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EXAMINATION TENSOR CALCULUS AND DIFFERENTIAL GEOMETRY

Course code: 2WAHO-2WAH1. Date: Tuesday June 23, 2015. Time: 18h00-21h00. Place: AUD 14.

Read this first!

Write your name and student identification number on each paper.

The exam consists of 2 problems. The maximum credit for each item is indicated in the margin.

Motivate your answers in mathematically rigorous terms.

Einstein summation convention applies throughout for all repeated pairs of upper and lower indices.

e You may consult an immaculate hardcopy of the online draft notes “Tensor Calculus and Differential
Geometry (2WAHO0)” by Luc Florack. No equipment may be used.

1. RIEMANNIAN METRIC

Recall the positivity and non-degeneracy conditions for a Riemannian metric G : TM x TM — R:
G(v,v) = (v|v) = gjv"v? > 0 for any v = v'0; (positivity), with equality if and only if v = 0
(non-degeneracy). We denote by g the determinant of the matrix with entries g;;.

al. Show that, in general, positivity implies g > 0.

A real symmetric matrix has real eigenvalues, the product of which equals its determinant. In particular, the semi-positive real symmetric

matrix with entries g;; has nonnegative eigenvalues.
a2. Show that, in general, non-degeneracy is equivalent to g #0.

Suppose g = 0, then the matrix with entries g;; has a zero eigenvalue, vice versa. An associated eigenvector v = v'0; # 0 satisfies

gi;v? =0, whence (v|v) = g;;v°v7 = 0, contradicting the non-degeneracy requirement.
We now stipulate a particular 3-dimensional Riemannian metric of the form
G=dr®dr+dy®dy+dz®dz — (adz + bdy + cdz) ® (adzx + bdy + cdz) ,

in which dz, dy, dz € T*M are coordinate one-forms and a, b, ¢ € R are constants.

b1. Show that, in this case, non-degeneracy is equivalent to a? + b? + ¢* # 1.
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‘We have

1—a2 —ab —ac
g = det —ab 1— b2 —be =1-—a%—-b% -2,
—ac —bc 1—¢c2

from which the result follows, recall a.
b2. Likewise, show that positive-definiteness of the metric implies a® + b% + ¢ < 1.
Positive-definiteness of the metric implies that all eigenvalues are positive, whence g > 0. According to b1 this means that a® +b% +¢? < 1.

Next we consider the tensor P = pijdmi ® dad, with Dij = gij — wiwj, in which now g;; are the
components of a genuine (positive-definite, non-degenerate) Riemannian metric, and w; = g;je’ are the
covariant components of the dual w € T*M of a given unit vector e € TM, i.e. (ele) = g;je'e! = 1
and (w, e) = wje/ = 1.

c. Show that (P(u), e) = 0 for any vector u = u0;.

For an arbitrary vector u = u!d; we have P(u) = p;;(de® ® dz?)(u*0y) = pijubsided = p;juldz?, whence (P(u),e) =
pijuiek(dmj,ak) = pijuiekéi = pijuiej = (g9ij — wiwj)uiej = u]-ej — wiut = gij(uiej — eu?) = 0. Note that the image
P(u) € T*M of u € T*M is a covector. A vectorial image may be obtained straightforwardly, viz. by considering b(P(u)) € TM. In the

latter sense P can be interpreted as a projection onto the plane perpendicular to the vector e.

A special g-orthonormal basis {e, = €.,0;}am1, . n relative to the metric G = g;;da’ @ da’ is one
for which G(eq,eg) = (eq|eg) = gije’aejﬂ = 04, In Which Sop = 1land 6% = 1if a = B and 0
otherwise. The corresponding dual basis is {w® = w*dz'} o1, p.

d. Show that g-orthonormality of a basis is preserved under orthogonal transformations.

(Hint: A matrix A corresponding to an orthogonal transformation satisfies AT A =1.)

Suppose {eq } is g-orthonormal. Consider a linear basis transformation, with fo, = Ageﬁ say, then {f, } is g-orthonormal iff (fa|fﬁ)
0 - Inserting f, = AZLeV and fg = A‘;e(; and using g-orthonormality of {en } yields AZLA‘;%& = d,, or, in matrix form, ATA =1,
which is the defining equation for orthogonal matrices.

a _ o0
el. Show that 55 = wj'ep.
By duality of both {w™, ez} and {dz?,d;}, using the decompositions w® = wPdz’ and eg = egai, we have 6§ = (w® eg) =

wz‘-"eé (dz?,0;) = wf‘eééj- = wf‘efe.

RN RNe'
e2. Show that 07 = eqw?.
B

(Hint: Contract w ; onto the result of el.)

s
J

Contracting w'’. onto the result of el yields w;?‘ = (Sgwf d w?e%wf, from which it follows that eféw? = 6;

e3. Show that g;; = wf‘éagwf => wiws'.
(Hint: First show that e2 implies 0; = wf'e,.)
B

We have 0; = 5f8k 2 egwfak = wfeq, whence g;; = (9;]0;) = (wf‘edwfeg) = witwj (ea|e5) = wfdagw].ﬁ =3, witws.
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ed. Show that g%/ = ¢!, 5aﬂ => €

By analogy to the proof of e3 we may proceed by first showing that dz® = e? w®, viz. dz? = 6i dz* 2 egwl‘j dz® = e, w®. Then, using the

inner product on the cotangentbundle we obtain g%/ = (da’|dx’) = (eéwﬂeéwﬁ) = el efg (w|w?), =€ 6‘1B =y, ¢eel.
*
Alternatively we may show that the stipulated r.h.s. is indeed the contravariant holor of the dual metric, viz. g;, ek 628 eg ; w; eg = (53

that indeed eﬁ&"‘ﬁeg = g%, In x we have used duality: g;ek %P = wf.

&

2. MASSIVE VECTOR BOSONS

We consider 4-dimensional spacetime, endowed with a non-positive “Minkowski metric” G = 1), dx* @dx".
The corresponding non-positive, symmetric, non-degenerate bilinear form, or “inner product”, of two
4-vectors, v =v"0, and w =w"0,, say, is denoted by v - w = vFn,, w".

We henceforth restrict ourselves to so-called “inertial systems”, in which, by definition, the components
of the covariant metric tensor are 7oo = 1, 711 =722 =133 = —1, and 77, =0 otherwise (u, v =0, 1, 2, 3).
The defining inertial coordinates are indicated by (20, 2!, 22 2%) = (ct,2,y,2) = (ct,¥) € R%, in
which ¢ ~ 3.00 x 10® m/s denotes the universally constant speed of light in vacuum.

A so-called “Lorentz transformation” relates two inertial systems, with coordinates = € R*and 7 € R4,
say, preserving the components of the Minkowski metric as stated above.

al. Show that if x# = L{Z" is a Lorentz transformation, then the components L, must satisfy the
condition Lm Ly = 7po-

(Hint: Set7),,,,dz" @ dz” = 1, dz* @ dz” and impose the defining invariance property 7,,,, = 1..,-)
OzH dx¥

— T

ozP 0T’
oxH

Moo = Tpo (“invariance”). Noting that Pl = L" this yields L% m”,L = Tpo-

On the one hand we have 71, dz" ® dz¥ = nu. def ﬁpodip ® dz° (“covariance”). On the other hand we have

a2. Show that Lorentz transformations are closed under composition. In other words, show that the
effective transformation x — T resulting from two consecutive Lorentz transformations, z — T — T
say, is itself a Lorentz transformation.

Performing two Lorentz transformations & — T — Z in a row yields z# = LEZY = Lﬁfz%p . Considering the matrix A, = L,‘ff: we
have A% pNMuv Ny = =LKLY p Muv L ﬁL = f‘: Na @f =z 7po» from which it follows that AY is indeed the matrix representation of a Lorentz

transformation. In % we have used the defining property of a Lorentz transformation.

An energy-momentum vector p = p'0,, has a corresponding representation in terms of a wave vector
k = k"0, given by p = hk, in which i ~ 1.05 x 10734 J s denotes Planck’s constant. The following
notation is often used for the components:

k= (k°, k', k% k%) = (K, k) = (w/c, k),
in which w € R and k € R? denote temporal angular frequency and spatial frequency 3-vector, and

p= " p",p%p*) = (0 p) = (E/c,p),
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in which £ € R and € R? denote energy and momentum 3-vector, respectively. These are to be
distinguised from their dual (covector) counterparts k =k, dz* and p=p,dx*.

b. Show that, in any inertial frame, k= (k°, —k', —k%, —k3)=(k°, —k) = (w/c, —k), respectively
ﬁ: (p07 _pla _p27 _p3) = (p07 _ﬁ') = (E/C) _13)

From k, = nyu kY it follows that kg = 1o, k¥ = nooko =k and k; = Niv kY = niiki = —k*. In % we have used the explicit diagonal

form of the Minkowski metric in an inertial frame; in particular, no summation is implied over the repeated index ¢ in the latter expression.

We consider a force field 7 & dA, generated by a covector-valued potential field A = A, dz" through
exterior derivation: dA = 0,A, dx* A dx”. The components of F' relative to a standard tensor basis
{dz" ® dx"} are given by F),,,i.e. F = F,, da" @ dz".

cl. Show that F,, = 0,4, — 0, A,.

We have F' = dA = 0, Ay dat Ndax? = 5 (0, Ay — 0, Ay) dat ANdx¥ = (0u Ay — OV AL) daet ® da¥ def Fu dzt @ dxV.

1
2
c2. Show that, alternatively, F' = % F,, dzt N dz.

According to c1 we have F' = %(BHA,, — Oy Ay) dxt A dx¥ d % Fyy dxt A dx?.

The (contravariant components of the) potential field, A* = n** A,, satisfy the Proca equation,

m2c?

K2
in which m > 0 is some mass parameter. This field equation describes so-called “massive vector bosons”
(massive counterparts of the familiar massless photon in electromagnetism).

AV =0,

8, F" +

d1. Show that the components of the potential field are not independent, but satisfy 0 - A=09,A* =0.

2.2

Since F'*¥ is antisymmetric we have 0,0, F'*¥ = 0. Thus by applying 0, to the Lh.s. of the Proca equation we obtain 0, A = 0.

"2
For nonzero mass m this implies that A is divergence-free, thus its four components are not mutually independent.

m2c?

h?

d2. Show that the Proca equation can be rewritten as (9% + JA” = 0, in which 8% = 79,0,

(i.e. the so-called d’ Alembertian).

This follows from rewriting the first term on the Lh.s. of the Proca equation: 8, F*¥ = 8, (9" A¥ — 8 AH) = §2AY — 9¥(d - A). The

second term on the r.h.s. vanishes, recall d1 (note that in an inertial system J;, and 0” commute).

We use the following Fourier convention in Minkowski space (in an inertial system):

@) = gyt [ e F b

in which k - x = 7, k*x" and dk = dk%dk'dk?dk3. (A" henceforth denotes Fourier transform.) We
take for granted that f =0 is equivalent to f =0 (“completeness of the Fourier basis”).

el. Show that the condition on the potential field (recall d1) is equivalent to k- A (k) = s ktAY (k) = 0.
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Substituting x) = oy [ra e A into x) =0yields 7oy [ns e~ T (—ik, A = 0, which, by complete-
bstituting A# @yt Jea € F AR (K)dk into 9, AF ds oyt Ja € (—iky) A¥ (k) dk h 1

ness of the Fourier basis, holds iff k,, A* (k) =0.

m?c?

hQ

e2. Show that the Proca equation in Fourier space is (—k*+- VAY (k) =0, with k? =k -k=n"k,k,.
Substituting AY (x) = ﬁ Jra e~ AV (k)dk into the Proca equation yields ﬁ Jpae FT(—k2+ %)A“(k)dk =0, which, by

completeness of the Fourier basis, holds iff (—k? m;cQ )AV (k)=o.

m2c?

For nontrivial Fourier amplitudes A”(k:) we apparently have the dispersion relation —k* + Eake 0.

f1. Show that this is just the Einstein’s mass-energy equivalence relation £? = m?2c + ||p]|?c? for a
moving particle with mass m and 3-momentum p.

This follows by an elementary rewriting, using k = p/hand p - p = E2/c? — ||p]|%.

Given the dispersion relation, the Proca equation admits plane wave solutions in Minkowski spacetime
of the form A¥(x; k) = €"(k)e*** parameterized by k € R*. Note that k - €(k) = n,, k"€ (k) 2

f2. Show that there are precisely three independent “polarizations”, i.e. independent components of the
amplitude vector €(k) = e*(k)0,, for each fixed k € R%.

The divergence freeness condition for a plane wave is k - € = n*"k e, = 0, stating that the vectorial amplitude is perpendicular to
the direction of 4-momentum relative to the Minkowski metric. This provides exactly one linear equation in four unknowns, leaving three

components of €(k) = e* (k)0 undetermined.

Thus admissible solutions are linear combinations of three “polarization states”, which we shall denote
by €,(k) = €, (k)d,, £ = 1,2,3. Note that £ is a polarization state label, not a tensor index.

gl. Show that ¢} (k) = 0 forall £ = 1,2, 3 if k = 0.

Fork = 0Owehave 0 = k - €p(k) = k%€Q(k), with (by virtue of the dispersion relation) KO = ? # 0, whence €9 (k) = 0.
2

g2. Show that, together with €9 (k

) , €5(k) = &i for all i,¢ = 1,2, 3 provides a desired set of three
independent polarization states if k=

0
0

The dispersion relation is trivially satisfied by gI. The divergence-freeness constraint is likewise satisfied, since k - €¢(k) = nu.kej (k) =
nookoeg(k) £ 0, in which step * uses k¥ = 0, and * again exploits gl.

—.

h. Show that, for general wave vectors k € R* (i.e. without the constraint k= 0),

h2
m2c?

3
> e (k)ef (k) = — kMK

(=1

(Hint: (i) The only contravariant 2-tensor holors that can be formed in this context are linear combinations of n**
and k#k". (ii) Recall gl and g2.)
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Stipulate an expression of the form Z ey (k)ef (k) = AkMEY + Bn*” for some constants A and B. Insertion of k = 0 and considering
(=1

p=v=0yields 02 Y3 d(k)ed(k) = A(K?)2 + By® = A™ " 4 B. Forpu = v =i = 1,2,3 we find likewise (no summation

overi) 1 & DIy €5 (k)ei (k) = Bn'* = B. As a consequence, A = —

2
m’z 2> from which the result follows.

FEYNMAN DIAGRAM: PRODUCTION OF A HIGGS BOSON (HY) FROM MASSIVE VECTOR BOSONS (W, Z) EMITTED BY QUARKS (q).

THE END



