **c.** Show that local phase transformations $\tilde{\psi} = e^{i\alpha}\psi$ induce gauge field transformations $\tilde{A}_{\mu} = A_{\mu} - \frac{1}{q}\partial_{\mu}\alpha$.

If the gauge field has any dynamics of its own, it must be incorporated into the Lagrangian in a gauge invariant way. It is stipulated that this is accomplished by adding a term

$$\mathscr{L}_{\text{E.M.}}(A) = -\frac{1}{4}F_{\mu\nu}(A)F^{\mu\nu}(A)$$

to the foregoing Lagrangian (besides the replacement $\partial_{\mu} \rightarrow D_{\mu}^{\rm A}$), in which

$$F_{\mu\nu}(A) \stackrel{\text{def}}{=} \partial_{\mu}A_{\nu} - \partial_{\nu}A_{\mu}.$$

(5) **d.** Show that $F_{\mu\nu}(A)$ (and thus $\mathscr{L}_{E.M.}(A)$) is invariant under gauge field transformations, recall c.

^{ES} All in all, gauge invariance of the bosonic Lagrangian requires a gauge field in the form of the 'electro-magnetic' 4-vector potential A_{μ} , and the full gauge invariant Lagrangian becomes

$$\mathscr{L}(\psi,\partial\psi,A) = \mathscr{L}_{\text{boson}}(\psi,D^{A}\psi) + \mathscr{L}_{\text{E.M.}}(A) = D^{\mu}_{A}\psi^{*}D^{A}_{\mu}\psi - m^{2}\psi^{*}\psi - \frac{1}{4}F_{\mu\nu}(A)F^{\mu\nu}(A).$$

A is the so-called electromagnetic 4-vector potential, a relativistic vector function combining an electric scalar potential ϕ and a magnetic 3-vector potential \mathbf{A} into a single four-vector $A = (\phi/c, \mathbf{A})$. The EM-fields (\mathbf{E}, \mathbf{B}) follow from these potentials by

$$E = -\nabla \phi - \frac{\partial A}{\partial t}$$
 respectively $B = \nabla \times A$.

(35) **3.** LEVI-CIVITA CONNECTION & COVARIANT DERIVATIVE¹.

In this problem we consider a vector field $v(x) = v^i(x)\partial_i$ on an *n*-dimensional Riemannian manifold \mathbb{M} , locally decomposed relative to a coordinate basis $\{\partial_i = \partial/\partial x^i\}_{i=1,...,n}$ at each basepoint $x \in \mathbb{M}$. The Riemannian metric tensor field is given by $G(x) = g_{ij}(x)dx^i \otimes dx^j$, with $\langle dx^i, \partial_j \rangle = \delta^i_j$.

We are interested in the rate of change of the vector field, dv(x(t))/dt, along a parametrized curve $x : \mathbb{R} \to \mathbb{M} : t \mapsto x(t)$. The local tangent at $x(t) \in \mathbb{M}$ is denoted by $\dot{x}(t) = \dot{x}^i(t)\partial_i$, with $\dot{=} d/dt$.

A coordinate transformation $x = x(\overline{x})$ induces a local basis transformation, with transformed basis $\{\overline{\partial}_i = \partial/\partial \overline{x}^i\}_{i=1,\dots,n}$ and Jacobian matrices

$$A_j^i(\overline{x}) = rac{\partial x^i(\overline{x})}{\partial \overline{x}^j}$$
 and $B_j^i(x) = rac{\partial \overline{x}^i(x)}{\partial x^j}$

Treat A_i^i and B_j^i implicitly as functions of \overline{x} , resp. x (as indicated explicitly in their definitions above).

- $(2\frac{1}{2})$ **a1.** Show that $v^i = A^i_i \overline{v}^j$ ('vector transformation').
- $(2\frac{1}{2})$ **a2.** Show that $\overline{g}_{ij} = A_i^k A_j^\ell g_{k\ell}$.
- $(2\frac{1}{2})$ **a3.** Show that $\overline{\partial}_i A_i^k = \overline{\partial_j} A_i^k$.
- $(2\frac{1}{2})$ **a4.** Show that $\overline{g}_{k\ell}B_m^\ell = g_{m\ell}A_k^\ell$.

Below we shall write v^i and \overline{v}^i as shorthands for $v^i(x(t))$ and $\overline{v}^i(\overline{x}(t))$.

- $(2\frac{1}{2})$ **b.** Show that the acceleration components $\dot{v}^i = dv^i/dt$ do *not* obey the vector transformation law.
- (2¹/₂) **c.** Establish the relation between $\overline{\partial}_k \overline{g}_{ij}$ and $\partial_k g_{ij}$, likewise accounting for the role of the Jacobian A_j^i (and its derivatives). Do the partial derivatives $\partial_k g_{ij}$ constitute a tensor holor?

We define the Christoffel symbols of the first kind as follows: $\gamma_{ijk} \stackrel{\text{def}}{=} \frac{1}{2} (\partial_k g_{ij} + \partial_i g_{jk} - \partial_j g_{ik}).$

(5) **d.** Prove:
$$\overline{\gamma}_{ijk} = A_i^{\ell} A_j^m A_k^n \gamma_{\ell m n} + B_m^{\ell} \partial_k A_i^m \overline{g}_{j\ell}$$

- (5) **e1.** Show that $\dot{v}^i = A^i_j \dot{\overline{v}}^j + \overline{\partial}_k A^i_m \dot{\overline{x}}^k \overline{v}^m$
- (5) **e2.** Use d to show that $\overline{\partial}_k A_m^i \dot{\overline{x}}^k = A_\ell^i \overline{\gamma}_{mk}^\ell \dot{\overline{x}}^k A_m^\ell \gamma_{\ell k}^i \dot{\overline{x}}^k$, in which $\gamma_{ij}^k \stackrel{\text{def}}{=} g^{k\ell} \gamma_{i\ell j}$. [*Hint:* Contract the identity in d with $A_p^q \overline{g}^{jp} \dot{\overline{x}}^k$.]
- (5) **f.** Use e1 and e2 to show that $\frac{Dv^i}{dt} \stackrel{\text{def}}{=} \frac{dv^i}{dt} + \gamma^i_{jk} v^j \dot{x}^k$ transforms as a vector.

The End

¹Adapted from: H. Rund, The Differential Geometry of Finsler Spaces, Springer-Verlag, 1959, Chapter III, § 2.