EXAMINATION TENSOR CALCULUS AND DIFFERENTIAL GEOMETRY

Course code: 2WAH0-2WAH1. Date: Tuesday June 23, 2015. Time: 18h00-21h00. Place: AUD 14.

Read this first!

- Write your name and student identification number on each paper.
- The exam consists of 2 problems. The maximum credit for each item is indicated in the margin.
- Motivate your answers in mathematically rigorous terms.
- Einstein summation convention applies throughout for all repeated pairs of upper and lower indices.
- You may consult an immaculate hardcopy of the online draft notes "Tensor Calculus and Differential Geometry (2WAH0)" by Luc Florack. No equipment may be used.

Recall the positivity and non-degeneracy conditions for a Riemannian metric $\mathbf{G}: \mathrm{TM} \times \mathrm{TM} \rightarrow \mathbb{R}$: $\mathbf{G}(\mathbf{v}, \mathbf{v})=(\mathbf{v} \mid \mathbf{v})=g_{i j} v^{i} v^{j} \geq 0$ for any $\mathbf{v}=v^{i} \partial_{i}$ (positivity), with equality if and only if $\mathbf{v}=\mathbf{0}$ (non-degeneracy). We denote by g the determinant of the matrix with entries $g_{i j}$.
a1. Show that, in general, positivity implies $g \geq 0$.

A real symmetric matrix has real eigenvalues, the product of which equals its determinant. In particular, the semi-positive real symmetric matrix with entries $g_{i j}$ has nonnegative eigenvalues.
a2. Show that, in general, non-degeneracy is equivalent to $g \neq 0$.

Suppose $g=0$, then the matrix with entries $g_{i j}$ has a zero eigenvalue, vice versa. An associated eigenvector $\mathbf{v}=v^{i} \partial_{i} \neq \mathbf{0}$ satisfies $g_{i j} v^{j}=0$, whence $(\mathbf{v} \mid \mathbf{v})=g_{i j} v^{i} v^{j}=0$, contradicting the non-degeneracy requirement.

We now stipulate a particular 3-dimensional Riemannian metric of the form

$$
\mathbf{G}=d x \otimes d x+d y \otimes d y+d z \otimes d z-(a d x+b d y+c d z) \otimes(a d x+b d y+c d z)
$$

in which $d x, d y, d z \in \mathrm{~T}^{*} \mathrm{M}$ are coordinate one-forms and $a, b, c \in \mathbb{R}$ are constants.
b1. Show that, in this case, non-degeneracy is equivalent to $a^{2}+b^{2}+c^{2} \neq 1$.

We have

$$
g=\operatorname{det}\left(\begin{array}{ccc}
1-a^{2} & -a b & -a c \\
-a b & 1-b^{2} & -b c \\
-a c & -b c & 1-c^{2}
\end{array}\right)=1-a^{2}-b^{2}-c^{2},
$$

from which the result follows, recall a.
c. Show that $\langle\mathbf{P}(\mathbf{u}), \mathbf{e}\rangle=0$ for any vector $\mathbf{u}=u^{i} \partial_{i}$.

For an arbitrary vector $\mathbf{u}=u^{i} \partial_{i}$ we have $\mathbf{P}(\mathbf{u})=p_{i j}\left(d x^{i} \otimes d x^{j}\right)\left(u^{k} \partial_{k}\right)=p_{i j} u^{k} \delta_{k}^{i} d x^{j}=p_{i j} u^{i} d x^{j}$, whence $\langle\mathbf{P}(\mathbf{u}), \mathbf{e}\rangle=$ $p_{i j} u^{i} e^{k}\left\langle d x^{j}, \partial_{k}\right\rangle=p_{i j} u^{i} e^{k} \delta_{k}^{j}=p_{i j} u^{i} e^{j}=\left(g_{i j}-\omega_{i} \omega_{j}\right) u^{i} e^{j}=u_{j} e^{j}-\omega_{i} u^{i}=g_{i j}\left(u^{i} e^{j}-e^{j} u^{i}\right)=0$. Note that the image $\mathbf{P}(\mathbf{u}) \in \mathrm{T}^{*} \mathrm{M}$ of $\mathbf{u} \in \mathrm{T}^{*} \mathrm{M}$ is a covector. A vectorial image may be obtained straightforwardly, viz. by considering $b(\mathbf{P}(\mathbf{u})) \in \mathrm{TM}$. In the latter sense \mathbf{P} can be interpreted as a projection onto the plane perpendicular to the vector \mathbf{e}.

A special g-orthonormal basis $\left\{\mathbf{e}_{\alpha}=e_{\alpha}^{i} \partial_{i}\right\}_{\alpha=1, \ldots, n}$ relative to the metric $\mathbf{G}=g_{i j} d x^{i} \otimes d x^{j}$ is one for which $\mathbf{G}\left(\mathbf{e}_{\alpha}, \mathbf{e}_{\beta}\right)=\left(\mathbf{e}_{\alpha} \mid \mathbf{e}_{\beta}\right)=g_{i j} e_{\alpha}^{i} e_{\beta}^{j}=\delta_{\alpha \beta}$, in which $\delta_{\alpha \beta}=1$ and $\delta^{\alpha \beta}=1$ if $\alpha=\beta$ and 0 otherwise. The corresponding dual basis is $\left\{\boldsymbol{\omega}^{\alpha}=\omega_{i}^{\alpha} d x^{i}\right\}_{\alpha=1, \ldots, n}$.
d. Show that g-orthonormality of a basis is preserved under orthogonal transformations.
(Hint: A matrix \mathbf{A} corresponding to an orthogonal transformation satisfies $\mathbf{A}^{T} \mathbf{A}=\mathbf{I}$.)

Suppose $\left\{\mathbf{e}_{\alpha}\right\}$ is g-orthonormal. Consider a linear basis transformation, with $\mathbf{f}_{\alpha}=A_{\alpha}^{\beta} \mathbf{e}_{\beta}$ say, then $\left\{\mathbf{f}_{\alpha}\right\}$ is g-orthonormal iff $\left(\mathbf{f}_{\alpha} \mid \mathbf{f}_{\beta}\right)=$
$\delta_{\alpha \beta}$. Inserting $\mathbf{f}_{\alpha}=A_{\alpha}^{\gamma} \mathbf{e}_{\gamma}$ and $\mathbf{f}_{\beta}=A_{\beta}^{\delta} \mathbf{e}_{\delta}$ and using g-orthonormality of $\left\{\mathbf{e}_{\alpha}\right\}$ yields $A_{\alpha}^{\gamma} A_{\beta}^{\delta} \delta_{\gamma \delta}=\delta_{\alpha \beta}$, or, in matrix form, $\mathbf{A}^{T} \mathbf{A}=\mathbf{I}$, which is the defining equation for orthogonal matrices.
e1. Show that $\delta_{\beta}^{\alpha}=\omega_{i}^{\alpha} e_{\beta}^{i}$.

By duality of both $\left\{\boldsymbol{\omega}^{\alpha}, \mathbf{e}_{\beta}\right\}$ and $\left\{d x^{i}, \partial_{j}\right\}$, using the decompositions $\boldsymbol{\omega}^{\alpha}=\omega_{i}^{\alpha} d x^{i}$ and $\mathbf{e}_{\beta}=e_{\beta}^{i} \partial_{i}$, we have $\delta_{\beta}^{\alpha}=\left\langle\boldsymbol{\omega}^{\alpha}, \mathbf{e}_{\beta}\right\rangle=$ $\omega_{i}^{\alpha} e_{\beta}^{j}\left\langle d x^{i}, \partial_{j}\right\rangle=\omega_{i}^{\alpha} e_{\beta}^{j} \delta_{j}^{i}=\omega_{i}^{\alpha} e_{\beta}^{i}$.
e2. Show that $\delta_{j}^{i}=e_{\alpha}^{i} \omega_{j}^{\alpha}$.
(Hint: Contract ω_{j}^{β} onto the result of e1.)
Contracting ω_{j}^{β} onto the result of e1 yields $\omega_{j}^{\alpha}=\delta_{\beta}^{\alpha} \omega_{j}^{\beta} \stackrel{\mathrm{el}}{=} \omega_{i}^{\alpha} e_{\beta}^{i} \omega_{j}^{\beta}$, from which it follows that $e_{\beta}^{i} \omega_{j}^{\beta}=\delta_{j}^{i}$.
b2. Likewise, show that positive-definiteness of the metric implies $a^{2}+b^{2}+c^{2}<1$.

Positive-definiteness of the metric implies that all eigenvalues are positive, whence $g>0$. According to b 1 this means that $a^{2}+b^{2}+c^{2}<1$.
Next we consider the tensor $\mathbf{P}=p_{i j} d x^{i} \otimes d x^{j}$, with $p_{i j}=g_{i j}-\omega_{i} \omega_{j}$, in which now $g_{i j}$ are the components of a genuine (positive-definite, non-degenerate) Riemannian metric, and $\omega_{i}=g_{i j} e^{j}$ are the covariant components of the dual $\boldsymbol{\omega} \in \mathrm{T}^{*} \mathbf{M}$ of a given unit vector $\mathbf{e} \in \mathrm{TM}$, i.e. $(\mathbf{e} \mid \mathbf{e})=g_{i j} e^{i} e^{j}=1$ and $\langle\boldsymbol{\omega}, \mathbf{e}\rangle=\omega_{j} e^{j}=1$.
e3. Show that $g_{i j}=\omega_{i}^{\alpha} \delta_{\alpha \beta} \omega_{j}^{\beta}=\sum_{\alpha} \omega_{i}^{\alpha} \omega_{j}^{\alpha}$.
(Hint: First show that e 2 implies $\partial_{i}=\omega_{i}^{\alpha} \mathbf{e}_{\alpha}$.)
We have $\partial_{i}=\delta_{i}^{k} \partial_{k} \stackrel{\text { e2 }}{=} e_{\alpha}^{k} \omega_{i}^{\alpha} \partial_{k}=\omega_{i}^{\alpha} \mathbf{e}_{\alpha}$, whence $g_{i j}=\left(\partial_{i} \mid \partial_{j}\right)=\left(\omega_{i}^{\alpha} \mathbf{e}_{\alpha} \mid \omega_{j}^{\beta} \mathbf{e}_{\beta}\right)=\omega_{i}^{\alpha} \omega_{j}^{\beta}\left(\mathbf{e}_{\alpha} \mid \mathbf{e}_{\beta}\right)=\omega_{i}^{\alpha} \delta_{\alpha \beta} \omega_{j}^{\beta}=\sum_{\alpha} \omega_{i}^{\alpha} \omega_{j}^{\alpha}$.
e4. Show that $g^{i j}=e_{\alpha}^{i} \delta^{\alpha \beta} e_{\beta}^{j}=\sum_{\alpha} e_{\alpha}^{i} e_{\alpha}^{j}$.

By analogy to the proof of e3 we may proceed by first showing that $d x^{i}=e_{\alpha}^{i} \boldsymbol{\omega}^{\alpha}$, viz. $d x^{i}=\delta_{k}^{i} d x^{k} \stackrel{\text { e2 }}{=} e_{\alpha}^{i} \omega_{k}^{\alpha} d x^{k}=e_{\alpha}^{i} \boldsymbol{\omega}^{\alpha}$. Then, using the inner product on the cotangentbundle we obtain $g^{i j}=\left(d x^{i} \mid d x^{j}\right)_{*}=\left(e_{\alpha}^{i} \boldsymbol{\omega}^{\alpha} \mid e_{\alpha}^{j} \boldsymbol{\omega}^{\beta}\right)_{*}=e_{\alpha}^{i} e_{\beta}^{j}\left(\boldsymbol{\omega}^{\alpha} \mid \boldsymbol{\omega}^{\beta}\right)_{*}=e_{\alpha}^{i} \delta^{\alpha \beta} e_{\beta}^{j}=\sum_{\alpha} e_{\alpha}^{i} e_{\alpha}^{j}$. Alternatively we may show that the stipulated r.h.s. is indeed the contravariant holor of the dual metric, viz. $g_{i k} e_{\alpha}^{k} \delta^{\alpha \beta} e_{\beta}^{j} \stackrel{\star}{=} \omega_{i}^{\beta} e_{\beta}^{j}=\delta_{i}^{j}$, so that indeed $e_{\alpha}^{k} \delta^{\alpha \beta} e_{\beta}^{j}=g^{k j}$. In \star we have used duality: $g_{i k} e_{\alpha}^{k} \delta^{\alpha \beta}=\omega_{i}^{\beta}$.

2. Massive Vector Bosons

We consider 4-dimensional spacetime, endowed with a non-positive "Minkowski metric" $\boldsymbol{G}=\eta_{\mu \nu} d x^{\mu} \otimes d x^{\nu}$. The corresponding non-positive, symmetric, non-degenerate bilinear form, or "inner product", of two 4 -vectors, $\mathbf{v}=v^{\mu} \partial_{\mu}$ and $\mathbf{w}=w^{\mu} \partial_{\mu}$ say, is denoted by $\mathbf{v} \cdot \mathbf{w}=v^{\mu} \eta_{\mu \nu} w^{\nu}$.

We henceforth restrict ourselves to so-called "inertial systems", in which, by definition, the components of the covariant metric tensor are $\eta_{00}=1, \eta_{11}=\eta_{22}=\eta_{33}=-1$, and $\eta_{\mu \nu}=0$ otherwise ($\mu, \nu=0,1,2,3$). The defining inertial coordinates are indicated by $\left(x^{0}, x^{1}, x^{2}, x^{3}\right)=(c t, x, y, z)=(c t, \vec{x}) \in \mathbb{R}^{4}$, in which $c \approx 3.00 \times 10^{8} \mathrm{~m} / \mathrm{s}$ denotes the universally constant speed of light in vacuum.

A so-called "Lorentz transformation" relates two inertial systems, with coordinates $x \in \mathbb{R}^{4}$ and $\bar{x} \in \mathbb{R}^{4}$, say, preserving the components of the Minkowski metric as stated above.
a1. Show that if $x^{\mu}=L_{\nu}^{\mu} \bar{x}^{\nu}$ is a Lorentz transformation, then the components L_{ν}^{μ} must satisfy the condition $L_{\rho}^{\mu} \eta_{\mu \nu} L_{\sigma}^{\nu}=\eta_{\rho \sigma}$.
(Hint: Set $\bar{\eta}_{\mu \nu} d \bar{x}^{\mu} \otimes d \bar{x}^{\nu}=\eta_{\mu \nu} d x^{\mu} \otimes d x^{\nu}$ and impose the defining invariance property $\bar{\eta}_{\mu \nu}=\eta_{\mu \nu}$.)
On the one hand we have $\eta_{\mu \nu} d x^{\mu} \otimes d x^{\nu}=\eta_{\mu \nu} \frac{\partial x^{\mu}}{\partial \bar{x}^{\rho}} \frac{\partial x^{\nu}}{\partial \bar{x}^{\sigma}} d \bar{x}^{\rho} \otimes d \bar{x}^{\sigma} \stackrel{\text { def }}{=} \bar{\eta}_{\rho \sigma} d \bar{x}^{\rho} \otimes d \bar{x}^{\sigma}$ ("covariance"). On the other hand we have $\bar{\eta}_{\rho \sigma}=\eta_{\rho \sigma}$ ("invariance"). Noting that $\frac{\partial x^{\mu}}{\partial \bar{x}^{\rho}}=L_{\rho}^{\mu}$ this yields $L_{\rho}^{\mu} \eta_{\mu \nu} L_{\sigma}^{\nu}=\eta_{\rho \sigma}$.
a2. Show that Lorentz transformations are closed under composition. In other words, show that the effective transformation $x \rightarrow \overline{\bar{x}}$ resulting from two consecutive Lorentz transformations, $x \rightarrow \bar{x} \rightarrow \overline{\bar{x}}$ say, is itself a Lorentz transformation.

Performing two Lorentz transformations $x \rightarrow \bar{x} \rightarrow \overline{\bar{x}}$ in a row yields $x^{\mu}=L_{\nu}^{\mu} \bar{x}^{\nu}=L_{\nu}^{\mu} \bar{L}_{\rho}^{\nu} \overline{\bar{x}}^{\rho}$. Considering the matrix $\Lambda_{\rho}^{\mu}=L_{\nu}^{\mu} \bar{L}_{\rho}^{\nu}$ we have $\Lambda_{\rho}^{\mu} \eta_{\mu \nu} \Lambda_{\sigma}^{\nu}=L_{\alpha}^{\mu} \bar{L}_{\rho}^{\alpha} \eta_{\mu \nu} L_{\beta}^{\nu} \bar{L}_{\rho}^{\beta} \stackrel{*}{=} \bar{L}_{\rho}^{\alpha} \eta_{\alpha \beta} \bar{L}_{\sigma}^{\beta} \stackrel{*}{=} \eta_{\rho \sigma}$, from which it follows that Λ_{ν}^{μ} is indeed the matrix representation of a Lorentz transformation. In $*$ we have used the defining property of a Lorentz transformation.

An energy-momentum vector $\mathbf{p}=p^{\mu} \partial_{\mu}$ has a corresponding representation in terms of a wave vector $\mathbf{k}=k^{\mu} \partial_{\mu}$ given by $\mathbf{p}=\hbar \mathbf{k}$, in which $\hbar \approx 1.05 \times 10^{-34} \mathbf{J}$ s denotes Planck's constant. The following notation is often used for the components:

$$
\mathbf{k}=\left(k^{0}, k^{1}, k^{2}, k^{3}\right)=\left(k^{0}, \vec{k}\right)=(\omega / c, \vec{k}),
$$

in which $\omega \in \mathbb{R}$ and $\vec{k} \in \mathbb{R}^{3}$ denote temporal angular frequency and spatial frequency 3 -vector, and

$$
\mathbf{p}=\left(p^{0}, p^{1}, p^{2}, p^{3}\right)=\left(p^{0}, \vec{p}\right)=(E / c, \vec{p}),
$$

in which $E \in \mathbb{R}$ and $\vec{p} \in \mathbb{R}^{3}$ denote energy and momentum 3 -vector, respectively. These are to be distinguised from their dual (covector) counterparts $\widehat{\mathbf{k}}=k_{\mu} d x^{\mu}$ and $\widehat{\mathbf{p}}=p_{\mu} d x^{\mu}$.
b. Show that, in any inertial frame, $\widehat{\mathbf{k}}=\left(k^{0},-k^{1},-k^{2},-k^{3}\right)=\left(k^{0},-\vec{k}\right)=(\omega / c,-\vec{k})$, respectively $\widehat{\mathbf{p}}=\left(p^{0},-p^{1},-p^{2},-p^{3}\right)=\left(p^{0},-\vec{p}\right)=(E / c,-\vec{p})$.

From $k_{\mu}=\eta_{\mu \nu} k^{\nu}$ it follows that $k_{0}=\eta_{0 \nu} k^{\nu} \stackrel{*}{=} \eta_{00} k^{0}=k^{0}$, and $k_{i}=\eta_{i \nu} k^{\nu} \stackrel{*}{=} \eta_{i i} k^{i}=-k^{i}$. In $*$ we have used the explicit diagonal form of the Minkowski metric in an inertial frame; in particular, no summation is implied over the repeated index i in the latter expression.

We consider a force field $F \stackrel{\text { def }}{=} d A$, generated by a covector-valued potential field $A=A_{\nu} d x^{\nu}$ through exterior derivation: $d A=\partial_{\mu} A_{\nu} d x^{\mu} \wedge d x^{\nu}$. The components of F relative to a standard tensor basis $\left\{d x^{\mu} \otimes d x^{\nu}\right\}$ are given by $F_{\mu \nu}$, i.e. $F=F_{\mu \nu} d x^{\mu} \otimes d x^{\nu}$.
c1. Show that $F_{\mu \nu}=\partial_{\mu} A_{\nu}-\partial_{\nu} A_{\mu}$.
We have $F=d A=\partial_{\mu} A_{\nu} d x^{\mu} \wedge d x^{\nu}=\frac{1}{2}\left(\partial_{\mu} A_{\nu}-\partial_{\nu} A_{\mu}\right) d x^{\mu} \wedge d x^{\nu}=\left(\partial_{\mu} A_{\nu}-\partial_{\nu} A_{\mu}\right) d x^{\mu} \otimes d x^{\nu} \stackrel{\text { def }}{=} F_{\mu \nu} d x^{\mu} \otimes d x^{\nu}$.
c2. Show that, alternatively, $F=\frac{1}{2} F_{\mu \nu} d x^{\mu} \wedge d x^{\nu}$.
According to c1 we have $F=\frac{1}{2}\left(\partial_{\mu} A_{\nu}-\partial_{\nu} A_{\mu}\right) d x^{\mu} \wedge d x^{\nu} \stackrel{\stackrel{1}{l}}{=} \frac{1}{2} F_{\mu \nu} d x^{\mu} \wedge d x^{\nu}$.
The (contravariant components of the) potential field, $A^{\mu}=\eta^{\mu \nu} A_{\nu}$, satisfy the Proca equation,

$$
\partial_{\mu} F^{\mu \nu}+\frac{m^{2} c^{2}}{\hbar^{2}} A^{\nu}=0
$$

in which $m>0$ is some mass parameter. This field equation describes so-called "massive vector bosons" (massive counterparts of the familiar massless photon in electromagnetism).
d1. Show that the components of the potential field are not independent, but satisfy $\partial \cdot A=\partial_{\mu} A^{\mu}=0$.
Since $F^{\mu \nu}$ is antisymmetric we have $\partial_{\nu} \partial_{\mu} F^{\mu \nu}=0$. Thus by applying ∂_{ν} to the l.h.s. of the Proca equation we obtain $\frac{m^{2} c^{2}}{\hbar^{2}} \partial_{\nu} A^{\nu}=0$. For nonzero mass m this implies that A is divergence-free, thus its four components are not mutually independent.
d2. Show that the Proca equation can be rewritten as $\left(\partial^{2}+\frac{m^{2} c^{2}}{\hbar^{2}}\right) A^{\nu}=0$, in which $\partial^{2}=\eta^{\mu \nu} \partial_{\mu} \partial_{\nu}$ (i.e. the so-called d'Alembertian).

This follows from rewriting the first term on the 1.h.s. of the Proca equation: $\partial_{\mu} F^{\mu \nu}=\partial_{\mu}\left(\partial^{\mu} A^{\nu}-\partial^{\nu} A^{\mu}\right)=\partial^{2} A^{\nu}-\partial^{\nu}(\partial \cdot A)$. The second term on the r.h.s. vanishes, recall d1 (note that in an inertial system ∂_{μ} and ∂^{ν} commute).

We use the following Fourier convention in Minkowski space (in an inertial system):

$$
f(x)=\frac{1}{(2 \pi)^{4}} \int_{\mathbb{R}^{4}} e^{-i k \cdot x} \hat{f}(k) d k
$$

in which $k \cdot x=\eta_{\mu \nu} k^{\mu} x^{\nu}$ and $d k=d k^{0} d k^{1} d k^{2} d k^{3}$. (A A henceforth denotes Fourier transform.) We take for granted that $f=0$ is equivalent to $\hat{f}=0$ ("completeness of the Fourier basis").
e1. Show that the condition on the potential field (recall d1) is equivalent to $k \cdot \hat{A}(k)=\eta_{\mu \nu} k^{\mu} \hat{A}^{\nu}(k)=0$.

Substituting $A^{\mu}(x)=\frac{1}{(2 \pi)^{4}} \int_{\mathbb{R}^{4}} e^{-i k \cdot x} \hat{A}^{\mu}(k) d k$ into $\partial_{\mu} A^{\mu}(x)=0$ yields $\frac{1}{(2 \pi)^{4}} \int_{\mathbb{R}^{4}} e^{-i k \cdot x}\left(-i k_{\mu}\right) \hat{A}^{\mu}(k) d k=0$, which, by completeness of the Fourier basis, holds iff $k_{\mu} \hat{A}^{\mu}(k)=0$.
e2. Show that the Proca equation in Fourier space is $\left(-k^{2}+\frac{m^{2} c^{2}}{\hbar^{2}}\right) \hat{A}^{\nu}(k)=0$, with $k^{2}=k \cdot k=\eta^{\mu \nu} k_{\mu} k_{\nu}$. Substituting $A^{\nu}(x)=\frac{1}{(2 \pi)^{4}} \int_{\mathbb{R}^{4}} e^{-i k \cdot x} \hat{A}^{\nu}(k) d k$ into the Proca equation yields $\frac{1}{(2 \pi)^{4}} \int_{\mathbb{R}^{4}} e^{-i k \cdot x}\left(-k^{2}+\frac{m^{2} c^{2}}{\hbar^{2}}\right) \hat{A}^{\nu}(k) d k=0$, which, by completeness of the Fourier basis, holds iff $\left(-k^{2}+\frac{m^{2} c^{2}}{\hbar^{2}}\right) \hat{A}^{\nu}(k)=0$.

For nontrivial Fourier amplitudes $\hat{A}^{\nu}(k)$ we apparently have the dispersion relation $-k^{2}+\frac{m^{2} c^{2}}{\hbar^{2}}=0$.
$\left(2 \frac{1}{2}\right)$ f1. Show that this is just the Einstein's mass-energy equivalence relation $E^{2}=m^{2} c^{4}+\|\vec{p}\|^{2} c^{2}$ for a moving particle with mass m and 3-momentum \vec{p}.

This follows by an elementary rewriting, using $k=p / \hbar$ and $p \cdot p=E^{2} / c^{2}-\|\vec{p}\|^{2}$.

Given the dispersion relation, the Proca equation admits plane wave solutions in Minkowski spacetime of the form $A^{\mu}(x ; k)=\epsilon^{\mu}(k) e^{-i k \cdot x}$ parameterized by $k \in \mathbb{R}^{4}$. Note that $k \cdot \boldsymbol{\epsilon}(k)=\eta_{\mu \nu} k^{\mu} \epsilon^{\nu}(k) \stackrel{\mathrm{e} 1}{=} 0$.
f2. Show that there are precisely three independent "polarizations", i.e. independent components of the amplitude vector $\boldsymbol{\epsilon}(k)=\epsilon^{\mu}(k) \partial_{\mu}$ for each fixed $k \in \mathbb{R}^{4}$.

The divergence freeness condition for a plane wave is $k \cdot \epsilon=\eta^{\mu \nu} k_{\mu} \epsilon_{\nu}=0$, stating that the vectorial amplitude is perpendicular to the direction of 4 -momentum relative to the Minkowski metric. This provides exactly one linear equation in four unknowns, leaving three components of $\boldsymbol{\epsilon}(k)=\epsilon^{\mu}(k) \partial_{\mu}$ undetermined.

Thus admissible solutions are linear combinations of three "polarization states", which we shall denote by $\boldsymbol{\epsilon}_{\ell}(k)=\epsilon_{\ell}^{\mu}(k) \partial_{\mu}, \ell=1,2,3$. Note that ℓ is a polarization state label, not a tensor index.
g1. Show that $\epsilon_{\ell}^{0}(k)=0$ for all $\ell=1,2,3$ if $\vec{k}=\overrightarrow{0}$.
For $\vec{k}=\overrightarrow{0}$ we have $0=k \cdot \boldsymbol{\epsilon}_{\ell}(k)=k^{0} \epsilon_{\ell}^{0}(k)$, with (by virtue of the dispersion relation) $k^{0}=\frac{m c}{\hbar} \neq 0$, whence $\epsilon_{\ell}^{0}(k)=0$.
g2. Show that, together with $\epsilon_{\ell}^{0}(k)=0, \epsilon_{\ell}^{i}(k)=\delta_{\ell}^{i}$ for all $i, \ell=1,2,3$ provides a desired set of three independent polarization states if $\vec{k}=\overrightarrow{0}$.

The dispersion relation is trivially satisfied by g 1 . The divergence-freeness constraint is likewise satisfied, since $k \cdot \boldsymbol{\epsilon}_{\ell}(k)=\eta_{\mu \nu} k^{\mu} \epsilon_{\ell}^{\nu}(k) \stackrel{*}{=}$ $\eta_{00} k^{0} \epsilon_{\ell}^{0}(k) \stackrel{\star}{=} 0$, in which step $*$ uses $\vec{k}=\overrightarrow{0}$, and \star again exploits g1.
h. Show that, for general wave vectors $k \in \mathbb{R}^{4}$ (i.e. without the constraint $\vec{k}=\overrightarrow{0}$),

$$
\begin{equation*}
\sum_{\ell=1}^{3} \epsilon_{\ell}^{\mu}(k) \epsilon_{\ell}^{\nu}(k)=\eta^{\mu \nu}-\frac{\hbar^{2}}{m^{2} c^{2}} k^{\mu} k^{\nu} \tag{5}
\end{equation*}
$$

(Hint: (i) The only contravariant 2-tensor holors that can be formed in this context are linear combinations of $\eta^{\mu \nu}$ and $k^{\mu} k^{\nu}$. (ii) Recall g1 and g2.)

Stipulate an expression of the form $\sum_{\ell=1}^{3} \epsilon_{\ell}^{\mu}(k) \epsilon_{\ell}^{\nu}(k)=A k^{\mu} k^{\nu}+B \eta^{\mu \nu}$ for some constants A and B. Insertion of $\vec{k}=\overrightarrow{0}$ and considering $\mu=\nu=0$ yields $0 \stackrel{g 1}{=} \sum_{\ell=1}^{3} \epsilon_{\ell}^{0}(k) \epsilon_{\ell}^{0}(k)=A\left(k^{0}\right)^{2}+B \eta^{00}=A \frac{m^{2} c^{2}}{\hbar^{2}}+B$. For $\mu=\nu=i=1,2,3$ we find likewise (no summation over $i) 1 \stackrel{g 2}{=} \sum_{\ell=1}^{3} \epsilon_{\ell}^{i}(k) \epsilon_{\ell}^{i}(k)=B \eta^{i i}=B$. As a consequence, $A=-\frac{\hbar^{2}}{m^{2} c^{2}}$, from which the result follows.

FEYNMAN DIAGRAM: PRODUCTION OF A Higgs boson (H^{0}) FROM MASSIVE VECTOR BOSONS (W, Z) EMITTED BY QUARKS (q).

