EXAMINATION TENSOR CALCULUS AND DIFFERENTIAL GEOMETRY

Course code: 2WAH0. Date: Thursday April 13, 2017. Time: 9h00-12h00. Place: Paviljoen L10.

Read this first!

- Write your name and student identification number on each paper.
- The exam consists of 3 problems. The maximum credit for each item is indicated in the margin.
- Motivate your answers.
- Einstein summation convention applies throughout for all repeated indices.
- You may consult an immaculate hardcopy of the online draft notes "Tensor Calculus and Differential Geometry (2WAH0)" by Luc Florack. No equipment may be used.

(25) 1. GALINEAN BOOSTS

An observer, standing at the origin O:(x,y,z)=(0,0,0) of a Cartesian coordinate system (x,y,z) attached to the ground, is witnessing a railroad flatcar passing by with velocity W along the x-axis. A freerunner is running on the deck with a horizontal velocity w relative to the flatcar, i.e. relative to the origin O':(x',y',z')=(0,0,0) of a comoving Cartesian coordinate system (x',y',z') attached to the deck, with x'-axis aligned with the x-axis. The sketch shows a snapshot at time t=0, which is the moment at which the static and comoving coordinate origins coincide: O=O'.

Man running with velocity w relative to the deck of railroad flatcar, which in turn is rolling along a straight horizontal track with velocity W relative to the ground. In this picture w<0,W>0.

Suppose (w, 0, 0) = (-W, 0, 0). Gut feeling tells us that the freerunner is in rest relative to the external observer. A smart student, however, manages to embarrass her teacher with the following paradox:

"Since the velocity of the freerunner relative to the ground is the zero vector", she argues, "it must remain the zero vector relative to *any other* coordinate system, since a change of coordinate basis $(\partial_x, \partial_y, \partial_z) \to (\partial_{x'}, \partial_{y'}, \partial_{z'})$ induces a *linear* transformation of the components of a vector. Thus he cannot be moving relative to the deck either (i.e. w = 0), which in turn means that the flatcar must be standing still (W = 0), otherwise the freerunner would not be in rest relative to the external observer..."

(5) **a.** Her conclusion is clearly preposterous, but what is wrong with her 'linear transformation' argument?

The transformation relating the coordinate frames considered in the problem is of a *dynamic* nature, thus we have to include time as a fourth dimension. The relative motion implies the following relation between the respective Cartesian coordinates of an event in space and time:

$$\left\{ \begin{array}{lcl} \overline{x}^i & = & x^i - v^i t \\ \overline{t} & = & t \end{array} \right. \quad \text{or, inversely,} \qquad \left\{ \begin{array}{lcl} x^i & = & \overline{x}^i + v^i \overline{t} \\ t & = & \overline{t} \end{array} \right.$$

Note that, if restricted to spatial components only (tacitly assumed by the student in her whimsical argument), this transformation is *nonlinear*. In particular we have for a 3-velocity $\dot{x}^i = \dot{x}^i - v^i$ t. The corresponding transformation of the 4-dimensional spacetime coordinate basis and its dual is given by

$$\left\{ \begin{array}{lclcl} \overline{\partial}_i & = & \partial_i \\ \overline{\partial}_t & = & \partial_t + v^i \partial_i \end{array} \right. \quad \text{resp.} \qquad \left\{ \begin{array}{lclcl} dx^i & = & d\overline{x}^i + v^i d\overline{t} \\ dt & = & d\overline{t} \end{array} \right.$$

An object moving relative to the (x,y,z,t)-coordinate frame along a path (x,y,z,t)=(x(t),y(t),z(t),t), say, has a geometric 4-velocity, the (contravariant) components of which do transform linearly, viz. $\dot{x}^{\mu}\partial_{\mu}=\dot{x}^{i}\partial_{i}+\partial_{t}=\dot{\bar{x}}^{i}\overline{\partial}_{i}+\overline{\partial}_{t}=\dot{\bar{x}}^{\mu}\overline{\partial}_{\mu}$.

We embed the components of a given spatial '3-velocity' vector $v^i\partial_i=v^1\partial_x+v^2\partial_y+v^3\partial_z$ into a spatiotemporal '4-velocity' $v^\mu\partial_\mu=v^0\partial_t+v^1\partial_x+v^2\partial_y+v^3\partial_z$. Here and henceforth Latin indices $i,j,k,\ldots=1,2,3$ index spatial components, whereas Greek indices $\mu,\nu,\rho=0,1,2,3$ pertain to spatiotemporal components, with index value 0 reserved for time. The added temporal component of the 4-velocity is invariably defined by the (coordinate independent) constant $v^0=1$.

Let \mathscr{P} be a spatiotemporal event with Cartesian spacetime coordinates $(x,y,z,t) \in \mathbb{R}^4$ relative to the ground frame, and coordinates $(\overline{x},\overline{y},\overline{z},\overline{t}) \in \mathbb{R}^4$ relative to a frame moving to the right with constant horizontal 4-velocity (v,0,0,1).

(5) **b.** Express \overline{x}^{μ} in terms of x^{ν} and vice versa.

v.s.

(5) **c.** Express the coordinate basis vectors $\overline{\partial}_{\mu}$ in terms of ∂_{ν} .

v.s.

(5) **d.** Express the dual coordinate basis one-forms dx^{μ} in terms of $d\overline{x}^{\nu}$.

v.s.

(5) **e.** Show that a spatial 3-vector $v^i \partial_i$ does not obey a (linear) contravariant transformation law, but a suitably constructed 4-vector $v^\mu \partial_\mu$ does. Is the stipulated definition $v^0 = 1$ consistent?

(40) 2. EUCLIDEAN GEODESICS

Geodesics in Euclidean 2-space, endowed with a flat connection, are most conveniently represented in terms of Cartesian coordinates, viz. if $\gamma:(x,y)=(x(t),y(t))$ is an affinely parametrized geodesic, then γ satisfies the following system of o.d.e.'s (with each dot representing a derivative d/dt)

$$*: \left\{ \begin{array}{lcl} \ddot{x} & = & 0 \\ \ddot{y} & = & 0 \,. \end{array} \right.$$

We introduce polar coordinates $(r,\phi) \in [0,\infty) \times [0,2\pi)$ in the usual way: $\star : \left\{ \begin{array}{ll} x = r\cos\phi \\ y = r\sin\phi \end{array} \right.$

(5) **a.** Derive the geodesic equations for $\gamma:(r,\phi)=(r(t),\phi(t))$ in polar coordinates by substituting the transformation \star into the system *.

Straightforward substitution yields

$$**: \left\{ \begin{array}{ll} \ddot{r}\cos\phi - 2\dot{r}\sin\phi\dot{\phi} - r\cos\phi\dot{\phi}^2 - r\sin\phi\ddot{\phi} & = & 0 \\ \ddot{r}\sin\phi + 2\dot{r}\cos\phi\dot{\phi} - r\sin\phi\dot{\phi}^2 + r\cos\phi\ddot{\phi} & = & 0 \,. \end{array} \right.$$

(10) **b.** Compute all Christoffel symbols Γ_{ij}^k as well as all first order partial derivatives $\partial_\ell \Gamma_{ij}^k$ of the flat connection relative to polar coordinates.

[Hint: Show that the only nonzero Γ -symbols are $\Gamma^\phi_{\phi r}$, $\Gamma^\phi_{r\phi}$ and $\Gamma^r_{\phi\phi}$, and that these do not depend on ϕ .]

The only nonzero Christoffel symbols are $\Gamma^{\phi}_{\phi r} = \Gamma^{\phi}_{r \phi} = \frac{1}{r}$ and $\Gamma^{r}_{\phi \phi} = -r$. As a result the only nontrivial first order partial derivatives are $\partial_r \Gamma^{r}_{\phi \phi} = -1$, $\partial_r \Gamma^{\phi}_{r \phi} = \partial_r \Gamma^{\phi}_{\phi r} = -\frac{1}{r^2}$. Note that these symbols can also be obtained by inspection of the coefficients of the nonlinear terms in the next problem.

(5) **c.** Derive the geodesic equations for $\gamma:(r,\phi)=(r(t),\phi(t))$ from the Christoffel symbols obtained in b.

Using the Christoffel symbols from b in the geodesic equation $\ddot{x}^k + \Gamma^k_{ij} \dot{x}^i \dot{x}^j = 0$ that is valid in any coordinate system yields

$$\label{eq:continuous_problem} ***: \left\{ \begin{array}{rcl} \ddot{r} - r\dot{\phi}^2 & = & 0 \\ \ddot{\phi} + \frac{2}{r}\dot{r}\dot{\phi} & = & 0 \,. \end{array} \right.$$

(5) **d.** Show that the equations obtained in a and c are consistent.

Multiply the first equation in ** by $\cos \phi$ and the second by $\sin \phi$, then add up. This yields the first equation of * * *. Multiply the first equation in ** by $\sin \phi$ and the second by $\cos \phi$, then subtract. This yields the second equation of * * *. Alternatively, rewrite ** as follows:

**:
$$\begin{cases} (\ddot{r} - r\dot{\phi}^2)\cos\phi - (\frac{2}{r}\dot{\phi} + \ddot{\phi})r\sin\phi &= 0\\ (\ddot{r} - r\dot{\phi}^2)\sin\phi + (\frac{2}{r}\dot{\phi} + \ddot{\phi})r\cos\phi &= 0. \end{cases}$$

(5) **e.** Explain why a geodesic that does not pass through the origin (x, y) = (0, 0) experiences a 'pseudo-acceleration' $\ddot{r} \neq 0$ for its radial coordinate, and show that this does not occur for a geodesic that does pass through the origin.

The 'pseudo-acceleration' $\ddot{r}=r\dot{\phi}^2$ is needed to compensate for the fact that the r-coordinate along a geodesic that does not pass through the origin (x,y)=(0,0) is not a linear function of x and y and thus not a Cartesian coordinate along the curve. If the geodesic does pass through the origin, then $\phi=$ constant (straight line), so $\dot{\phi}=0$. Inserting this in *** yields (besides $\ddot{\phi}=0$) $\ddot{r}=0$, whence no 'pseudo-acceleration'.

For a Levi-Civita connection the covariant Riemann tensor is defined as follows: $R_{\ell ijk} = g_{\ell m} R^m{}_{ijk}$, in which

$$R^{m}{}_{ijk} = \partial_{j}\Gamma^{m}_{ik} - \partial_{k}\Gamma^{m}_{ij} + \Gamma^{m}_{nj}\Gamma^{n}_{ik} - \Gamma^{m}_{nk}\Gamma^{n}_{ij}.$$

Without proof we state that among all components of $R_{\ell ijk}$, with $i, j, k, \ell = 1, 2$, there is only one independent degree of freedom, which we may take to correspond to R_{1212} .

(5) **f1.** Expand the Einstein summation in the expression for $R_{r\phi r\phi}$ symbolically in terms of all *nonzero* Γ -terms without substituting their actual functional values (recall the hint in problem b).

The only nontrivial
$$\Gamma$$
-terms are $\Gamma^{\phi}_{\phi r}=\Gamma^{\phi}_{r\phi}$ and $\Gamma^{r}_{\phi\phi}$, so that $R_{r\phi r\phi}=g_{rr}\left(\partial_{r}\Gamma^{r}_{\phi\phi}-\Gamma^{r}_{\phi\phi}\Gamma^{\phi}_{\phi r}\right)$.

(5) **f2.** Evaluate $R_{r\phi r\phi}$ by substituting the functional values for the Γ-symbols in terms of r and ϕ as obtained in problem b and explain your result.

Using the result of problem b, together with $g_{rr}=1$, we obtain $R_{r\phi r\phi}=g_{rr}\left(\partial_r\Gamma^r_{\phi\phi}-\Gamma^r_{\phi\phi}\Gamma^\phi_{\phi r}\right)=\partial_r(-r)-(-r)\frac{1}{r}=0$. This result is as expected, since (i) the Christoffel symbols of the flat connection vanish identically in Cartesian coordinates, whence $R_{\ell ijk}=0$ in Cartesian coordinates $x\in\mathbb{R}^2$, and (ii) the holor of the Riemann tensor transforms linearly under coordinate transformations, thus $\overline{R}_{\ell ijk}=0$ in any other coordinate system $\overline{x}\in\mathbb{R}^2$. (This argument is not quite rigorous, since polar coordinates $(\overline{x}^1,\overline{x}^2)=(r,\phi)$ are somewhat problematic. We ignore this subtlety here.)

(35) 3. Quarks & Isospin Multiplets

QUARK MODEL OF PROTON (LEFT) AND NEUTRON (RIGHT). THE SIGNIFICANCE OF COLOUR IS NOT ADDRESSED IN THIS PROBLEM.

According to a model introduced by Gell-Mann, quarks are the building blocks of elementary particles known as hadrons. We consider two 'flavours', referred to as up (u) and down quark (d). These two quarks $\{u,d\}$ are considered to span an abstract 2-dimensional complex inner product space \mathbb{C}^2 through the following identification:

$$u = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$
, $d = \begin{pmatrix} 0 \\ 1 \end{pmatrix}$.

Given $v, w \in \mathbb{C}^2$, their standard complex inner product is given by $(v|w) = \overline{v}^1 w^1 + \overline{v}^2 w^2$, in which the overline denotes complex conjugation. The Gram matrix G with components $g_{ij}, i, j = 1, 2$, is defined by $(v|w) = g_{ij}\overline{v}^i w^j$. In particular we have $(\mathsf{u}|\mathsf{u}) = (\mathsf{d}|\mathsf{d}) = 1$, $(\mathsf{u}|\mathsf{d}) = \overline{(\mathsf{d}|\mathsf{u})} = 0$.

- (5) **a.** Explain why we do not need to make any distinction between the 'contravariant' components of a vector $v \in \mathbb{C}^2$ relative to the basis $\{u, d\}$ and their covariant counterparts, i.e. the corresponding components of the covector $\hat{v} \doteq (v|_{-}) \in (\mathbb{C}^2)^*$.
 - Let $v=a\mathsf{u}+b\mathsf{d}=\begin{pmatrix} a\\b \end{pmatrix}\in\mathbb{C}^2$ relative to basis $\{\mathsf{u},\mathsf{d}\}$ for some $a,b\in\mathbb{C}$. Then $\hat{v}=\sharp v=a\sharp \mathsf{u}+b\sharp \mathsf{d}$ with $\sharp \mathsf{u}=g_{11}\hat{\mathsf{u}}+g_{12}\hat{\mathsf{d}}=\hat{\mathsf{u}}$ and similarly $\sharp \mathsf{d}=g_{21}\hat{\mathsf{u}}+g_{22}\hat{\mathsf{d}}=\hat{\mathsf{d}}$, so that $\hat{v}=a\hat{\mathsf{u}}+b\hat{\mathsf{d}}=(a,b)\in(\mathbb{C}^2)^*$ relative to the dual basis $\{\hat{\mathsf{u}},\hat{\mathsf{d}}\}$. Thus a vector v has the same contravariant components relative to $\{\mathsf{u},\mathsf{d}\}$ as its covariant counterpart \hat{v} has relative to $\{\hat{\mathsf{u}},\hat{\mathsf{d}}\}$: $v_1=v^1=a,v_2=v^2=b$.
- (5) **b.** Show that if $U: \mathbb{C}^2 \to \mathbb{C}^2: v \mapsto Uv$ preserves the inner product, i.e. if (Uv|Uw) = (v|w) for all $v, w \in \mathbb{C}^2$, then the matrix U must be of the form

$$U = \left(\begin{array}{cc} \alpha & -\beta \\ \overline{\beta} & \overline{\alpha} \end{array}\right) \,,$$

for some $\alpha, \beta \in \mathbb{C}$, with $\det U = |\alpha|^2 + |\beta|^2 = 1$, i.e. a unitary matrix.

From its definition it follows that $U^{\dagger}U=I$, the identity matrix. Without loss of generality we may set

$$U = \left(\begin{array}{cc} \alpha & -B \\ \overline{\beta} & \overline{A} \end{array} \right) \,,$$

for some constants $\alpha, \beta, A, B \in \mathbb{C}$. The above matrix identity then yields three independent equations:

(*)
$$\begin{cases} |\alpha|^2 + |\beta|^2 &= 1, \\ |A|^2 + |B|^2 &= 1, \\ -\overline{\alpha}B + \overline{A}\beta &= 0. \end{cases}$$

By taking the determinant of the matrix identity we also observe that $1 = \det I = \det U^{\dagger}U$, i.e.

(**)
$$\alpha \overline{A} + \overline{\beta} B$$
.

Multiplying the complex conjugate of the third equation of (*) by B and subtracting A times (**) yields, when combined with the second equation of (*), $\beta = B$. Likewise, multiplying (**) by A and subtracting B times the complex conjugate of the last equation of (*) yields $\alpha = A$. This establishes the form of U, subject to the remaining constraint $|\alpha|^2 + |\beta|^2 = 1$, i.e. the first equation of (*).

Consistent with experimental observations, the laws of nature governing nuclear forces appear to be symmetric under unitary transformations in the space \mathbb{C}^2 spanned by the up and down quark. However, up and down quarks have never been observed in isolation. We therefore consider a subclass of hadrons consisting of three quarks, the so-called baryons, to which the familiar proton and neutron belong.

To represent quark triplets we consider the threefold tensor product space $\mathbf{T}_0^3(\mathbb{C}^2) = \mathbb{C}^2 \otimes \mathbb{C}^2 \otimes \mathbb{C}^2$.

(5) **c.** Show that $\dim \mathbb{C}^2 \otimes \mathbb{C}^2 \otimes \mathbb{C}^2 = 8$, and provide a basis of $\mathbb{C}^2 \otimes \mathbb{C}^2 \otimes \mathbb{C}^2$ induced by $\{u, d\}$.

A naturally induced basis is given by $\{u \otimes u \otimes u, u \otimes u \otimes d, u \otimes d \otimes u, d \otimes u \otimes u, u \otimes d \otimes d, d \otimes u \otimes d, d \otimes d \otimes u, d \otimes d \otimes d\}$. Indeed, since $\dim \mathbb{C}^2 = 2$ its follows that $\dim \mathbb{C}^2 \otimes \mathbb{C}^2 \otimes \mathbb{C}^2 = 2^3 = 8$.

It turns out that there are four so-called Δ -baryons of equal mass. This suggests that we consider a four-dimensional subspace invariant under unitary transformations.

(5) **d.** Show that the subspace $\bigvee^3(\mathbb{C}^2) = \mathbb{C}^2 \otimes_s \mathbb{C}^2 \otimes_s \mathbb{C}^2 \subset \mathbb{C}^2 \otimes \mathbb{C}^2 \otimes \mathbb{C}^2 = \mathbf{T}_0^3(\mathbb{C}^2)$ of fully symmetric 3-tensors is indeed four-dimensional, and provide a basis induced by $\{\mathsf{u},\mathsf{d}\}$.

We have, with dimension $n=\dim\mathbb{C}^2=2$ and rank d=3, $\dim\bigvee^3(\mathbb{C}^2)=\binom{n+d-1}{d}=4$. A naturally induced basis is given by $\{\mathsf{u}\otimes\mathsf{u}\otimes\mathsf{u},\mathsf{u}\otimes\mathsf{u}\otimes\mathsf{d}+\mathsf{u}\otimes\mathsf{d}\otimes\mathsf{u}+\mathsf{d}\otimes\mathsf{u}\otimes\mathsf{u},\mathsf{u}\otimes\mathsf{d}\otimes\mathsf{d}+\mathsf{d}\otimes\mathsf{u}\otimes\mathsf{d}+\mathsf{d}\otimes\mathsf{d}\otimes\mathsf{d}\}$. Alternatively, using the symmetric tensor product operator \vee we may write this as $\{\mathsf{u}\vee\mathsf{u}\vee\mathsf{u},\mathsf{u}\vee\mathsf{u}\vee\mathsf{d},\mathsf{u}\vee\mathsf{d}\vee\mathsf{d},\mathsf{d}\vee\mathsf{d}\vee\mathsf{d}\}$.

The four Δ -baryons are Δ^{++} , Δ^{+} , Δ^{0} , Δ^{-} , in which the superscript indicates elementary electric charge $Q(\Delta^{++})=2\mathrm{e}$, $Q(\Delta^{+})=\mathrm{e}$, $Q(\Delta^{0})=0$, respectively $Q(\Delta^{-})=-\mathrm{e}$.

In view of the observed electric charges we assume that the quarks $u, d \in \mathbb{C}^2$ each have a definite charge, Q(u), respectively Q(d), with $Q(u) \geq Q(d)$ to resolve ambiguity.

(5) **e.** Determine the elementary charges Q(u) and Q(d) of the u and d quark, such that the Δ -baryons can be consistently related to the basis of $\bigvee^3(\mathbb{C}^2)$ (recall d), and explain assumptions you have made.

We have $Q(\mathsf{u} \vee \mathsf{u} \vee \mathsf{u}) = 3Q(\mathsf{u})$, $Q(\mathsf{u} \vee \mathsf{u} \vee \mathsf{d}) = 2Q(\mathsf{u}) + Q(\mathsf{d})$, $Q(\mathsf{u} \vee \mathsf{d} \vee \mathsf{d}) = Q(\mathsf{u}) + 2Q(\mathsf{d})$, $Q(\mathsf{d} \vee \mathsf{d} \vee \mathsf{d}) = 3Q(\mathsf{d})$. The assumption made here is that Q is well-defined for linear combinations Δ of tensor products of the form $q_1 \otimes q_2 \otimes q_3 \in \mathbb{C}^2 \times \mathbb{C}^2 \times \mathbb{C}^2$, with $q_i \in \{\mathsf{u},\mathsf{d}\}$, having an equal number of u 's and d 's. In this case, $Q(\Delta) = Q(q_1 \otimes q_2 \otimes q_3) = n_u Q(\mathsf{u}) + n_d Q(\mathsf{d})$, in which n_u and $n_d = 3 - n_u$ indicate the respective numbers of u and d quarks among (q_1,q_2,q_3) . With the choice $Q(\mathsf{u}) \geq Q(\mathsf{d})$ we must apparently set $3Q(\mathsf{u}) = 2\mathsf{e}$, whence $Q(\mathsf{u}) = \frac{2}{3}\mathsf{e}$, from which it follows consistently that $Q(\mathsf{d}) = -\frac{1}{3}\mathsf{e}$. Thus we have the identifications $\Delta^{++} \sim \mathsf{u} \vee \mathsf{u} \vee \mathsf{u} = \mathsf{u} \otimes \mathsf{u} \otimes \mathsf{u}$, $\Delta^+ \sim \mathsf{u} \vee \mathsf{u} \vee \mathsf{d} = \mathsf{u} \otimes \mathsf{u} \otimes \mathsf{d} + \mathsf{d} \otimes \mathsf{u} \otimes \mathsf{d} + \mathsf{d} \otimes \mathsf{d} \otimes \mathsf{u}$, and $\Delta^- \sim \mathsf{d} \vee \mathsf{d} \vee \mathsf{d} = \mathsf{d} \otimes \mathsf{d} \otimes \mathsf{d}$.

Recall $\dim \mathbb{C}^2 \otimes_s \mathbb{C}^2 \otimes_s \mathbb{C}^2 = 4$ while $\dim \mathbb{C}^2 \otimes \mathbb{C}^2 \otimes \mathbb{C}^2 = 8$. We wish to capture the 'missing dimensions' by considering complementary subspaces. To this end consider $\mathbb{C}^2 \otimes_A \mathbb{C}^2 \otimes \mathbb{C}^2 \otimes \mathbb{C}^2 \otimes \mathbb{C}^2 \otimes \mathbb{C}^2 \otimes \mathbb{C}^2$ and $\mathbb{C}^2 \otimes \mathbb{C}^2 \otimes_A \mathbb{C}^2$

(5) **f.** Show that $\dim \mathbb{C}^2 \otimes_A \mathbb{C}^2 \otimes \mathbb{C}^2 = \dim \mathbb{C}^2 \otimes \mathbb{C}^2 \otimes_A \mathbb{C}^2 = 2$, and provide a suitable basis for each induced by $\{u, d\}$.

A basis of $\mathbb{C}^2 \otimes_A \mathbb{C}^2 \otimes \mathbb{C}^2$ is given by $\{(u \otimes d - d \otimes u) \otimes u, (u \otimes d - d \otimes u) \otimes d\}$. A basis of $\mathbb{C}^2 \otimes \mathbb{C}^2 \otimes_A \mathbb{C}^2$ is given by $\{u \otimes (u \otimes d - d \otimes u), d \otimes (u \otimes d - d \otimes u)\}$.

As with the Δ -baryons there is a similar approximate symmetry in the laws of nature governing the nuclear forces involving protons and neutrons.

(5) **g.** Assuming that the proton-neutron doublet constitutes a two-dimensional space spanned by $\{p,n\}$ that can be identified with one of the aforementioned subspaces, $\mathbb{C}^2 \otimes_A \mathbb{C}^2 \otimes \mathbb{C}^2$, say, which identification would you make between the basis vectors p and n and those of $\mathbb{C}^2 \otimes_A \mathbb{C}^2 \otimes \mathbb{C}^2$?

The basis $\{(\mathsf{u}\otimes\mathsf{d}-\mathsf{d}\otimes\mathsf{u})\otimes\mathsf{u}, (\mathsf{u}\otimes\mathsf{d}-\mathsf{d}\otimes\mathsf{u})\otimes\mathsf{d}\}$ of $\mathbb{C}^2\otimes_{\mathsf{A}}\mathbb{C}^2\otimes\mathbb{C}^2$ can be identified with $\{\mathsf{p},\mathsf{n}\}$ through the identification $\mathsf{p}=(\mathsf{u}\otimes\mathsf{d}-\mathsf{d}\otimes\mathsf{u})\otimes\mathsf{u}$ and $\mathsf{n}=(\mathsf{u}\otimes\mathsf{d}-\mathsf{d}\otimes\mathsf{u})\otimes\mathsf{d}$, so that the actual charges $e=Q(\mathsf{p})=2Q(\mathsf{u})+Q(\mathsf{d})=2\times\frac{2}{3}e-\frac{1}{3}e$ and $0=Q(\mathsf{n})=Q(\mathsf{u})-2Q(\mathsf{d})=\frac{2}{3}e-2\times\frac{1}{3}e$ are consistent with the quark charges and the additive rule established in problem e.