EXAMINATION TENSOR CALCULUS AND DIFFERENTIAL GEOMETRY

Course code: 2WAH0-2WAH1. Date: Tuesday June 21, 2016. Time: 18h00-21h00. Place: AUD 11.

Read this first!

- Write your name and student identification number on each paper.
- The exam consists of 3 problems. The maximum credit for each item is indicated in the margin.
- Motivate your answers.
- Einstein summation convention applies throughout for all repeated indices.
- You may consult an immaculate hardcopy of the online draft notes "Tensor Calculus and Differential Geometry (2WAH0)" by Luc Florack. No equipment may be used.

Indicatrix $C: x^2 + y^2 = 1$. The point P' is the inversion of the point P in the circle C.

(30) 1. INDICATRIX

The so-called indicatrix $C: x^2 + y^2 = 1$ is a geometrical construction of the Euclidean metric (standard inner product) in the Cartesian coordinate plane. Assume point P = (p, q) is given, somewhere outside C. There are two lines through P tangent to C, touching at the points T_1 , respectively T_2 . The so-called polar line T_1T_2 intersects the line OP at point P' = (m, n), say.

- (5) **a1.** Show that OP : 1 = 1 : OP'. [Hint: Compare the triangles P'TO and TOP, with T either T_1 or T_2 .]
- (5) **a2.** Show that the coordinates of P' are given by $(m, n) = (\frac{p}{p^2 + q^2}, \frac{q}{p^2 + q^2}).$

(5) **b.** Argue why $\overrightarrow{OP} \perp T_1T_2$, and show that the line T_1T_2 is given by px + qy = 1.

In summary, if $(m^1, m^2) = (m, n)$ and $(p^1, p^2) = (p, q)$ are the coordinates of $\overrightarrow{OP'}$, respectively \overrightarrow{OP} , $(x^1, x^2) = (x, y)$ any point on the indicatrix $C : x^2 + y^2 = 1$, and η_{ij} , i, j = 1, 2, the matrix elements of the 2×2-identity matrix I, then, with \cdot denoting the standard inner product on \mathbb{R}^2 , we have

$$(\star) \qquad \begin{cases} \overrightarrow{\mathsf{OP}'} \cdot \overrightarrow{\mathsf{OP}} : \ mp + nq \ = \ 1, \\ \mathsf{T}_1\mathsf{T}_2 : \ px + qy \ = \ 1, \\ \mathsf{C} : \ x^2 + y^2 \ = \ 1. \end{cases} \iff \begin{cases} \overrightarrow{\mathsf{OP}'} \cdot \overrightarrow{\mathsf{OP}} : \ \eta_{ij}m^ip^j \ = \ m_jp^j \ = \ 1, \\ \mathsf{T}_1\mathsf{T}_2 : \ \eta_{ij}p^ix^j \ = \ p_jx^j \ = \ 1, \\ \mathsf{C} : \ \eta_{ij}x^ix^j \ = \ x_jx^j \ = \ 1. \end{cases}$$

The indicatrix C is a pictorial representation of the covariant Euclidean metric tensor $H = \eta_{ij} dx^i \otimes dx^j$. The polar line T_1T_2 provides a pictorial representation of the covector $\hat{p} = p_i dx^i$ associated with the vector $\vec{p} = p^i \partial_i$ in the sense that it is just the differential of the left hand side of its defining equation. Note that the components p_i of the normal of the polar line happen to coincide numerically with the vector components p^i of $\vec{p} = \overrightarrow{OP}$. This is an artefact of our choice of coordinates, or, alternatively, of the isotropic nature of C expressed in these coordinates, with $\eta_{ij} = 1$ if i = j and zero otherwise.

Consider a linear change of coordinates, $x^i = L_j^i \overline{x}^j$, say, in which L_j^i , i, j = 1, 2, are the matrix entries of the transformation matrix

$$L = \begin{pmatrix} L_1^1 & L_2^1 \\ L_1^2 & L_2^2 \end{pmatrix} = \begin{pmatrix} a & c \\ b & d \end{pmatrix}.$$

- (10) **c.** Rewrite the system (*) for $\overrightarrow{OP'} \cdot \overrightarrow{OP}$, T_1T_2 and C, in terms of the new coordinates $(\overline{x}^1, \overline{x}^2) = (\overline{x}, \overline{y})$, the parameters m, n, p, q, and the components a, b, c, d of the transformation matrix L.
- (5) **d.** Suppose we would redraw the aforementioned geometric construct (point P, tangent cords PT_1 and PT_2 , polar line T_1T_2 , spherical reflection P', and indicatrix C, with all objects defined in terms of their $(\overline{x}, \overline{y})$ -coordinatizations, in a *rectangular* $(\overline{x}, \overline{y})$ -coordinate system in which basis (co)vectors are depicted as horizontal/vertical unit \mathbb{R}^2 -coordinate (co)vectors:

$$\partial_{\overline{x}} \sim \left(\begin{array}{c} 1 \\ 0 \end{array}
ight) \quad \partial_{\overline{y}} \sim \left(\begin{array}{c} 0 \\ 1 \end{array}
ight) \, .$$

Would the polar line T_1T_2 still be perpendicular to the vector \overrightarrow{OP} ? Motivate your answer by an explicit computation of the coordinates \overline{p}^i and \overline{p}_i .

(25) 2. KILLING VECTORS

The Lie derivative w.r.t. a given vector field \mathbf{v} is a linear first order partial differential operator satisfying the product rule, such that

 $\mathscr{L}_{\mathbf{v}}f = \mathbf{v}f \quad \text{and} \quad \mathscr{L}_{\mathbf{v}}\hat{\boldsymbol{\omega}} = d\left(\hat{\boldsymbol{\omega}}(\mathbf{v})\right)\,,$

for a scalar field f, respectively a covector field $\hat{\omega}$.

(5) **a.** Show that
$$\mathscr{L}_{\mathbf{v}} dx^i = \partial_k v^i dx^k$$
.

Let $g = g_{ij}dx^i \otimes dx^j$ denote the covariant metric tensor field. By D_i we denote the covariant derivative operator w.r.t. x^i induced by the Levi-Civita connection.

- (5) **b1.** Show that $\mathscr{L}_{\mathbf{v}}g = (v^k \partial_k g_{ij} + \partial_i v^k g_{kj} + \partial_j v^k g_{ik}) dx^i \otimes dx^j$.
- (5) **b2.** Show that, equivalently, $\mathscr{L}_{\mathbf{v}}g = (D_iv_j + D_jv_i) dx^i \otimes dx^j$.

A vector field v is called a Killing vector field if $\mathscr{L}_{\mathbf{v}}g = 0$. We henceforth consider the Euclidean metric of flat 3-dimensional space in Cartesian coordinates $(x^1, x^2, x^3) = (x, y, z)$, and a Killing vector field with component functions $(v^1, v^2, v^3) = (u, v, w)$.

- (10) **c.** Show that the Killing vector field must satisfy $u_x = v_y = w_z = 0$ and $v_x + u_y = w_x + u_z = w_y + v_z = 0$.
- (45) 3. LINEARIZED GRAVITY

In the presence of weak gravitational fields it is convenient to linearize the Einstein field equation for the gravitational potential, i.e. the pseudo-Riemannian spacetime metric tensor of General Relativity (GR):

$$g_{\mu\nu}(x) = \eta_{\mu\nu} + h_{\mu\nu}(x)$$
.

Here, $\eta_{\mu\nu}$ is the holor of the Minkowski metric of Special Relativity (SR), in an "inertial" coordinate system given by the universally constant matrix $\eta_{\mu\nu} = \text{diag} \{-1, 1, 1, 1\}$, with $\mu, \nu = 0, 1, 2, 3$. Index value 0 refers to the temporal basis vector ∂_t , index values 1, 2, 3 to the three independent spatial basis vectors $\partial_x, \partial_y, \partial_z$.

In linearized gravity one thinks of the perturbation $h_{\mu\nu}$ as a spatiotemporal tensor field propagating on the constant Minkowski background spacetime. Its entries are spatiotemporal functions with values that are small relative to those of the background field: $|h_{\mu\nu}| \ll 1$. This allows one to approximate exact GR laws in terms of expansions to order $\mathcal{O}(h)$, neglecting higher order terms. This $\mathcal{O}(h)$ approximation is assumed throughout this problem without explicit indication of discarded higher order terms.

The (exact) Einstein's field equation is a tensorial nonlinear partial differential equation that governs the spacetime metric $g_{\mu\nu}$ in relation to the flux of energy and momentum, which is captured by the energy-momentum tensor field $T_{\mu\nu}$:

(*)
$$R_{\mu\nu} - \frac{1}{2}R g_{\mu\nu} = 8\pi T_{\mu\nu}$$

(Units are defined such that G = c = 1, with G: gravitational constant, c: velocity of light.) Recall that the Ricci tensor is given in terms of the Levi-Civita Christoffel symbols by

$$R_{\mu\nu} = \Gamma^{\alpha}_{\mu\nu,\alpha} - \Gamma^{\alpha}_{\mu\alpha,\nu} - \Gamma^{\beta}_{\mu\alpha}\Gamma^{\alpha}_{\beta\nu} + \Gamma^{\beta}_{\mu\nu}\Gamma^{\alpha}_{\beta\alpha}.$$

An index preceded by a comma indicates a differentiation index: $f_{,\alpha} \stackrel{\text{def}}{=} \partial_{\alpha} f$.

(5) **a.** Show that (*) reduces to $R_{\mu\nu} = 0$ in the homogeneous ("vacuum") case in which $T_{\mu\nu} = 0$.

Even this simplified vacuum field equation is a nonlinear partial differential equation for $g_{\mu\nu}$ that is not easily solved. Perturbation theory allows us to linearize (*) and a fortiori its homogeneous counterpart.

(5) **b.** Show that, in linearized gravity, we may approximate $R_{\mu\nu} = \Gamma^{\alpha}_{\mu\nu,\alpha} - \Gamma^{\alpha}_{\mu\alpha,\nu}$, ignoring the $\Gamma\Gamma$ -terms.

(5) **c.** Show that, in linearized gravity,
$$\Gamma^{\mu}_{\alpha\beta} = \frac{1}{2} \left(-\partial^{\mu}h_{\alpha\beta} + \partial_{\beta}h^{\mu}_{\alpha} + \partial_{\alpha}h^{\mu}_{\beta} \right)$$
. Explain why index raising in

this expression may be carried out with the help of the background (dual) metric $\eta^{\mu\nu}$ instead of $g^{\mu\nu}$.

(5) **d.** Show that, in linearized gravity, $R_{\mu\nu} = \frac{1}{2} \left(-\partial^{\alpha}\partial_{\alpha}h_{\mu\nu} + \partial_{\mu}\partial_{\alpha}h_{\nu}^{\alpha} + \partial_{\alpha}\partial_{\nu}h_{\mu}^{\alpha} - \partial_{\mu}\partial_{\nu}h_{\alpha}^{\alpha} \right).$

One commonly abbreviates

$$h \stackrel{\text{def}}{=} h^{\alpha}_{\alpha}$$
 and $\Box \stackrel{\text{def}}{=} \partial^{\alpha} \partial_{\alpha}$,

so that

$$R_{\mu\nu} = \frac{1}{2} \left(-\Box h_{\mu\nu} + \partial_{\mu}\partial_{\alpha}h_{\nu}^{\alpha} + \partial_{\alpha}\partial_{\nu}h_{\mu}^{\alpha} - \partial_{\mu}\partial_{\nu}h \right) \,.$$

Moreover, the Ricci scalar is defined as

$$R = R^{\mu}_{\mu}$$
.

(5) **e.** Show that, in linearized gravity, $R = \partial_{\mu\alpha}h^{\mu\alpha} - \Box h$.

-1

The l.h.s. of the Einstein field equation (*) is known as the Einstein tensor: $G_{\mu\nu} \stackrel{\text{def}}{=} R_{\mu\nu} - \frac{1}{2}Rg_{\mu\nu}$.

(5) **f.** Show that, in linearized gravity,

$$G_{\mu\nu} = \frac{1}{2} \left(-\Box h_{\mu\nu} + \partial_{\mu}\partial_{\alpha}h^{\alpha}_{\nu} + \partial_{\alpha}\partial_{\nu}h^{\alpha}_{\mu} - \partial_{\mu}\partial_{\nu}h - \eta_{\mu\nu}\partial_{\alpha}\partial_{\beta}h^{\alpha\beta} + \eta_{\mu\nu}\Box h \right) \,.$$

Another common notational convention relies on the so-called trace-reversed metric perturbation $\overline{h}_{\mu\nu}$:

$$\overline{h}_{\mu\nu} \stackrel{\text{def}}{=} h_{\mu\nu} - \frac{1}{2}h\eta_{\mu\nu} \,.$$

- (5) **g.** Explain the attribute "trace-reversed".
- (5) **h.** Show that the definition of $\overline{h}_{\mu\nu}$ above is equivalent to $h_{\mu\nu} = \overline{h}_{\mu\nu} \frac{1}{2}\overline{h}\eta_{\mu\nu}$.
- (5) **i.** Show that, in terms of the trace-reversed metric perturbation, the linearized Einstein field equation is given by the linear partial differential equation

$$-\Box \overline{h}_{\mu\nu} + \partial_{\mu}\partial_{\alpha}\overline{h}^{\alpha}_{\nu} + \partial_{\alpha}\partial_{\nu}\overline{h}^{\alpha}_{\mu} - \eta_{\mu\nu}\partial_{\alpha}\partial_{\beta}\overline{h}^{\alpha\beta} = 16\pi T_{\mu\nu}$$