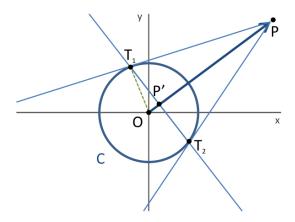
EXAMINATION TENSOR CALCULUS AND DIFFERENTIAL GEOMETRY

Course code: 2WAH0-2WAH1. Date: Tuesday June 21, 2016. Time: 18h00-21h00. Place: AUD 11.

Read this first!

- Write your name and student identification number on each paper.
- The exam consists of 3 problems. The maximum credit for each item is indicated in the margin.
- Motivate your answers.
- Einstein summation convention applies throughout for all repeated indices.
- You may consult an immaculate hardcopy of the online draft notes "Tensor Calculus and Differential Geometry (2WAH0)" by Luc Florack. No equipment may be used.



Indicatrix $C: x^2 + y^2 = 1$. The point P' is the inversion of the point P in the circle C.

(30) 1. INDICATRIX

The so-called indicatrix $C: x^2+y^2=1$ is a geometrical construction of the Euclidean metric (standard inner product) in the Cartesian coordinate plane. Assume point P=(p,q) is given, somewhere outside C. There are two lines through P tangent to C, touching at the points T_1 , respectively T_2 . The so-called polar line T_1T_2 intersects the line P'=(m,n), say.

(5) **a1.** Show that OP: 1 = 1: OP'. [Hint: Compare the triangles P'TO and TOP, with T either T_1 or T_2 .]

The triangles P'TO and TOP (with T either T_1 or T_2) are similar, thus ratios of corresponding sides are equal. In particular we have OP : OT = OT : OP', with OT = 1, the unit radius of C.

(5) **a2.** Show that the coordinates of P' are given by $(m, n) = (\frac{p}{p^2 + q^2}, \frac{q}{p^2 + q^2})$.

The point P' lies, by definition, on OP, so that $\overrightarrow{OP'} \propto \overrightarrow{OP} = (p,q)$, say $\overrightarrow{OP'} = \alpha \overrightarrow{OP}$. The proportionality constant $\alpha > 0$ follows from a1, viz. $\alpha = OP'/OP = 1/OP^2 = 1/(p^2 + q^2)$.

(5) **b.** Argue why $\overrightarrow{OP} \perp T_1T_2$, and show that the line T_1T_2 is given by px + qy = 1.

A symmetry argument: The triangles $P'T_1P$ and $P'T_2P$ are eachother's mirror images in the line OP, thus in particular it follows that $\angle T_1P'P = \angle T_2P'P = 180^\circ/2 = 90^\circ$, i.e. $\overrightarrow{OP} \perp T_1T_2$. As a result, the line T_1T_2 is given by px + qy = constant. Substituting the coordinates of $P' \in T_1T_2$ from a2 yields constant = 1.

In summary, if $(m^1, m^2) = (m, n)$ and $(p^1, p^2) = (p, q)$ are the coordinates of $\overrightarrow{OP'}$, respectively \overrightarrow{OP} , $(x^1, x^2) = (x, y)$ any point on the indicatrix $C: x^2 + y^2 = 1$, and $\eta_{ij}, i, j = 1, 2$, the matrix elements of the 2×2 -identity matrix I, then, with \cdot denoting the standard inner product on \mathbb{R}^2 , we have

$$(\star) \qquad \left\{ \begin{array}{lll} \overrightarrow{\mathrm{OP'}} \cdot \overrightarrow{\mathrm{OP}} : & mp + nq & = & 1 \, , \\ & T_1 T_2 : & px + qy & = & 1 \, , \\ & C : & x^2 + y^2 & = & 1 \, . \end{array} \right. \iff \left\{ \begin{array}{lll} \overrightarrow{\mathrm{OP'}} \cdot \overrightarrow{\mathrm{OP}} : & \eta_{ij} m^i p^j & = & m_j p^j & = & 1 \, , \\ & T_1 T_2 : & \eta_{ij} p^i x^j & = & p_j x^j & = & 1 \, , \\ & C : & \eta_{ij} x^i x^j & = & x_j x^j & = & 1 \, . \end{array} \right.$$

The indicatrix C is a pictorial representation of the covariant Euclidean metric tensor $H = \eta_{ij} dx^i \otimes dx^j$. The polar line T_1T_2 provides a pictorial representation of the covector $\widehat{p} = p_i dx^i$ associated with the vector $\overrightarrow{p} = p^i \partial_i$ in the sense that it is just the differential of the left hand side of its defining equation. Note that the components p_i of the normal of the polar line happen to coincide numerically with the vector components p^i of $\overrightarrow{p} = \overrightarrow{OP}$. This is an artefact of our choice of coordinates, or, alternatively, of the isotropic nature of C expressed in these coordinates, with $\eta_{ij} = 1$ if i = j and zero otherwise.

Consider a linear change of coordinates, $x^i = L^i_j \overline{x}^j$, say, in which L^i_j , i, j = 1, 2, are the matrix entries of the transformation matrix

$$L = \left(\begin{array}{cc} L_1^1 & L_2^1 \\ L_1^2 & L_2^2 \end{array} \right) = \left(\begin{array}{cc} a & c \\ b & d \end{array} \right) \,.$$

(10) **c.** Rewrite the system (\star) for $\overrightarrow{OP'} \cdot \overrightarrow{OP}$, T_1T_2 and C, in terms of the new coordinates $(\overline{x}^1, \overline{x}^2) = (\overline{x}, \overline{y})$, the parameters m, n, p, q, and the components a, b, c, d of the transformation matrix L.

Since all defining equations are represented in scalar form in (\star) we have, after transformation:

with

$$\overline{\eta}_{k\ell} = L_k^i \eta_{ij} L_\ell^j \quad m^i = L_j^i \overline{m}^j \quad p^i = L_j^i \overline{p}^j \quad x^i = L_j^i \overline{x}^j \quad \overline{m}_i = L_i^j m_j \quad \overline{p}_i = L_i^j p_j \quad \overline{x}_i = L_i^j x_j .$$

Explicitly in terms of the given parameters:

$$\begin{cases}
\overrightarrow{OP'} \cdot \overrightarrow{OP} : & mp + nq & = 1, \\
T_1T_2 : & (ap + bq)\overline{x} + (cp + dq)\overline{y} & = 1, \\
C : & (a^2 + b^2)\overline{x}^2 + 2(ac + bd)\overline{x}\overline{y} + (c^2 + d^2)\overline{y}^2 & = 1.
\end{cases}$$

(5) **d.** Suppose we would redraw the aforementioned geometric construct (point P, tangent cords PT_1 and

PT₂, polar line T₁T₂, spherical reflection P', and indicatrix C, with all objects defined in terms of their $(\overline{x}, \overline{y})$ -coordinatizations, in a *rectangular* $(\overline{x}, \overline{y})$ -coordinate system in which basis (co)vectors are depicted as horizontal/vertical unit \mathbb{R}^2 -coordinate (co)vectors:

$$\partial_{\overline{x}} \sim \left(\begin{array}{c} 1 \\ 0 \end{array} \right) \quad \partial_{\overline{y}} \sim \left(\begin{array}{c} 0 \\ 1 \end{array} \right) \, .$$

Would the polar line T_1T_2 still be perpendicular to the vector \overrightarrow{OP} ? Motivate your answer by an explicit computation of the coordinates \overline{p}^i and \overline{p}_i .

No. The inner product is now given by the Gram matrix

$$\overline{H} = L^{\mathsf{T}}L = \left(\begin{array}{cc} a^2 + b^2 & ac + bd \\ ac + bd & c^2 + d^2 \end{array} \right).$$

Consequently, the vector \overrightarrow{OP} has coordinates $\overline{p}^i = (L^{-1})^i_i p^j$, whereas $\sharp \overrightarrow{OP}$, the normal to $T_1 T_2$, has coordinates $\overline{p}_i = L^j_i p_j$, i.e.

$$\overrightarrow{\mathrm{OP}} = \frac{1}{ad - bc} \left(\begin{array}{c} pd - cq \\ -bp + aq \end{array} \right) \quad \sharp \overrightarrow{\mathrm{OP}} = \left(\begin{array}{c} ap + bq \\ cp + dq \end{array} \right)$$

relative to bases $\{\partial_{\overline{x}}, \partial_{\overline{y}}\}$, respectively $\{d\overline{x}, d\overline{y}\}$. Drawn as vectors in the \mathbb{R}^2 -plane with these basis (co)vectors represented as horizontal and vertical unit (co)vectors, these are, in general, not collinear. More precisely, we have

$$\cos \angle (T_1 T_2, \overrightarrow{OP}) = \frac{\overrightarrow{OP} \cdot \sharp \overrightarrow{OP}}{\|OP\| \|\sharp \overrightarrow{OP}\|} \neq 0 \text{ generically.}$$

(25) 2. KILLING VECTORS

The Lie derivative w.r.t. a given vector field \mathbf{v} is a linear first order partial differential operator satisfying the product rule, such that

$$\mathcal{L}_{\mathbf{v}} f = \mathbf{v} f$$
 and $\mathcal{L}_{\mathbf{v}} \hat{\boldsymbol{\omega}} = d\left(\hat{\boldsymbol{\omega}}(\mathbf{v})\right)$,

for a scalar field f, respectively a covector field $\hat{\omega}$.

(5) **a.** Show that $\mathcal{L}_{\mathbf{v}} dx^i = \partial_k v^i dx^k$.

We have $\mathcal{L}_{\mathbf{v}}dx^i = d(dx^i(v)) = dv^i = \partial_k v^i dx^k$.

Let $g = g_{ij}dx^i \otimes dx^j$ denote the covariant metric tensor field. By D_i we denote the covariant derivative operator w.r.t. x^i induced by the Levi-Civita connection.

(5) **b1.** Show that $\mathscr{L}_{\mathbf{v}}g = (v^k \partial_k g_{ij} + \partial_i v^k g_{kj} + \partial_j v^k g_{ik}) dx^i \otimes dx^j$.

By virtue of the product rule we have

$$\mathscr{L}_{\mathbf{v}}g = \mathscr{L}_{\mathbf{v}}(g_{ij}dx^{i}\otimes dx^{j}) = \mathscr{L}_{\mathbf{v}}g_{ij}dx^{i}\otimes dx^{j} + g_{ij}\mathscr{L}_{\mathbf{v}}dx^{i}\otimes dx^{j} + g_{ij}dx^{i}\otimes \mathscr{L}_{\mathbf{v}}dx^{j}.$$

According to the definitions (and using a above) we have $\mathcal{L}_{\mathbf{v}}g_{ij} = v^k \partial_k g_{ij}$, $\mathcal{L}_{\mathbf{v}}dx^i = \partial_k v^i dx^k$, and $\mathcal{L}_{\mathbf{v}}dx^j = \partial_k v^j dx^k$. With some trivial dummy index relabelling this yields

$$\mathscr{L}_{\mathbf{v}}g = (v^k \partial_k g_{ij} + \partial_i v^k g_{kj} + \partial_j v^k g_{ik}) dx^i \otimes dx^j.$$

(5) **b2.** Show that, equivalently, $\mathscr{L}_{\mathbf{v}}g = (D_i v_j + D_j v_i) dx^i \otimes dx^j$.

Substitute $g_{ik}\partial_j v^k = \partial_j (g_{ik}v^k) - \partial_j g_{ik}v^k = \partial_j v_i - \partial_j g_{ik}v^k$ and $g_{kj}\partial_i v^k = \partial_i (g_{kj}v^k) - \partial_i g_{kj}v^k = \partial_i v_j - \partial_i g_{kj}v^k$ and $v^k = g^{k\ell}v_\ell$ into the result of b1:

$$v^k \partial_k g_{ij} + \partial_i v^k g_{kj} + \partial_j v^k g_{ik} = \partial_j v_i + \partial_i v_j + g^{k\ell} (\partial_k g_{ij} - \partial_j g_{ik} - \partial_i g_{kj}) v_\ell,$$

and one recognizes on the r.h.s

$$\partial_j v_i - \frac{1}{2} g^{k\ell} (-\partial_k g_{ij} + \partial_j g_{ik} + \partial_i g_{kj}) v_\ell = \partial_j v_i - \Gamma^\ell_{ij} v_\ell = D_j v_i \quad \text{and} \quad \partial_i v_j - \frac{1}{2} g^{k\ell} (-\partial_k g_{ij} + \partial_j g_{ik} + \partial_i g_{kj}) v_\ell = \partial_i v_j - \Gamma^\ell_{ji} v_\ell = D_i v_j .$$

A vector field v is called a Killing vector field if $\mathcal{L}_{\mathbf{v}}g = 0$. We henceforth consider the Euclidean metric of flat 3-dimensional space in Cartesian coordinates $(x^1, x^2, x^3) = (x, y, z)$, and a Killing vector field with component functions $(v^1, v^2, v^3) = (u, v, w)$.

(10) **c.** Show that the Killing vector field must satisfy $u_x = v_y = w_z = 0$ and $v_x + u_y = w_x + u_z = w_y + v_z = 0$.

In formal matrix notation we have, most easily using b2 and the observation that $D_i = \partial_i$ since $\Gamma_{i,i}^{\ell} = 0$,

$$\mathcal{L}_{\mathbf{v}}g = \mathrm{tr} \left[\left(\begin{array}{cccc} 2u_x & v_x + u_y & w_x + u_z \\ v_x + u_y & 2v_y & w_y + v_z \\ w_x + u_z & w_y + v_z & 2w_z \end{array} \right) \left(\begin{array}{cccc} dx \otimes dx & dx \otimes dy & dx \otimes dz \\ dy \otimes dx & dy \otimes dy & dy \otimes dz \\ dz \otimes dx & dz \otimes dy & dz \otimes dz \end{array} \right) \right] \,,$$

which vanishes identically iff the first matrix factor in this expression vanishes identically.

(45) 3. LINEARIZED GRAVITY

In the presence of weak gravitational fields it is convenient to linearize the Einstein field equation for the gravitational potential, i.e. the pseudo-Riemannian spacetime metric tensor of General Relativity (GR):

$$g_{\mu\nu}(x) = \eta_{\mu\nu} + h_{\mu\nu}(x) .$$

Here, $\eta_{\mu\nu}$ is the holor of the Minkowski metric of Special Relativity (SR), in an "inertial" coordinate system given by the universally constant matrix $\eta_{\mu\nu} = \text{diag} \{-1,1,1,1\}$, with $\mu,\nu=0,1,2,3$. Index value 0 refers to the temporal basis vector ∂_t , index values 1, 2, 3 to the three independent spatial basis vectors $\partial_x, \partial_y, \partial_z$.

In linearized gravity one thinks of the perturbation $h_{\mu\nu}$ as a spatiotemporal tensor field propagating on the constant Minkowski background spacetime. Its entries are spatiotemporal functions with values that are small relative to those of the background field: $|h_{\mu\nu}| \ll 1$. This allows one to approximate exact GR laws in terms of expansions to order $\mathcal{O}(h)$, neglecting higher order terms. This $\mathcal{O}(h)$ approximation is assumed throughout this problem without explicit indication of discarded higher order terms.

The (exact) Einstein's field equation is a tensorial nonlinear partial differential equation that governs the spacetime metric $g_{\mu\nu}$ in relation to the flux of energy and momentum, which is captured by the energy-momentum tensor field $T_{\mu\nu}$:

(*)
$$R_{\mu\nu} - \frac{1}{2} R g_{\mu\nu} = 8\pi T_{\mu\nu}$$
.

(Units are defined such that G = c = 1, with G: gravitational constant, c: velocity of light.) Recall that the Ricci tensor is given in terms of the Levi-Civita Christoffel symbols by

$$R_{\mu\nu} = \Gamma^{\alpha}_{\mu\nu,\alpha} - \Gamma^{\alpha}_{\mu\alpha,\nu} - \Gamma^{\beta}_{\mu\alpha} \, \Gamma^{\alpha}_{\beta\nu} + \Gamma^{\beta}_{\mu\nu} \, \Gamma^{\alpha}_{\beta\alpha} \,.$$

An index preceded by a comma indicates a differentiation index: $f_{,\alpha} \stackrel{\text{def}}{=} \partial_{\alpha} f$.

(5) **a.** Show that (*) reduces to $R_{\mu\nu}=0$ in the homogeneous ("vacuum") case in which $T_{\mu\nu}=0$.

If $T_{\mu\nu}=0$, take the trace of (*): $0=g^{\mu\nu}(R_{\mu\nu}-\frac{1}{2}R\,g_{\mu\nu})=R-2R=-R$, thus the vacuum field equation reduces to $R_{\mu\nu}=0$.

Even this simplified vacuum field equation is a nonlinear partial differential equation for $g_{\mu\nu}$ that is not easily solved. Perturbation theory allows us to linearize (*) and a fortiori its homogeneous counterpart.

(5) **b.** Show that, in linearized gravity, we may approximate $R_{\mu\nu} = \Gamma^{\alpha}_{\mu\nu,\alpha} - \Gamma^{\alpha}_{\mu\alpha,\nu}$, ignoring the $\Gamma\Gamma$ -terms.

Making use of the constancy of $\eta_{\mu\nu}$, the connection coefficients are seen to be $\mathcal{O}(h)$:

$$\Gamma^{\alpha}_{\mu\nu} = \frac{1}{2} g^{\lambda\alpha} (-\partial_{\lambda} g_{\mu\nu} + \partial_{\nu} g_{\mu\lambda} + \partial_{\mu} g_{\lambda\nu}) = \frac{1}{2} (\eta^{\lambda\alpha} + \mathcal{O}(h)) (-\partial_{\lambda} h_{\mu\nu} + \partial_{\nu} h_{\mu\lambda} + \partial_{\mu} h_{\lambda\nu}) = \mathcal{O}(h) \,.$$

(5) **c.** Show that, in linearized gravity, $\Gamma^{\mu}_{\alpha\beta} = \frac{1}{2} \left(-\partial^{\mu}h_{\alpha\beta} + \partial_{\beta}h^{\mu}_{\alpha} + \partial_{\alpha}h^{\mu}_{\beta} \right)$. Explain why index raising in this expression may be carried out with the help of the background (dual) metric $\eta^{\mu\nu}$ instead of $g^{\mu\nu}$.

This follows from the previous derivation in b, ignoring the higher order terms, and setting $\eta^{\lambda\alpha}\partial_{\lambda}=\partial^{\alpha}$. This index raising by the Minkowski dual metric is allowed, since for the actual metric we have $g^{\lambda\alpha}=\eta^{\lambda\alpha}+\mathcal{O}(h)$, and the $\mathcal{O}(h)$ -terms in this identity only contribute to the negligible $\mathcal{O}(h^2)$ -terms in the Γ -symbols.

(5) **d.** Show that, in linearized gravity, $R_{\mu\nu} = \frac{1}{2} \left(-\partial^{\alpha}\partial_{\alpha}h_{\mu\nu} + \partial_{\mu}\partial_{\alpha}h_{\nu}^{\alpha} + \partial_{\alpha}\partial_{\nu}h_{\mu}^{\alpha} - \partial_{\mu}\partial_{\nu}h_{\alpha}^{\alpha} \right)$.

Use the definition of the Ricci tensor and the observations in b and c. We have (with the abbreviated notation $f_{,\gamma}=\partial_{\gamma}f$)

$$\Gamma^{\mu}_{\alpha\beta,\gamma} = \frac{1}{2} \left(-\partial^{\mu}\partial_{\gamma}h_{\alpha\beta} + \partial_{\alpha}\partial_{\gamma}h^{\mu}_{\beta} + \partial_{\beta}\partial_{\gamma}h^{\mu}_{\alpha} \right) \,,$$

and thus

$$\Gamma^{\alpha}_{\mu\nu,\alpha} = \frac{1}{2} \left(-\partial^{\alpha}\partial_{\alpha}h_{\mu\nu} + \partial_{\mu}\partial_{\alpha}h^{\alpha}_{\nu} + \partial_{\nu}\partial_{\alpha}h^{\alpha}_{\mu} \right) \,,$$

respectively

$$\Gamma^{\alpha}_{\mu\alpha,\nu} = \frac{1}{2} \left(-\partial^{\alpha}\partial_{\nu}h_{\mu\alpha} + \partial_{\mu}\partial_{\nu}h^{\alpha}_{\alpha} + \partial_{\alpha}\partial_{\nu}h^{\alpha}_{\mu} \right) \, .$$

Subtraction of the last two identities yields

$$R_{\mu\nu} = \Gamma^{\alpha}_{\mu\nu,\alpha} - \Gamma^{\alpha}_{\mu\alpha,\nu} = \frac{1}{2} \left(-\partial^{\alpha}\partial_{\alpha}h_{\mu\nu} + \partial_{\mu}\partial_{\alpha}h^{\alpha}_{\nu} + \partial^{\alpha}\partial_{\nu}h_{\mu\alpha} - \partial_{\mu}\partial_{\nu}h^{\alpha}_{\alpha} \right).$$

Note that $\partial^{\alpha}\partial_{\nu}h_{\mu\alpha}$ may be rewritten as $\partial_{\alpha}\partial_{\nu}h_{\mu}^{\alpha}$.

One commonly abbreviates

$$h \stackrel{\text{def}}{=} h_{\alpha}^{\alpha}$$
 and $\Box \stackrel{\text{def}}{=} \partial^{\alpha} \partial_{\alpha}$,

so that

$$R_{\mu\nu} = \frac{1}{2} \left(-\Box h_{\mu\nu} + \partial_{\mu} \partial_{\alpha} h^{\alpha}_{\nu} + \partial_{\alpha} \partial_{\nu} h^{\alpha}_{\mu} - \partial_{\mu} \partial_{\nu} h \right) \,.$$

Moreover, the Ricci scalar is defined as

$$R=R^{\mu}_{\mu}$$
.

(5) **e.** Show that, in linearized gravity, $R = \partial_{\mu\alpha}h^{\mu\alpha} - \Box h$.

The main observation is that $R=g^{\mu\nu}R_{\mu\nu}=(\eta^{\mu\nu}+\mathcal{O}(h))R_{\mu\nu}$, in which once again we may ignore the $\mathcal{O}(h)$ -terms, since the Ricci tensor is itself $\mathcal{O}(h)$. Thus, using d, with the simplified notation for the trace and d'Alembertian,

$$R = \eta^{\mu\nu} R_{\mu\nu} = \frac{1}{2} \eta^{\mu\nu} \left(-\Box h_{\mu\nu} + \partial_{\mu} \partial_{\alpha} h^{\alpha}_{\nu} + \partial_{\alpha} \partial_{\nu} h^{\alpha}_{\mu} - \partial_{\mu} \partial_{\nu} h \right) = -\Box h + \partial_{\mu\alpha} h^{\mu\alpha} \,.$$

The l.h.s. of the Einstein field equation (*) is known as the Einstein tensor: $G_{\mu\nu} \stackrel{\text{def}}{=} R_{\mu\nu} - \frac{1}{2} R g_{\mu\nu}$.

(5) **f.** Show that, in linearized gravity,

$$G_{\mu\nu} = \frac{1}{2} \left(-\Box h_{\mu\nu} + \partial_{\mu} \partial_{\alpha} h_{\nu}^{\alpha} + \partial_{\alpha} \partial_{\nu} h_{\mu}^{\alpha} - \partial_{\mu} \partial_{\nu} h - \eta_{\mu\nu} \partial_{\alpha} \partial_{\beta} h^{\alpha\beta} + \eta_{\mu\nu} \Box h \right).$$

Again, in linearized gravity we may replace the product $Rg_{\mu\nu}=R\left(\eta_{\mu\nu}+h_{\mu\nu}\right)$ simply by $R\eta_{\mu\nu}$, since the Ricci scalar R is itself $\mathcal{O}(h)$. Given this, one straightforwardly substitutes the results obtained in d and e into the definition of the Einstein tensor to obtain the desired result

Another common notational convention relies on the so-called trace-reversed metric perturbation $\overline{h}_{\mu\nu}$:

$$\overline{h}_{\mu\nu} \stackrel{\text{def}}{=} h_{\mu\nu} - \frac{1}{2} h \eta_{\mu\nu} \,.$$

(5) **g.** Explain the attribute "trace-reversed".

Contraction with $\eta^{\mu\nu}$ readily reveals that $\overline{h} = \eta^{\mu\nu} \overline{h}_{\mu\nu} = \eta^{\mu\nu} (h_{\mu\nu} - \frac{1}{2}h\eta_{\mu\nu}) = h - 2h = -h$.

(5) **h.** Show that the definition of $\overline{h}_{\mu\nu}$ above is equivalent to $h_{\mu\nu} = \overline{h}_{\mu\nu} - \frac{1}{2}\overline{h}\eta_{\mu\nu}$.

We have, according to the definition, $h_{\mu\nu}=\overline{h}_{\mu\nu}+\frac{1}{2}h\eta_{\mu\nu}$. Substituting the result of g, i.e. $h=-\overline{h}$, on the r.h.s. yields the desired result.

(5) **i.** Show that, in terms of the trace-reversed metric perturbation, the linearized Einstein field equation is given by the linear partial differential equation

$$-\Box \overline{h}_{\mu\nu} + \partial_{\mu}\partial_{\alpha}\overline{h}_{\nu}^{\alpha} + \partial_{\alpha}\partial_{\nu}\overline{h}_{\mu}^{\alpha} - \eta_{\mu\nu}\partial_{\alpha}\partial_{\beta}\overline{h}^{\alpha\beta} = 16\pi T_{\mu\nu}.$$

The observation in h, viz. that $h_{\mu\nu} = \overline{h}_{\mu\nu} - \frac{1}{2}\overline{h}\eta_{\mu\nu}$, can be substituted directly into the Einstein tensor obtained in f, leading to some cancellations. Using (*) then completes the proof.