
EXAMINATION TENSOR CALCULUS AND DIFFERENTIAL GEOMETRY

Course code: 2WAH0-2WAH1. Date: Tuesday June 23, 2015. Time: 18h00–21h00. Place: AUD 14.

Read this first!

• Write your name and student identification number on each paper.

• The exam consists of 2 problems. The maximum credit for each item is indicated in the margin.

• Motivate your answers in mathematically rigorous terms.

• Einstein summation convention applies throughout for all repeated pairs of upper and lower indices.

• You may consult an immaculate hardcopy of the online draft notes “Tensor Calculus and Differential
Geometry (2WAH0)” by Luc Florack. No equipment may be used.

1. RIEMANNIAN METRIC(50)

Recall the positivity and non-degeneracy conditions for a Riemannian metric G : TM × TM → R:
G(v,v) = (v|v) = gijv

ivj ≥ 0 for any v = vi∂i (positivity), with equality if and only if v = 0
(non-degeneracy). We denote by g the determinant of the matrix with entries gij .

a1. Show that, in general, positivity implies g≥0.(5)

A real symmetric matrix has real eigenvalues, the product of which equals its determinant. In particular, the semi-positive real symmetric

matrix with entries gij has nonnegative eigenvalues.

a2. Show that, in general, non-degeneracy is equivalent to g 6=0.(5)

Suppose g = 0, then the matrix with entries gij has a zero eigenvalue, vice versa. An associated eigenvector v = vi∂i 6= 0 satisfies

gijv
j=0, whence (v|v) = gijv

ivj = 0, contradicting the non-degeneracy requirement.

We now stipulate a particular 3-dimensional Riemannian metric of the form

G = dx⊗ dx+ dy ⊗ dy + dz ⊗ dz − (adx+ bdy + cdz)⊗ (adx+ bdy + cdz) ,

in which dx, dy, dz ∈ T∗M are coordinate one-forms and a, b, c ∈ R are constants.

b1. Show that, in this case, non-degeneracy is equivalent to a2 + b2 + c2 6= 1.(5)



We have

g = det

 1− a2 −ab −ac
−ab 1− b2 −bc
−ac −bc 1− c2

 = 1− a2 − b2 − c2 ,

from which the result follows, recall a.

b2. Likewise, show that positive-definiteness of the metric implies a2 + b2 + c2 < 1.(5)

Positive-definiteness of the metric implies that all eigenvalues are positive, whence g > 0. According to b1 this means that a2 +b2 +c2 < 1.

Next we consider the tensor P = pijdx
i ⊗ dxj , with pij = gij − ωiωj , in which now gij are the

components of a genuine (positive-definite, non-degenerate) Riemannian metric, and ωi = gije
j are the

covariant components of the dual ω ∈ T∗M of a given unit vector e ∈ TM, i.e. (e|e) = gije
iej = 1

and 〈ω, e〉 = ωje
j = 1.

c. Show that 〈P(u), e〉 = 0 for any vector u = ui∂i.(5)

For an arbitrary vector u = ui∂i we have P(u) = pij(dx
i ⊗ dxj)(uk∂k) = piju

kδikdx
j = piju

idxj , whence 〈P(u), e〉 =

piju
iek〈dxj , ∂k〉 = piju

iekδjk = piju
iej = (gij − ωiωj)uiej = uje

j − ωiui = gij(u
iej − ejui) = 0. Note that the image

P(u) ∈ T∗M of u ∈ T∗M is a covector. A vectorial image may be obtained straightforwardly, viz. by considering [(P(u)) ∈ TM. In the

latter sense P can be interpreted as a projection onto the plane perpendicular to the vector e.

A special g-orthonormal basis {eα = eiα∂i}α=1,...,n relative to the metric G = gijdx
i ⊗ dxj is one

for which G(eα, eβ) = (eα|eβ) = gije
i
αe
j
β = δαβ , in which δαβ = 1 and δαβ = 1 if α = β and 0

otherwise. The corresponding dual basis is {ωα = ωαi dx
i}α=1,...,n.

d. Show that g-orthonormality of a basis is preserved under orthogonal transformations.(5)

(Hint: A matrix A corresponding to an orthogonal transformation satisfies ATA = I.)

Suppose {eα} is g-orthonormal. Consider a linear basis transformation, with fα = Aβαeβ say, then {fα} is g-orthonormal iff
(
fα|fβ

)
=

δαβ . Inserting fα = Aγαeγ and fβ = Aδβeδ and using g-orthonormality of {eα} yields AγαAδβδγδ = δαβ , or, in matrix form, ATA = I,

which is the defining equation for orthogonal matrices.

e1. Show that δαβ = ωαi e
i
β .(5)

By duality of both {ωα, eβ} and {dxi, ∂j}, using the decompositions ωα = ωαi dx
i and eβ = eiβ∂i, we have δαβ = 〈ωα, eβ〉 =

ωαi e
j
β〈dx

i, ∂j〉 = ωαi e
j
βδ
i
j = ωαi e

i
β .

e2. Show that δij = eiαω
α
j .(5)

(Hint: Contract ωβj onto the result of e1.)

Contracting ωβj onto the result of e1 yields ωαj = δαβω
β
j

e1
= ωαi e

i
βω

β
j , from which it follows that eiβω

β
j = δij .

e3. Show that gij = ωαi δαβω
β
j =

∑
α ω

α
i ω

α
j .(5)

(Hint: First show that e2 implies ∂i = ωαi eα.)

We have ∂i = δki ∂k
e2
= ekαω

α
i ∂k = ωαi eα, whence gij = (∂i|∂j) =

(
ωαi eα|ω

β
j eβ

)
= ωαi ω

β
j

(
eα|eβ

)
= ωαi δαβω

β
j =

∑
α ω

α
i ω

α
j .



e4. Show that gij = eiαδ
αβejβ =

∑
α e

i
αe
j
α.(5)

By analogy to the proof of e3 we may proceed by first showing that dxi = eiαω
α, viz. dxi = δikdx

k e2
= eiαω

α
k dx

k = eiαω
α. Then, using the

inner product on the cotangentbundle we obtain gij =
(
dxi|dxj

)
∗ =

(
eiαω

α|ejαωβ
)
∗

= eiαe
j
β

(
ωα|ωβ

)
∗ = eiαδ

αβejβ =
∑
α e

i
αe
j
α.

Alternatively we may show that the stipulated r.h.s. is indeed the contravariant holor of the dual metric, viz. gikekαδ
αβejβ

?
= ωβi e

j
β = δji , so

that indeed ekαδ
αβejβ = gkj . In ? we have used duality: gikekαδ

αβ = ωβi .

♣

2. MASSIVE VECTOR BOSONS(50)

We consider 4-dimensional spacetime, endowed with a non-positive “Minkowski metric”G=ηµνdx
µ⊗dxν .

The corresponding non-positive, symmetric, non-degenerate bilinear form, or “inner product”, of two
4-vectors, v=vµ∂µ and w=wµ∂µ say, is denoted by v ·w = vµηµνw

ν .

We henceforth restrict ourselves to so-called “inertial systems”, in which, by definition, the components
of the covariant metric tensor are η00=1, η11=η22=η33=−1, and ηµν=0 otherwise (µ, ν=0, 1, 2, 3).
The defining inertial coordinates are indicated by (x0, x1, x2, x3) = (ct, x, y, z) = (ct, ~x) ∈ R4, in
which c ≈ 3.00× 108 m/s denotes the universally constant speed of light in vacuum.

A so-called “Lorentz transformation” relates two inertial systems, with coordinates x ∈ R4 and x ∈ R4,
say, preserving the components of the Minkowski metric as stated above.

a1. Show that if xµ = Lµνxν is a Lorentz transformation, then the components Lµν must satisfy the(5)
condition LµρηµνL

ν
σ = ηρσ.

(Hint: Set ηµνdx
µ ⊗ dxν = ηµνdx

µ ⊗ dxν and impose the defining invariance property ηµν = ηµν .)

On the one hand we have ηµνdxµ ⊗ dxν = ηµν
∂xµ

∂xρ
∂xν

∂xσ
dxρ ⊗ dxσ def

= ηρσdx
ρ ⊗ dxσ (“covariance”). On the other hand we have

ηρσ = ηρσ (“invariance”). Noting that
∂xµ

∂xρ
= Lµρ this yields LµρηµνL

ν
σ = ηρσ .

a2. Show that Lorentz transformations are closed under composition. In other words, show that the(5)
effective transformation x → x resulting from two consecutive Lorentz transformations, x → x → x
say, is itself a Lorentz transformation.

Performing two Lorentz transformations x → x → x in a row yields xµ = Lµνx
ν = LµνL

ν
ρx
ρ. Considering the matrix Λµρ = LµνL

ν
ρ we

have ΛµρηµνΛνσ = LµαL
α
ρ ηµνL

ν
βL

β
ρ

∗
= L

α
ρ ηαβL

β
σ

∗
= ηρσ , from which it follows that Λµν is indeed the matrix representation of a Lorentz

transformation. In ∗ we have used the defining property of a Lorentz transformation.

An energy-momentum vector p= pµ∂µ has a corresponding representation in terms of a wave vector
k= kµ∂µ given by p = ~k, in which ~ ≈ 1.05 × 10−34 J s denotes Planck’s constant. The following
notation is often used for the components:

k = (k0, k1, k2, k3) = (k0,~k) = (ω/c,~k) ,

in which ω ∈ R and ~k ∈ R3 denote temporal angular frequency and spatial frequency 3-vector, and

p = (p0, p1, p2, p3) = (p0, ~p) = (E/c, ~p) ,



in which E ∈ R and ~p ∈ R3 denote energy and momentum 3-vector, respectively. These are to be
distinguised from their dual (covector) counterparts k̂=kµdxµ and p̂=pµdx

µ.

b. Show that, in any inertial frame, k̂=(k0,−k1,−k2,−k3)=(k0,−~k)=(ω/c,−~k), respectively(21
2 )

p̂=(p0,−p1,−p2,−p3)=(p0,−~p)=(E/c,−~p).

From kµ = ηµνkν it follows that k0 = η0νkν
∗
= η00k0 = k0, and ki = ηiνk

ν ∗
= ηiik

i = −ki. In ∗ we have used the explicit diagonal

form of the Minkowski metric in an inertial frame; in particular, no summation is implied over the repeated index i in the latter expression.

We consider a force field F def
= dA, generated by a covector-valued potential field A = Aνdx

ν through
exterior derivation: dA = ∂µAν dx

µ ∧ dxν . The components of F relative to a standard tensor basis
{dxµ ⊗ dxν} are given by Fµν , i.e. F = Fµν dx

µ ⊗ dxν .

c1. Show that Fµν = ∂µAν − ∂νAµ.(21
2 )

We have F = dA = ∂µAν dxµ ∧ dxν = 1
2

(∂µAν − ∂νAµ) dxµ ∧ dxν = (∂µAν − ∂νAµ) dxµ ⊗ dxν def
= Fµν dxµ ⊗ dxν .

c2. Show that, alternatively, F = 1
2 Fµν dx

µ ∧ dxν .(21
2 )

According to c1 we have F = 1
2

(∂µAν − ∂νAµ) dxµ ∧ dxν c1
= 1

2
Fµν dxµ ∧ dxν .

The (contravariant components of the) potential field, Aµ = ηµνAν , satisfy the Proca equation,

∂µF
µν +

m2c2

~2
Aν = 0 ,

in whichm>0 is some mass parameter. This field equation describes so-called “massive vector bosons”
(massive counterparts of the familiar massless photon in electromagnetism).

d1. Show that the components of the potential field are not independent, but satisfy ∂ ·A=∂µA
µ=0.(21

2 )

Since Fµν is antisymmetric we have ∂ν∂µFµν = 0. Thus by applying ∂ν to the l.h.s. of the Proca equation we obtain
m2c2

~2
∂νA

ν = 0.

For nonzero mass m this implies that A is divergence-free, thus its four components are not mutually independent.

d2. Show that the Proca equation can be rewritten as (∂2 +
m2c2

~2
)Aν = 0, in which ∂2 = ηµν∂µ∂ν(5)

(i.e. the so-called d’Alembertian).

This follows from rewriting the first term on the l.h.s. of the Proca equation: ∂µFµν = ∂µ(∂µAν − ∂νAµ) = ∂2Aν − ∂ν(∂ · A). The

second term on the r.h.s. vanishes, recall d1 (note that in an inertial system ∂µ and ∂ν commute).

We use the following Fourier convention in Minkowski space (in an inertial system):

f(x) =
1

(2π)4

∫
R4

e−ik·xf̂(k)dk ,

in which k · x = ηµνk
µxν and dk = dk0dk1dk2dk3. (A ˆ henceforth denotes Fourier transform.) We

take for granted that f=0 is equivalent to f̂=0 (“completeness of the Fourier basis”).

e1. Show that the condition on the potential field (recall d1) is equivalent to k·Â(k) = ηµνk
µÂν(k) = 0.(5)



SubstitutingAµ(x) = 1
(2π)4

∫
R4 e

−ik·xÂµ(k)dk into ∂µAµ(x)=0 yields 1
(2π)4

∫
R4 e

−ik·x(−ikµ)Âµ(k)dk = 0, which, by complete-

ness of the Fourier basis, holds iff kµÂµ(k)=0.

e2. Show that the Proca equation in Fourier space is (−k2+
m2c2

~2
)Âν(k)=0, with k2=k ·k=ηµνkµkν .(5)

SubstitutingAν(x)= 1
(2π)4

∫
R4 e

−ik·xÂν(k)dk into the Proca equation yields 1
(2π)4

∫
R4 e

−ik·x(−k2 + m2c2

~2 )Âν(k)dk=0, which, by

completeness of the Fourier basis, holds iff (−k2 + m2c2

~2 )Âν(k)=0.

For nontrivial Fourier amplitudes Âν(k) we apparently have the dispersion relation −k2 +
m2c2

~2
= 0.

f1. Show that this is just the Einstein’s mass-energy equivalence relation E2 = m2c4 + ‖~p‖2c2 for a(21
2 )

moving particle with mass m and 3-momentum ~p.

This follows by an elementary rewriting, using k = p/~ and p · p = E2/c2 − ‖~p‖2.

Given the dispersion relation, the Proca equation admits plane wave solutions in Minkowski spacetime
of the form Aµ(x; k) = εµ(k)e−ik·x parameterized by k ∈ R4. Note that k · ε(k) = ηµνk

µεν(k)
e1
= 0.

f2. Show that there are precisely three independent “polarizations”, i.e. independent components of the(21
2 )

amplitude vector ε(k) = εµ(k)∂µ for each fixed k ∈ R4.

The divergence freeness condition for a plane wave is k · ε = ηµνkµεν = 0, stating that the vectorial amplitude is perpendicular to

the direction of 4-momentum relative to the Minkowski metric. This provides exactly one linear equation in four unknowns, leaving three

components of ε(k) = εµ(k)∂µ undetermined.

Thus admissible solutions are linear combinations of three “polarization states”, which we shall denote
by ε`(k) = εµ` (k)∂µ, ` = 1, 2, 3. Note that ` is a polarization state label, not a tensor index.

g1. Show that ε0` (k) = 0 for all ` = 1, 2, 3 if ~k = ~0.(21
2 )

For ~k = ~0 we have 0 = k · ε`(k) = k0ε0` (k), with (by virtue of the dispersion relation) k0 =
mc

~
6= 0, whence ε0` (k) = 0.

g2. Show that, together with ε0` (k) = 0, εi`(k) = δi` for all i, ` = 1, 2, 3 provides a desired set of three(21
2 )

independent polarization states if ~k = ~0.

The dispersion relation is trivially satisfied by g1. The divergence-freeness constraint is likewise satisfied, since k · ε`(k) = ηµνkµεν` (k)
∗
=

η00k0ε0` (k)
?
= 0, in which step ∗ uses ~k = ~0, and ? again exploits g1.

h. Show that, for general wave vectors k ∈ R4 (i.e. without the constraint ~k = ~0),(5)

3∑
`=1

εµ` (k)ε
ν
` (k) = ηµν − ~2

m2c2
kµkν .

(Hint: (i) The only contravariant 2-tensor holors that can be formed in this context are linear combinations of ηµν

and kµkν . (ii) Recall g1 and g2.)



Stipulate an expression of the form
3∑
`=1

εµ` (k)εν` (k) = Akµkν + Bηµν for some constants A and B. Insertion of ~k = ~0 and considering

µ = ν = 0 yields 0
g1
=
∑3
`=1 ε

0
` (k)ε0` (k) = A(k0)2 +Bη00 = Am2c2

~2 +B. For µ = ν = i = 1, 2, 3 we find likewise (no summation

over i) 1
g2
=
∑3
`=1 ε

i
`(k)εi`(k) = Bηii = B. As a consequence, A = − ~2

m2c2
, from which the result follows.

FEYNMAN DIAGRAM: PRODUCTION OF A HIGGS BOSON (H0) FROM MASSIVE VECTOR BOSONS (W, Z) EMITTED BY QUARKS (q).

THE END


