EXAMINATION TENSOR CALCULUS AND DIFFERENTIAL GEOMETRY

Course code: 2WAH0-2WAH1. Date: Tuesday June 21, 2016. Time: 18h00-21h00. Place: AUD 11.

Read this first!

- Write your name and student identification number on each paper.
- The exam consists of 3 problems. The maximum credit for each item is indicated in the margin.
- Motivate your answers.
- Einstein summation convention applies throughout for all repeated indices.
- You may consult an immaculate hardcopy of the online draft notes "Tensor Calculus and Differential Geometry (2WAH0)" by Luc Florack. No equipment may be used.

Indicatrix $C: x^{2}+y^{2}=1$. The point P^{\prime} IS The inversion of the point P in the circle C.

1. INDICATRIX

The so-called indicatrix $\mathrm{C}: x^{2}+y^{2}=1$ is a geometrical construction of the Euclidean metric (standard inner product) in the Cartesian coordinate plane. Assume point $\mathrm{P}=(p, q)$ is given, somewhere outside C. There are two lines through P tangent to C, touching at the points T_{1}, respectively T_{2}. The so-called polar line $\mathrm{T}_{1} \mathrm{~T}_{2}$ intersects the line OP at point $\mathrm{P}^{\prime}=(m, n)$, say.
a1. Show that $\mathrm{OP}: 1=1: \mathrm{OP}^{\prime}$.
[Hint: Compare the triangles P^{\prime} TO and TOP, with T either T_{1} OR T_{2}.]
a2. Show that the coordinates of P^{\prime} are given by $(m, n)=\left(\frac{p}{p^{2}+q^{2}}, \frac{q}{p^{2}+q^{2}}\right)$.
b. Argue why $\overrightarrow{\mathrm{OP}} \perp \mathrm{T}_{1} \mathrm{~T}_{2}$, and show that the line $\mathrm{T}_{1} \mathrm{~T}_{2}$ is given by $p x+q y=1$.

In summary, if $\left(m^{1}, m^{2}\right)=(m, n)$ and $\left(p^{1}, p^{2}\right)=(p, q)$ are the coordinates of $\overrightarrow{\mathrm{OP}^{\prime}}$, respectively $\overrightarrow{\mathrm{OP}}$, $\left(x^{1}, x^{2}\right)=(x, y)$ any point on the indicatrix $\mathrm{C}: x^{2}+y^{2}=1$, and $\eta_{i j}, i, j=1,2$, the matrix elements of the 2×2-identity matrix I, then, with \cdot denoting the standard inner product on \mathbb{R}^{2}, we have

$$
\left\{\begin{array} { r l }
{ \vec { \mathrm { OP } ^ { \prime } } \cdot \vec { \mathrm { OP } } : m p + n q } & { = 1 , } \\
{ \mathrm { T } _ { 1 } \mathrm { T } _ { 2 } : p x + q y } & { = 1 , } \\
{ \mathrm { C } : x ^ { 2 } + y ^ { 2 } } & { = 1 }
\end{array} \Longleftrightarrow \left\{\begin{array}{rl}
\overrightarrow{\mathrm{OP}^{\prime}} \cdot \overrightarrow{\mathrm{OP}}: \eta_{i j} m^{i} p^{j} & =m_{j} p^{j}
\end{array}=1,\right.\right.
$$

The indicatrix C is a pictorial representation of the covariant Euclidean metric tensor $H=\eta_{i j} d x^{i} \otimes d x^{j}$. The polar line $\mathrm{T}_{1} \mathrm{~T}_{2}$ provides a pictorial representation of the covector $\widehat{p}=p_{i} d x^{i}$ associated with the vector $\vec{p}=p^{i} \partial_{i}$ in the sense that it is just the differential of the left hand side of its defining equation. Note that the components p_{i} of the normal of the polar line happen to coincide numerically with the vector components p^{i} of $\vec{p}=\overrightarrow{\mathrm{OP}}$. This is an artefact of our choice of coordinates, or, alternatively, of the isotropic nature of C expressed in these coordinates, with $\eta_{i j}=1$ if $i=j$ and zero otherwise.

Consider a linear change of coordinates, $x^{i}=L_{j}^{i} \bar{x}^{j}$, say, in which $L_{j}^{i}, i, j=1,2$, are the matrix entries of the transformation matrix

$$
L=\left(\begin{array}{ll}
L_{1}^{1} & L_{2}^{1} \\
L_{1}^{2} & L_{2}^{2}
\end{array}\right)=\left(\begin{array}{ll}
a & c \\
b & d
\end{array}\right)
$$

(10) c. Rewrite the system (\star) for $\overrightarrow{\mathrm{OP}^{\prime}} \cdot \overrightarrow{\mathrm{OP}}, \mathrm{T}_{1} \mathrm{~T}_{2}$ and C , in terms of the new coordinates $\left(\bar{x}^{1}, \bar{x}^{2}\right)=(\bar{x}, \bar{y})$, the parameters m, n, p, q, and the components a, b, c, d of the transformation matrix L.
d. Suppose we would redraw the aforementioned geometric construct (point P , tangent cords PT_{1} and PT_{2}, polar line $\mathrm{T}_{1} \mathrm{~T}_{2}$, spherical reflection P^{\prime}, and indicatrix C , with all objects defined in terms of their (\bar{x}, \bar{y})-coordinatizations, in a rectangular (\bar{x}, \bar{y})-coordinate system in which basis (co)vectors are depicted as horizontal/vertical unit \mathbb{R}^{2}-coordinate (co)vectors:

$$
\partial_{\bar{x}} \sim\binom{1}{0} \quad \partial_{\bar{y}} \sim\binom{0}{1} .
$$

Would the polar line $\mathrm{T}_{1} \mathrm{~T}_{2}$ still be perpendicular to the vector $\overrightarrow{\mathrm{OP}}$? Motivate your answer by an explicit computation of the coordinates \bar{p}^{i} and \bar{p}_{i}.

(25)
 2. Killing Vectors

The Lie derivative w.r.t. a given vector field \mathbf{v} is a linear first order partial differential operator satisfying the product rule, such that

$$
\mathscr{L}_{\mathbf{v}} f=\mathbf{v} f \quad \text { and } \quad \mathscr{L}_{\mathbf{v}} \hat{\boldsymbol{\omega}}=d(\hat{\boldsymbol{\omega}}(\mathbf{v})),
$$

for a scalar field f, respectively a covector field $\hat{\boldsymbol{\omega}}$.
a. Show that $\mathscr{L}_{\mathbf{v}} d x^{i}=\partial_{k} v^{i} d x^{k}$.

Let $g=g_{i j} d x^{i} \otimes d x^{j}$ denote the covariant metric tensor field. By D_{i} we denote the covariant derivative operator w.r.t. x^{i} induced by the Levi-Civita connection.

3. Linearized Gravity

In the presence of weak gravitational fields it is convenient to linearize the Einstein field equation for the gravitational potential, i.e. the pseudo-Riemannian spacetime metric tensor of General Relativity (GR):

$$
g_{\mu \nu}(x)=\eta_{\mu \nu}+h_{\mu \nu}(x) .
$$

Here, $\eta_{\mu \nu}$ is the holor of the Minkowski metric of Special Relativity (SR), in an "inertial" coordinate system given by the universally constant matrix $\eta_{\mu \nu} \widehat{=} \operatorname{diag}\{-1,1,1,1\}$, with $\mu, \nu=0,1,2,3$. Index value 0 refers to the temporal basis vector ∂_{t}, index values $1,2,3$ to the three independent spatial basis vectors $\partial_{x}, \partial_{y}, \partial_{z}$.

In linearized gravity one thinks of the perturbation $h_{\mu \nu}$ as a spatiotemporal tensor field propagating on the constant Minkowski background spacetime. Its entries are spatiotemporal functions with values that are small relative to those of the background field: $\left|h_{\mu \nu}\right| \ll 1$. This allows one to approximate exact GR laws in terms of expansions to order $\mathcal{O}(h)$, neglecting higher order terms. This $\mathcal{O}(h)$ approximation is assumed throughout this problem without explicit indication of discarded higher order terms.

The (exact) Einstein's field equation is a tensorial nonlinear partial differential equation that governs the spacetime metric $g_{\mu \nu}$ in relation to the flux of energy and momentum, which is captured by the energy-momentum tensor field $T_{\mu \nu}$:

$$
(*) \quad R_{\mu \nu}-\frac{1}{2} R g_{\mu \nu}=8 \pi T_{\mu \nu}
$$

(Units are defined such that $G=c=1$, with G : gravitational constant, c : velocity of light.) Recall that the Ricci tensor is given in terms of the Levi-Civita Christoffel symbols by

$$
R_{\mu \nu}=\Gamma_{\mu \nu, \alpha}^{\alpha}-\Gamma_{\mu \alpha, \nu}^{\alpha}-\Gamma_{\mu \alpha}^{\beta} \Gamma_{\beta \nu}^{\alpha}+\Gamma_{\mu \nu}^{\beta} \Gamma_{\beta \alpha}^{\alpha} .
$$

An index preceded by a comma indicates a differentiation index: $f_{, \alpha} \xlongequal{\text { def }} \partial_{\alpha} f$.
b1. Show that $\mathscr{L}_{\mathbf{v}} g=\left(v^{k} \partial_{k} g_{i j}+\partial_{i} v^{k} g_{k j}+\partial_{j} v^{k} g_{i k}\right) d x^{i} \otimes d x^{j}$.
b2. Show that, equivalently, $\mathscr{L}_{\mathbf{v}} g=\left(D_{i} v_{j}+D_{j} v_{i}\right) d x^{i} \otimes d x^{j}$.
A vector field \mathbf{v} is called a Killing vector field if $\mathscr{L}_{\mathbf{v}} g=0$. We henceforth consider the Euclidean metric of flat 3 -dimensional space in Cartesian coordinates $\left(x^{1}, x^{2}, x^{3}\right)=(x, y, z)$, and a Killing vector field with component functions $\left(v^{1}, v^{2}, v^{3}\right)=(u, v, w)$.
c. Show that the Killing vector field must satisfy $u_{x}=v_{y}=w_{z}=0$ and $v_{x}+u_{y}=w_{x}+u_{z}=w_{y}+v_{z}=0$.
(
a. Show that ($*$) reduces to $R_{\mu \nu}=0$ in the homogeneous ("vacuum") case in which $T_{\mu \nu}=0$.

Even this simplified vacuum field equation is a nonlinear partial differential equation for $g_{\mu \nu}$ that is not easily solved. Perturbation theory allows us to linearize (*) and a fortiori its homogeneous counterpart.
b. Show that, in linearized gravity, we may approximate $R_{\mu \nu}=\Gamma_{\mu \nu, \alpha}^{\alpha}-\Gamma_{\mu \alpha, \nu}^{\alpha}$, ignoring the $\Gamma \Gamma$-terms.
c. Show that, in linearized gravity, $\Gamma_{\alpha \beta}^{\mu}=\frac{1}{2}\left(-\partial^{\mu} h_{\alpha \beta}+\partial_{\beta} h_{\alpha}^{\mu}+\partial_{\alpha} h_{\beta}^{\mu}\right)$. Explain why index raising in
this expression may be carried out with the help of the background (dual) metric $\eta^{\mu \nu}$ instead of $g^{\mu \nu}$.

One commonly abbreviates

$$
h \stackrel{\text { def }}{=} h_{\alpha}^{\alpha} \quad \text { and } \quad \square \stackrel{\text { def }}{=} \partial^{\alpha} \partial_{\alpha},
$$

so that

$$
R_{\mu \nu}=\frac{1}{2}\left(-\square h_{\mu \nu}+\partial_{\mu} \partial_{\alpha} h_{\nu}^{\alpha}+\partial_{\alpha} \partial_{\nu} h_{\mu}^{\alpha}-\partial_{\mu} \partial_{\nu} h\right) .
$$

Moreover, the Ricci scalar is defined as

$$
R=R_{\mu}^{\mu} .
$$

e. Show that, in linearized gravity, $R=\partial_{\mu \alpha} h^{\mu \alpha}-\square h$.

The 1.h.s. of the Einstein field equation ($*$) is known as the Einstein tensor: $G_{\mu \nu} \stackrel{\text { def }}{=} R_{\mu \nu}-\frac{1}{2} R g_{\mu \nu}$.
f. Show that, in linearized gravity,

$$
\begin{equation*}
G_{\mu \nu}=\frac{1}{2}\left(-\square h_{\mu \nu}+\partial_{\mu} \partial_{\alpha} h_{\nu}^{\alpha}+\partial_{\alpha} \partial_{\nu} h_{\mu}^{\alpha}-\partial_{\mu} \partial_{\nu} h-\eta_{\mu \nu} \partial_{\alpha} \partial_{\beta} h^{\alpha \beta}+\eta_{\mu \nu} \square h\right) . \tag{5}
\end{equation*}
$$

Another common notational convention relies on the so-called trace-reversed metric perturbation $\bar{h}_{\mu \nu}$:

$$
\bar{h}_{\mu \nu} \stackrel{\text { def }}{=} h_{\mu \nu}-\frac{1}{2} h \eta_{\mu \nu} .
$$

g. Explain the attribute "trace-reversed".
(5) h. Show that the definition of $\bar{h}_{\mu \nu}$ above is equivalent to $h_{\mu \nu}=\bar{h}_{\mu \nu}-\frac{1}{2} \bar{h} \eta_{\mu \nu}$.
(5) i. Show that, in terms of the trace-reversed metric perturbation, the linearized Einstein field equation is given by the linear partial differential equation

$$
-\square \bar{h}_{\mu \nu}+\partial_{\mu} \partial_{\alpha} \bar{h}_{\nu}^{\alpha}+\partial_{\alpha} \partial_{\nu} \bar{h}_{\mu}^{\alpha}-\eta_{\mu \nu} \partial_{\alpha} \partial_{\beta} \bar{h}^{\alpha \beta}=16 \pi T_{\mu \nu}
$$

