EXAMINATION TENSOR CALCULUS AND DIFFERENTIAL GEOMETRY

Course code: 2WAH0-2WAH1. Date: Tuesday June 23, 2015. Time: 18h00-21h00. Place: AUD 14.

Read this first!

- Write your name and student identification number on each paper.
- The exam consists of 2 problems. The maximum credit for each item is indicated in the margin.
- Motivate your answers in mathematically rigorous terms.
- Einstein summation convention applies throughout for all repeated pairs of upper and lower indices.
- You may consult an immaculate hardcopy of the online draft notes "Tensor Calculus and Differential Geometry (2WAH0)" by Luc Florack. No equipment may be used.

(50) 1. RIEMANNIAN METRIC

Recall the positivity and non-degeneracy conditions for a Riemannian metric $\mathbf{G}: \mathrm{TM} \times \mathrm{TM} \to \mathbb{R}$: $\mathbf{G}(\mathbf{v},\mathbf{v}) = (\mathbf{v}|\mathbf{v}) = g_{ij}v^iv^j \geq 0$ for any $\mathbf{v} = v^i\partial_i$ (positivity), with equality if and only if $\mathbf{v} = \mathbf{0}$ (non-degeneracy). We denote by g the determinant of the matrix with entries g_{ij} .

(5) **a1.** Show that, in general, positivity implies $g \ge 0$.

A real symmetric matrix has real eigenvalues, the product of which equals its determinant. In particular, the semi-positive real symmetric matrix with entries g_{ij} has nonnegative eigenvalues.

(5) **a2.** Show that, in general, non-degeneracy is equivalent to $g \neq 0$.

Suppose g=0, then the matrix with entries g_{ij} has a zero eigenvalue, vice versa. An associated eigenvector $\mathbf{v}=v^i\partial_i\neq\mathbf{0}$ satisfies $g_{ij}v^j=0$, whence $(\mathbf{v}|\mathbf{v})=g_{ij}v^iv^j=0$, contradicting the non-degeneracy requirement.

We now stipulate a particular 3-dimensional Riemannian metric of the form

$$\mathbf{G} = dx \otimes dx + dy \otimes dy + dz \otimes dz - (adx + bdy + cdz) \otimes (adx + bdy + cdz)$$
,

in which $dx, dy, dz \in T^*M$ are coordinate one-forms and $a, b, c \in \mathbb{R}$ are constants.

(5) **b1.** Show that, in this case, non-degeneracy is equivalent to $a^2 + b^2 + c^2 \neq 1$.

We have

$$g = \det \begin{pmatrix} 1 - a^2 & -ab & -ac \\ -ab & 1 - b^2 & -bc \\ -ac & -bc & 1 - c^2 \end{pmatrix} = 1 - a^2 - b^2 - c^2,$$

from which the result follows, recall a.

(5) **b2.** Likewise, show that positive-definiteness of the metric implies $a^2 + b^2 + c^2 < 1$.

Positive-definiteness of the metric implies that all eigenvalues are positive, whence g > 0. According to b1 this means that $a^2 + b^2 + c^2 < 1$.

Next we consider the tensor $\mathbf{P}=p_{ij}dx^i\otimes dx^j$, with $p_{ij}=g_{ij}-\omega_i\omega_j$, in which now g_{ij} are the components of a genuine (positive-definite, non-degenerate) Riemannian metric, and $\omega_i=g_{ij}e^j$ are the covariant components of the dual $\boldsymbol{\omega}\in T^*M$ of a given *unit vector* $\mathbf{e}\in TM$, i.e. $(\mathbf{e}|\mathbf{e})=g_{ij}e^ie^j=1$ and $\langle \boldsymbol{\omega},\mathbf{e}\rangle=\omega_je^j=1$.

(5) **c.** Show that $\langle \mathbf{P}(\mathbf{u}), \mathbf{e} \rangle = 0$ for any vector $\mathbf{u} = u^i \partial_i$.

For an arbitrary vector $\mathbf{u} = u^i \partial_i$ we have $\mathbf{P}(\mathbf{u}) = p_{ij}(dx^i \otimes dx^j)(u^k \partial_k) = p_{ij}u^k \delta_k^i dx^j = p_{ij}u^i dx^j$, whence $\langle \mathbf{P}(\mathbf{u}), \mathbf{e} \rangle = p_{ij}u^i e^k \langle dx^j, \partial_k \rangle = p_{ij}u^i e^k \delta_k^j = p_{ij}u^i e^j = (g_{ij} - \omega_i \omega_j)u^i e^j = u_j e^j - \omega_i u^i = g_{ij}(u^i e^j - e^j u^i) = 0$. Note that the image $\mathbf{P}(\mathbf{u}) \in \mathbf{T}^*\mathbf{M}$ of $\mathbf{u} \in \mathbf{T}^*\mathbf{M}$ is a covector. A vectorial image may be obtained straightforwardly, viz. by considering $\mathbf{p}(\mathbf{P}(\mathbf{u})) \in \mathbf{T}\mathbf{M}$. In the latter sense \mathbf{P} can be interpreted as a projection onto the plane perpendicular to the vector \mathbf{e} .

A special *g-orthonormal basis* $\{\mathbf{e}_{\alpha}=e_{\alpha}^{i}\partial_{i}\}_{\alpha=1,\dots,n}$ relative to the metric $\mathbf{G}=g_{ij}dx^{i}\otimes dx^{j}$ is one for which $\mathbf{G}(\mathbf{e}_{\alpha},\mathbf{e}_{\beta})=(\mathbf{e}_{\alpha}|\mathbf{e}_{\beta})=g_{ij}e_{\alpha}^{i}e_{\beta}^{j}=\delta_{\alpha\beta}$, in which $\delta_{\alpha\beta}=1$ and $\delta^{\alpha\beta}=1$ if $\alpha=\beta$ and 0 otherwise. The corresponding dual basis is $\{\boldsymbol{\omega}^{\alpha}=\omega_{i}^{\alpha}dx^{i}\}_{\alpha=1,\dots,n}$.

(5) **d.** Show that *g*-orthonormality of a basis is preserved under orthogonal transformations.

(Hint: A matrix **A** corresponding to an orthogonal transformation satisfies $\mathbf{A}^T \mathbf{A} = \mathbf{I}$.)

Suppose $\{\mathbf{e}_{\alpha}\}$ is g-orthonormal. Consider a linear basis transformation, with $\mathbf{f}_{\alpha}=A_{\alpha}^{\beta}\mathbf{e}_{\beta}$ say, then $\{\mathbf{f}_{\alpha}\}$ is g-orthonormal iff $(\mathbf{f}_{\alpha}|\mathbf{f}_{\beta})=\delta_{\alpha\beta}$. Inserting $\mathbf{f}_{\alpha}=A_{\alpha}^{\gamma}\mathbf{e}_{\gamma}$ and $\mathbf{f}_{\beta}=A_{\beta}^{\delta}\mathbf{e}_{\delta}$ and using g-orthonormality of $\{\mathbf{e}_{\alpha}\}$ yields $A_{\alpha}^{\gamma}A_{\beta}^{\delta}\delta_{\gamma\delta}=\delta_{\alpha\beta}$, or, in matrix form, $\mathbf{A}^{T}\mathbf{A}=\mathbf{I}$, which is the defining equation for orthogonal matrices.

(5) **e1.** Show that $\delta^{\alpha}_{\beta} = \omega^{\alpha}_{i} e^{i}_{\beta}$.

By duality of both $\{\boldsymbol{\omega}^{\alpha}, \mathbf{e}_{\beta}\}$ and $\{dx^{i}, \partial_{j}\}$, using the decompositions $\boldsymbol{\omega}^{\alpha} = \omega_{i}^{\alpha} dx^{i}$ and $\mathbf{e}_{\beta} = e_{\beta}^{i} \partial_{i}$, we have $\delta_{\beta}^{\alpha} = \langle \boldsymbol{\omega}^{\alpha}, \mathbf{e}_{\beta} \rangle = \omega_{i}^{\alpha} e_{\beta}^{j} \langle dx^{i}, \partial_{j} \rangle = \omega_{i}^{\alpha} e_{\beta}^{j} \delta_{i}^{j} = \omega_{i}^{\alpha} e_{\beta}^{i}$.

(5) **e2.** Show that $\delta^i_j = e^i_\alpha \omega^\alpha_j$.

(Hint: Contract ω_i^{β} onto the result of e1.)

Contracting ω_j^{β} onto the result of e1 yields $\omega_j^{\alpha} = \delta_{\beta}^{\alpha} \omega_j^{\beta} \stackrel{\text{e1}}{=} \omega_i^{\alpha} e_{\beta}^i \omega_j^{\beta}$, from which it follows that $e_{\beta}^i \omega_j^{\beta} = \delta_j^i$.

(5) **e3.** Show that $g_{ij} = \omega_i^{\alpha} \delta_{\alpha\beta} \omega_i^{\beta} = \sum_{\alpha} \omega_i^{\alpha} \omega_i^{\alpha}$.

(Hint: First show that e2 implies $\partial_i = \omega_i^{\alpha} \mathbf{e}_{\alpha}$.)

We have $\partial_i = \delta_i^k \partial_k \stackrel{e2}{=} e_\alpha^k \omega_i^\alpha \partial_k = \omega_i^\alpha \mathbf{e}_\alpha$, whence $g_{ij} = (\partial_i | \partial_j) = \left(\omega_i^\alpha \mathbf{e}_\alpha | \omega_j^\beta \mathbf{e}_\beta\right) = \omega_i^\alpha \omega_j^\beta \left(\mathbf{e}_\alpha | \mathbf{e}_\beta\right) = \omega_i^\alpha \delta_{\alpha\beta} \omega_j^\beta = \sum_\alpha \omega_i^\alpha \omega_j^\alpha$.

(5) **e4.** Show that $g^{ij} = e^i_{\alpha} \delta^{\alpha\beta} e^j_{\beta} = \sum_{\alpha} e^i_{\alpha} e^j_{\alpha}$.

By analogy to the proof of e3 we may proceed by first showing that $dx^i=e^i_\alpha\omega^\alpha$, viz. $dx^i=\delta^i_kdx^k\stackrel{e2}{=}e^i_\alpha\omega^\alpha_kdx^k=e^i_\alpha\omega^\alpha$. Then, using the inner product on the cotangentbundle we obtain $g^{ij}=\left(dx^i|dx^j\right)_*=\left(e^i_\alpha\omega^\alpha|e^j_\alpha\omega^\beta\right)_*=e^i_\alpha e^j_\beta\left(\omega^\alpha|\omega^\beta\right)_*=e^i_\alpha\delta^{\alpha\beta}e^j_\beta=\sum_\alpha e^i_\alpha e^j_\alpha$. Alternatively we may show that the stipulated r.h.s. is indeed the contravariant holor of the dual metric, viz. $g_{ik}e^k_\alpha\delta^{\alpha\beta}e^j_\beta\stackrel{=}{=}\omega^j_ie^j_\alpha=\delta^j_i$, so that indeed $e^k_\alpha\delta^{\alpha\beta}e^j_\beta=g^{kj}$. In \star we have used duality: $g_{ik}e^k_\alpha\delta^{\alpha\beta}=\omega^\beta_i$.

*

(50) 2. MASSIVE VECTOR BOSONS

We consider 4-dimensional spacetime, endowed with a non-positive "Minkowski metric" $G = \eta_{\mu\nu} dx^{\mu} \otimes dx^{\nu}$. The corresponding non-positive, symmetric, non-degenerate bilinear form, or "inner product", of two 4-vectors, $\mathbf{v} = v^{\mu} \partial_{\mu}$ and $\mathbf{w} = w^{\mu} \partial_{\mu}$ say, is denoted by $\mathbf{v} \cdot \mathbf{w} = v^{\mu} \eta_{\mu\nu} w^{\nu}$.

We henceforth restrict ourselves to so-called "inertial systems", in which, by definition, the components of the covariant metric tensor are $\eta_{00}=1$, $\eta_{11}=\eta_{22}=\eta_{33}=-1$, and $\eta_{\mu\nu}=0$ otherwise $(\mu,\nu=0,1,2,3)$. The defining inertial coordinates are indicated by $(x^0,x^1,x^2,x^3)=(ct,x,y,z)=(ct,\vec{x})\in\mathbb{R}^4$, in which $c\approx 3.00\times 10^8\,\mathrm{m/s}$ denotes the universally constant speed of light in vacuum.

A so-called "Lorentz transformation" relates two inertial systems, with coordinates $x \in \mathbb{R}^4$ and $\overline{x} \in \mathbb{R}^4$, say, preserving the components of the Minkowski metric as stated above.

(5) **a1.** Show that if $x^{\mu} = L^{\mu}_{\nu} \overline{x}^{\nu}$ is a Lorentz transformation, then the components L^{μ}_{ν} must satisfy the condition $L^{\mu}_{\rho} \eta_{\mu\nu} L^{\nu}_{\sigma} = \eta_{\rho\sigma}$.

(Hint: Set $\overline{\eta}_{\mu\nu}d\overline{x}^{\mu}\otimes d\overline{x}^{\nu}=\eta_{\mu\nu}dx^{\mu}\otimes dx^{\nu}$ and impose the defining invariance property $\overline{\eta}_{\mu\nu}=\eta_{\mu\nu}$.)

On the one hand we have $\eta_{\mu\nu}dx^{\mu}\otimes dx^{\nu}=\eta_{\mu\nu}\frac{\partial x^{\mu}}{\partial\overline{x}^{\rho}}\frac{\partial x^{\nu}}{\partial\overline{x}^{\sigma}}d\overline{x}^{\rho}\otimes d\overline{x}^{\sigma}\stackrel{\text{def}}{=}\overline{\eta}_{\rho\sigma}d\overline{x}^{\rho}\otimes d\overline{x}^{\sigma}$ ("covariance"). On the other hand we have $\overline{\eta}_{\rho\sigma}=\eta_{\rho\sigma}$ ("invariance"). Noting that $\frac{\partial x^{\mu}}{\partial\overline{x}^{\rho}}=L^{\mu}_{\rho}$ this yields $L^{\mu}_{\rho}\eta_{\mu\nu}L^{\nu}_{\sigma}=\eta_{\rho\sigma}$.

(5) **a2.** Show that Lorentz transformations are closed under composition. In other words, show that the effective transformation $x \to \overline{\overline{x}}$ resulting from two consecutive Lorentz transformations, $x \to \overline{x} \to \overline{\overline{x}}$ say, is itself a Lorentz transformation.

Performing two Lorentz transformations $x \to \overline{x} \to \overline{\overline{x}}$ in a row yields $x^{\mu} = L^{\mu}_{\nu} \overline{L}^{\nu} = L^{\mu}_{\nu} \overline{L}^{\rho}_{\rho} \overline{\overline{x}}^{\rho}$. Considering the matrix $\Lambda^{\mu}_{\rho} = L^{\mu}_{\nu} \overline{L}^{\rho}_{\rho}$ we have $\Lambda^{\mu}_{\rho} \eta_{\mu\nu} \Lambda^{\nu}_{\sigma} = L^{\mu}_{\alpha} \overline{L}^{\alpha}_{\rho} \eta_{\mu\nu} L^{\nu}_{\beta} \overline{L}^{\beta}_{\rho} \stackrel{*}{=} \overline{L}^{\alpha}_{\rho} \eta_{\alpha\beta} \overline{L}^{\beta}_{\sigma} \stackrel{*}{=} \eta_{\rho\sigma}$, from which it follows that Λ^{μ}_{ν} is indeed the matrix representation of a Lorentz transformation. In * we have used the defining property of a Lorentz transformation.

An energy-momentum vector $\mathbf{p}=p^{\mu}\partial_{\mu}$ has a corresponding representation in terms of a wave vector $\mathbf{k}=k^{\mu}\partial_{\mu}$ given by $\mathbf{p}=\hbar\mathbf{k}$, in which $\hbar\approx 1.05\times 10^{-34}\,\mathrm{J}\,\mathrm{s}$ denotes Planck's constant. The following notation is often used for the components:

$$\mathbf{k} = (k^0, k^1, k^2, k^3) = (k^0, \vec{k}) = (\omega/c, \vec{k}),$$

in which $\omega \in \mathbb{R}$ and $\vec{k} \in \mathbb{R}^3$ denote temporal angular frequency and spatial frequency 3-vector, and

$$\mathbf{p} = (p^0, p^1, p^2, p^3) = (p^0, \vec{p}) = (E/c, \vec{p}),$$

in which $E \in \mathbb{R}$ and $\vec{p} \in \mathbb{R}^3$ denote energy and momentum 3-vector, respectively. These are to be distinguised from their dual (covector) counterparts $\hat{\mathbf{k}} = k_{\mu} dx^{\mu}$ and $\hat{\mathbf{p}} = p_{\mu} dx^{\mu}$.

(2\frac{1}{2}) **b.** Show that, in any inertial frame, $\hat{\mathbf{k}} = (k^0, -k^1, -k^2, -k^3) = (k^0, -\vec{k}) = (\omega/c, -\vec{k})$, respectively $\hat{\mathbf{p}} = (p^0, -p^1, -p^2, -p^3) = (p^0, -\vec{p}) = (E/c, -\vec{p})$.

From $k_{\mu} = \eta_{\mu\nu}k^{\nu}$ it follows that $k_0 = \eta_{0\nu}k^{\nu} \stackrel{*}{=} \eta_{00}k^0 = k^0$, and $k_i = \eta_{i\nu}k^{\nu} \stackrel{*}{=} \eta_{ii}k^i = -k^i$. In * we have used the explicit diagonal form of the Minkowski metric in an inertial frame; in particular, no summation is implied over the repeated index i in the latter expression.

We consider a force field $F\stackrel{\text{def}}{=} dA$, generated by a covector-valued potential field $A=A_{\nu}dx^{\nu}$ through exterior derivation: $dA=\partial_{\mu}A_{\nu}\,dx^{\mu}\wedge dx^{\nu}$. The components of F relative to a standard tensor basis $\{dx^{\mu}\otimes dx^{\nu}\}$ are given by $F_{\mu\nu}$, i.e. $F=F_{\mu\nu}\,dx^{\mu}\otimes dx^{\nu}$.

 $(2\frac{1}{2})$ **c1.** Show that $F_{\mu\nu} = \partial_{\mu}A_{\nu} - \partial_{\nu}A_{\mu}$.

We have $F = dA = \partial_{\mu}A_{\nu} \ dx^{\mu} \wedge dx^{\nu} = \frac{1}{2}(\partial_{\mu}A_{\nu} - \partial_{\nu}A_{\mu}) \ dx^{\mu} \wedge dx^{\nu} = (\partial_{\mu}A_{\nu} - \partial_{\nu}A_{\mu}) \ dx^{\mu} \otimes dx^{\nu} \stackrel{\text{def}}{=} F_{\mu\nu} \ dx^{\mu} \otimes dx^{\nu}.$

 $(2\frac{1}{2})$ **c2.** Show that, alternatively, $F = \frac{1}{2} F_{\mu\nu} dx^{\mu} \wedge dx^{\nu}$.

According to c1 we have $F=\frac{1}{2}(\partial_{\mu}A_{\nu}-\partial_{\nu}A_{\mu})\,dx^{\mu}\wedge dx^{\nu}\stackrel{\mathrm{c1}}{=}\frac{1}{2}\,F_{\mu\nu}\,dx^{\mu}\wedge dx^{\nu}.$

The (contravariant components of the) potential field, $A^{\mu} = \eta^{\mu\nu} A_{\nu}$, satisfy the *Proca equation*,

$$\partial_{\mu}F^{\mu\nu} + \frac{m^2c^2}{\hbar^2}A^{\nu} = 0 \,,$$

in which m > 0 is some mass parameter. This field equation describes so-called "massive vector bosons" (massive counterparts of the familiar massless photon in electromagnetism).

(2\frac{1}{2}) **d1.** Show that the components of the potential field are not independent, but satisfy $\partial \cdot A = \partial_{\mu}A^{\mu} = 0$.

Since $F^{\mu\nu}$ is antisymmetric we have $\partial_{\nu}\partial_{\mu}F^{\mu\nu}=0$. Thus by applying ∂_{ν} to the l.h.s. of the Proca equation we obtain $\frac{m^2c^2}{\hbar^2}\partial_{\nu}A^{\nu}=0$. For nonzero mass m this implies that A is divergence-free, thus its four components are not mutually independent.

(5) **d2.** Show that the Proca equation can be rewritten as $(\partial^2 + \frac{m^2c^2}{\hbar^2})A^{\nu} = 0$, in which $\partial^2 = \eta^{\mu\nu}\partial_{\mu}\partial_{\nu}$ (i.e. the so-called d'Alembertian).

This follows from rewriting the first term on the l.h.s. of the Proca equation: $\partial_{\mu}F^{\mu\nu} = \partial_{\mu}(\partial^{\mu}A^{\nu} - \partial^{\nu}A^{\mu}) = \partial^{2}A^{\nu} - \partial^{\nu}(\partial \cdot A)$. The second term on the r.h.s. vanishes, recall d1 (note that in an inertial system ∂_{μ} and ∂^{ν} commute).

We use the following Fourier convention in Minkowski space (in an inertial system):

$$f(x) = \frac{1}{(2\pi)^4} \int_{\mathbb{R}^4} e^{-ik \cdot x} \hat{f}(k) dk \,,$$

in which $k \cdot x = \eta_{\mu\nu} k^{\mu} x^{\nu}$ and $dk = dk^0 dk^1 dk^2 dk^3$. (A ^ henceforth denotes Fourier transform.) We take for granted that f = 0 is equivalent to $\hat{f} = 0$ ("completeness of the Fourier basis").

(5) **e1.** Show that the condition on the potential field (recall d1) is equivalent to $k \cdot \hat{A}(k) = \eta_{\mu\nu} k^{\mu} \hat{A}^{\nu}(k) = 0$.

Substituting $A^{\mu}(x)=\frac{1}{(2\pi)^4}\int_{\mathbb{R}^4}e^{-ik\cdot x}\hat{A}^{\mu}(k)dk$ into $\partial_{\mu}A^{\mu}(x)=0$ yields $\frac{1}{(2\pi)^4}\int_{\mathbb{R}^4}e^{-ik\cdot x}(-ik_{\mu})\hat{A}^{\mu}(k)dk=0$, which, by completeness of the Fourier basis, holds iff $k_{\mu}\hat{A}^{\mu}(k)=0$.

(5) **e2.** Show that the Proca equation in Fourier space is $(-k^2 + \frac{m^2c^2}{\hbar^2})\hat{A}^{\nu}(k) = 0$, with $k^2 = k \cdot k = \eta^{\mu\nu}k_{\mu}k_{\nu}$.

Substituting $A^{\nu}(x) = \frac{1}{(2\pi)^4} \int_{\mathbb{R}^4} e^{-ik\cdot x} \hat{A}^{\nu}(k) dk$ into the Proca equation yields $\frac{1}{(2\pi)^4} \int_{\mathbb{R}^4} e^{-ik\cdot x} (-k^2 + \frac{m^2c^2}{\hbar^2}) \hat{A}^{\nu}(k) dk = 0$, which, by completeness of the Fourier basis, holds iff $(-k^2 + \frac{m^2c^2}{\hbar^2}) \hat{A}^{\nu}(k) = 0$.

For nontrivial Fourier amplitudes $\hat{A}^{\nu}(k)$ we apparently have the dispersion relation $-k^2 + \frac{m^2c^2}{\hbar^2} = 0$.

(2\frac{1}{2}) **f1.** Show that this is just the Einstein's mass-energy equivalence relation $E^2 = m^2 c^4 + ||\vec{p}||^2 c^2$ for a moving particle with mass m and 3-momentum \vec{p} .

This follows by an elementary rewriting, using $k=p/\hbar$ and $p\cdot p=E^2/c^2-\|\vec{p}\|^2$.

Given the dispersion relation, the Proca equation admits plane wave solutions in Minkowski spacetime of the form $A^{\mu}(x;k) = \epsilon^{\mu}(k)e^{-ik\cdot x}$ parameterized by $k \in \mathbb{R}^4$. Note that $k \cdot \epsilon(k) = \eta_{\mu\nu}k^{\mu}\epsilon^{\nu}(k) \stackrel{\text{el}}{=} 0$.

(2\frac{1}{2}) **f2.** Show that there are precisely three independent "polarizations", i.e. independent components of the amplitude vector $\epsilon(k) = \epsilon^{\mu}(k)\partial_{\mu}$ for each fixed $k \in \mathbb{R}^4$.

The divergence freeness condition for a plane wave is $k \cdot \epsilon = \eta^{\mu\nu} k_{\mu} \epsilon_{\nu} = 0$, stating that the vectorial amplitude is perpendicular to the direction of 4-momentum relative to the Minkowski metric. This provides exactly one linear equation in four unknowns, leaving three components of $\epsilon(k) = \epsilon^{\mu}(k) \partial_{\mu}$ undetermined.

Thus admissible solutions are linear combinations of three "polarization states", which we shall denote by $\epsilon_\ell(k) = \epsilon_\ell^\mu(k) \partial_\mu$, $\ell = 1, 2, 3$. Note that ℓ is a polarization state label, not a tensor index.

 $(2\frac{1}{2})$ **g1.** Show that $\epsilon_\ell^0(k)=0$ for all $\ell=1,2,3$ if $\vec k=\vec 0$.

For $\vec{k}=\vec{0}$ we have $0=k\cdot \epsilon_\ell(k)=k^0\epsilon_\ell^0(k)$, with (by virtue of the dispersion relation) $k^0=\frac{mc}{\hbar}\neq 0$, whence $\epsilon_\ell^0(k)=0$.

(2\frac{1}{2}) **g2.** Show that, together with $\epsilon_{\ell}^0(k) = 0$, $\epsilon_{\ell}^i(k) = \delta_{\ell}^i$ for all $i, \ell = 1, 2, 3$ provides a desired set of three independent polarization states if $\vec{k} = \vec{0}$.

The dispersion relation is trivially satisfied by g1. The divergence-freeness constraint is likewise satisfied, since $k \cdot \epsilon_{\ell}(k) = \eta_{\mu\nu}k^{\mu}\epsilon_{\ell}^{\nu}(k) \stackrel{*}{=} \eta_{00}k^{0}\epsilon_{\ell}^{0}(k) \stackrel{*}{=} 0$, in which step * uses $\vec{k} = \vec{0}$, and * again exploits g1.

(5) **h.** Show that, for general wave vectors $k \in \mathbb{R}^4$ (i.e. without the constraint $\vec{k} = \vec{0}$),

$$\sum_{\ell=1}^{3} \epsilon_{\ell}^{\mu}(k) \epsilon_{\ell}^{\nu}(k) = \eta^{\mu\nu} - \frac{\hbar^{2}}{m^{2}c^{2}} k^{\mu} k^{\nu}.$$

(Hint: (i) The only contravariant 2-tensor holors that can be formed in this context are linear combinations of $\eta^{\mu\nu}$ and $k^{\mu}k^{\nu}$. (ii) Recall g1 and g2.)

Stipulate an expression of the form $\sum_{\ell=1}^3 \epsilon_\ell^\mu(k) \epsilon_\ell^\nu(k) = A k^\mu k^\nu + B \eta^{\mu\nu}$ for some constants A and B. Insertion of $\vec k = \vec 0$ and considering $\mu = \nu = 0$ yields $0 \stackrel{g1}{=} \sum_{\ell=1}^3 \epsilon_\ell^0(k) \epsilon_\ell^0(k) = A(k^0)^2 + B \eta^{00} = A \frac{m^2 c^2}{\hbar^2} + B$. For $\mu = \nu = i = 1, 2, 3$ we find likewise (no summation over i) $1 \stackrel{g2}{=} \sum_{\ell=1}^3 \epsilon_\ell^i(k) \epsilon_\ell^i(k) = B \eta^{ii} = B$. As a consequence, $A = -\frac{\hbar^2}{m^2 c^2}$, from which the result follows.

Feynman diagram: Production of a Higgs boson (H^0) from massive vector bosons (W, Z) emitted by quarks (q).