EXAMINATION TENSOR CALCULUS AND DIFFERENTIAL GEOMETRY

Course code: 2WAH0. Date: Tuesday April 10, 2018. Time: 09h00-12h00. Place: VRT 4.15 B

Read this first!

- Write your name and student identification number on each paper.
- The exam consists of 3 problems. The maximum credit for each item is indicated in the margin.
- You may consult an immaculate hardcopy of the online draft notes "Tensor Calculus and Differential Geometry (2WAH0)" by Luc Florack. No other material or equipment may be used.

1. IDENTITIES INVOLVING DETERMINANTS.

Definition. A function $f \in C^{1}\left(\mathbb{R}^{n}\right)$ is called homogeneous of degree $\alpha \in \mathbb{R}$ if

$$
f(\lambda x)=\lambda^{\alpha} f(x)
$$

for all $\lambda \in \mathbb{R}$.
a. Show that such a function satisfies the p.d.e. $x^{i} \partial_{i} f(x)=\alpha f(x)$.

The set of all $n \times n$ matrices A with \mathbb{R}-valued entries will be denoted by \mathbb{M}_{n}.
b. Let $A \in \mathbb{M}_{n}$. Show that $\operatorname{det}(\lambda A)=\lambda^{n} \operatorname{det} A$.

By $\operatorname{cof} A \in \mathbb{M}_{n}$ and adj $A \in \mathbb{M}_{n}$ we denote the cofactor, respectively adjugate matrix of $A \in \mathbb{M}_{n}$:

$$
(\operatorname{cof} A)^{i j}=\frac{\partial \operatorname{det} A}{\partial A_{i j}} \quad \text { resp. } \quad(\operatorname{adj} A)^{i j}=\frac{\partial \operatorname{det} A}{\partial A_{j i}} .
$$

The trace $\operatorname{tr} A \in \mathbb{R}$ of a matrix $A \in \mathbb{M}_{n}$ is the sum of its diagonal elements: $\operatorname{tr} A \stackrel{\text { def }}{=} A_{i}^{i}$.
Definition. Let $\boldsymbol{A}=A_{j}^{i} \boldsymbol{e}_{i} \otimes \hat{\boldsymbol{e}}^{j}$ be the mixed tensor corresponding to the matrix A relative to a fiducial basis. Relative to this basis we define $\operatorname{tr} \boldsymbol{A} \stackrel{\text { def }}{=} \operatorname{tr} A$.
c. Show that $\operatorname{tr} A$ is invariant under basis transformations.
d. Prove: $(\mathrm{i})(\operatorname{adj} A) A=\operatorname{det} A I_{n}$ and (ii) $\operatorname{tr}((\operatorname{adj} A) A)=n \operatorname{det} A . I_{n}$ denotes the $n \times n$ identity matrix. [Hint: Use a \& b.]

Assumption. In the remainder of this problem we consider matrices $A \in \mathbb{M}_{n}$ that are positive-definite and symmetric. Recall that such matrices can be diagonalized by a suitable rotation, say

$$
\Delta \stackrel{\text { def }}{=} R^{\mathrm{T}} A R \stackrel{\text { def }}{=} \operatorname{diag}\left(\lambda_{1}, \ldots, \lambda_{n}\right),
$$

in which $\lambda_{1}, \ldots, \lambda_{n} \in \mathbb{R}^{+}$are the eigenvalues of A.
Definition. The anisotropic Gaussian function $\phi_{A} \in C^{\infty}\left(\mathbb{R}^{n}\right)$ is defined as

$$
\phi_{A}(x)=c_{A} e^{-x^{i} A_{i j} x^{j}}
$$

in which $A \in \mathbb{M}_{n}$ is a positive-definite symmetric matrix with entries $A_{i j}$ and $c_{A}>0$ some A-dependent normalization constant. Below you may use the following standard integral:

$$
\int_{\mathbb{R}} e^{-z^{2}} d z=\sqrt{\pi}
$$

e. Assume: $\int_{\mathbb{R}^{n}} \phi_{A}(x) d x=1$. Find c_{A} in terms of A.
[Hint: Substitute $x=R y$ for a suitably chosen rotation matrix R.]
Definition. For any analytical function $f \in C^{\omega}(\mathbb{R})$, with Taylor expansion $f(x)=\sum_{k=0}^{\infty} a_{k} x^{k}$ say, we define a matrix counterpart carrying the same name, $f \in C^{\omega}\left(\mathbb{M}_{n}\right)$, as follows:

$$
f(A) \stackrel{\text { def }}{=} \sum_{k=0}^{\infty} a_{k} A^{k} .
$$

f1. Prove that, if $\lambda_{1}, \ldots, \lambda_{n}$ are eigenvalues of A, then $f\left(\lambda_{1}\right), \ldots, f\left(\lambda_{n}\right)$ are eigenvalues of $f(A)$.
f2. Prove that $f\left(R^{\mathrm{T}} A R\right)=R^{\mathrm{T}} f(A) R$.
f3. Show that det $e^{A}=e^{\operatorname{tr} A}$.
[Hint: Start from $\operatorname{det} e^{A}=\operatorname{det}\left(R^{\mathrm{T}} e^{A} R\right)$.]

2. Scalar Fields and Gauge Fields in Electro-Magnetism.

In particle physics one considers \mathbb{C}-valued field quantities associated with manifestations of elementary particles. Perhaps the simplest case is that of a scalar field $\psi: \mathbb{R}^{n} \rightarrow \mathbb{C}: x \mapsto \psi(x)$ for a scalar boson.

Physical interactions are formulated in terms of so-called Lagrangians. For a scalar boson we stipulate a Lagrangian of the form

$$
\mathscr{L}_{\text {boson }}(\psi, \partial \psi)=\partial^{\mu} \psi^{*} \partial_{\mu} \psi-m^{2} \psi^{*} \psi,
$$

in which $\partial^{\mu}=g^{\mu \nu} \partial_{\nu}$, with $g^{\mu \nu}$ the holor of the dual of a Lorentzian type metric tensor $\mathbf{G}=g_{\mu \nu} d x^{\mu} \otimes d x^{\nu}$, and in which $z^{*} \in \mathbb{C}$ denotes the complex conjugate of $z \in \mathbb{C}$.

If the gauge field has any dynamics of its own, it must be incorporated into the Lagrangian in a gauge invariant way. It is stipulated that this is accomplished by adding a term

$$
\mathscr{L}_{\text {Е.м. }}(A)=-\frac{1}{4} F_{\mu \nu}(A) F^{\mu \nu}(A)
$$

to the foregoing Lagrangian (besides the replacement $\partial_{\mu} \rightarrow D_{\mu}^{\mathrm{A}}$), in which

$$
F_{\mu \nu}(A) \stackrel{\text { def }}{=} \partial_{\mu} A_{\nu}-\partial_{\nu} A_{\mu}
$$

d. Show that $F_{\mu \nu}(A)$ (and thus $\mathscr{L}_{\text {E.M. }}(A)$) is invariant under gauge field transformations, recall c.

All in all, gauge invariance of the bosonic Lagrangian requires a gauge field in the form of the 'electro-magnetic' 4 -vector potential A_{μ}, and the full gauge invariant Lagrangian becomes

$$
\mathscr{L}(\psi, \partial \psi, A)=\mathscr{L}_{\text {boson }}\left(\psi, D^{\mathrm{A}} \psi\right)+\mathscr{L}_{\text {E.M. }}(A)=D_{\mathrm{A}}^{\mu} \psi^{*} D_{\mu}^{\mathrm{A}} \psi-m^{2} \psi^{*} \psi-\frac{1}{4} F_{\mu \nu}(A) F^{\mu \nu}(A) .
$$

A is the so-called electromagnetic 4-vector potential, a relativistic vector function combining an electric scalar potential ϕ and a magnetic 3 -vector potential \boldsymbol{A} into a single four-vector $A=(\phi / c, \boldsymbol{A})$. The EM-fields $(\boldsymbol{E}, \boldsymbol{B})$ follow from these potentials by

$$
\boldsymbol{E}=-\nabla \phi-\frac{\partial \boldsymbol{A}}{\partial t} \quad \text { respectively } \quad \boldsymbol{B}=\nabla \times \boldsymbol{A}
$$

3. Levi-Civita Connection $\&$ Covariant Derivative ${ }^{1}$.

In this problem we consider a vector field $v(x)=v^{i}(x) \partial_{i}$ on an n-dimensional Riemannian manifold \mathbb{M}, locally decomposed relative to a coordinate basis $\left\{\partial_{i}=\partial / \partial x^{i}\right\}_{i=1, \ldots, n}$ at each basepoint $x \in \mathbb{M}$. The Riemannian metric tensor field is given by $G(x)=g_{i j}(x) d x^{i} \otimes d x^{j}$, with $\left\langle d x^{i}, \partial_{j}\right\rangle=\delta_{j}^{i}$.

We are interested in the rate of change of the vector field, $d v(x(t)) / d t$, along a parametrized curve $x: \mathbb{R} \rightarrow \mathbb{M}: t \mapsto x(t)$. The local tangent at $x(t) \in \mathbb{M}$ is denoted by $\dot{x}(t)=\dot{x}^{i}(t) \partial_{i}$, with ${ }^{\cdot} \equiv d / d t$.

A coordinate transformation $x=x(\bar{x})$ induces a local basis transformation, with transformed basis $\left\{\bar{\partial}_{i}=\partial / \partial \bar{x}^{i}\right\}_{i=1, \ldots, n}$ and Jacobian matrices

$$
A_{j}^{i}(\bar{x})=\frac{\partial x^{i}(\bar{x})}{\partial \bar{x}^{j}} \quad \text { and } \quad B_{j}^{i}(x)=\frac{\partial \bar{x}^{i}(x)}{\partial x^{j}}
$$

Treat A_{j}^{i} and B_{j}^{i} implicitly as functions of \bar{x}, resp. x (as indicated explicitly in their definitions above).
a4. Show that $\bar{g}_{k \ell} B_{m}^{\ell}=g_{m \ell} A_{k}^{\ell}$.
Below we shall write v^{i} and \bar{v}^{i} as shorthands for $v^{i}(x(t))$ and $\bar{v}^{i}(\bar{x}(t))$.
c. Establish the relation between $\bar{\partial}_{k} \bar{g}_{i j}$ and $\partial_{k} g_{i j}$, likewise accounting for the role of the Jacobian A_{j}^{i} (and its derivatives). Do the partial derivatives $\partial_{k} g_{i j}$ constitute a tensor holor?

We define the Christoffel symbols of the first kind as follows: $\gamma_{i j k} \stackrel{\text { def }}{=} \frac{1}{2}\left(\partial_{k} g_{i j}+\partial_{i} g_{j k}-\partial_{j} g_{i k}\right)$.
d. Prove: $\bar{\gamma}_{i j k}=A_{i}^{\ell} A_{j}^{m} A_{k}^{n} \gamma_{\ell m n}+B_{m}^{\ell} \bar{\partial}_{k} A_{i}^{m} \bar{g}_{j \ell}$.
e1. Show that $\dot{v}^{i}=A_{j}^{i} \dot{\bar{v}}^{j}+\bar{\partial}_{k} A_{m}^{i} \dot{\bar{x}}^{k} \bar{v}^{m}$.
e2. Use d to show that $\bar{\partial}_{k} A_{m}^{i} \dot{\bar{x}}^{k}=A_{\ell}^{i} \bar{\gamma}_{m k}^{\ell} \dot{\bar{x}}^{k}-A_{m}^{\ell} \gamma_{\ell k}^{i} \dot{x}^{k}$, in which $\gamma_{i j}^{k} \stackrel{\text { def }}{=} g^{k \ell} \gamma_{i \ell j}$.
[Hint: Contract the identity in d with $A_{p}^{q} \bar{g}^{j p} \dot{\bar{x}}^{k}$.]
(5) f. Use e1 and e2 to show that $\frac{D v^{i}}{d t} \stackrel{\text { def }}{=} \frac{d v^{i}}{d t}+\gamma_{j k}^{i} v^{j} \dot{x}^{k}$ transforms as a vector.

The End

[^0]
[^0]: ${ }^{1}$ Adapted from: H. Rund, The Differential Geometry of Finsler Spaces, Springer-Verlag, 1959, Chapter III, § 2.

