
EXAMINATION TENSOR CALCULUS AND DIFFERENTIAL GEOMETRY

Course code: 2WAH0-2WAH1. Date: Tuesday June 23, 2015. Time: 18h00–21h00. Place: AUD 14.

Read this first!

• Write your name and student identification number on each paper.

• The exam consists of 2 problems. The maximum credit for each item is indicated in the margin.

• Motivate your answers in mathematically rigorous terms.

• Einstein summation convention applies throughout for all repeated pairs of upper and lower indices.

• You may consult an immaculate hardcopy of the online draft notes “Tensor Calculus and Differential
Geometry (2WAH0)” by Luc Florack. No equipment may be used.

1. RIEMANNIAN METRIC(50)

Recall the positivity and non-degeneracy conditions for a Riemannian metric G : TM × TM → R:
G(v,v) = (v|v) = gijv

ivj ≥ 0 for any v = vi∂i (positivity), with equality if and only if v = 0
(non-degeneracy). We denote by g the determinant of the matrix with entries gij .

a1. Show that, in general, positivity implies g≥0.(5)

a2. Show that, in general, non-degeneracy is equivalent to g 6=0.(5)

We now stipulate a particular 3-dimensional Riemannian metric of the form

G = dx⊗ dx+ dy ⊗ dy + dz ⊗ dz − (adx+ bdy + cdz)⊗ (adx+ bdy + cdz) ,

in which dx, dy, dz ∈ T∗M are coordinate one-forms and a, b, c ∈ R are constants.

b1. Show that, in this case, non-degeneracy is equivalent to a2 + b2 + c2 6= 1.(5)

b2. Likewise, show that positive-definiteness of the metric implies a2 + b2 + c2 < 1.(5)

Next we consider the tensor P = pijdx
i ⊗ dxj , with pij = gij − ωiωj , in which now gij are the

components of a genuine (positive-definite, non-degenerate) Riemannian metric, and ωi = gije
j are the

covariant components of the dual ω ∈ T∗M of a given unit vector e ∈ TM, i.e. (e|e) = gije
iej = 1

and 〈ω, e〉 = ωje
j = 1.



c. Show that 〈P(u), e〉 = 0 for any vector u = ui∂i.(5)

A special g-orthonormal basis {eα = eiα∂i}α=1,...,n relative to the metric G = gijdx
i ⊗ dxj is one

for which G(eα, eβ) = (eα|eβ) = gije
i
αe
j
β = δαβ , in which δαβ = 1 and δαβ = 1 if α = β and 0

otherwise. The corresponding dual basis is {ωα = ωαi dx
i}α=1,...,n.

d. Show that g-orthonormality of a basis is preserved under orthogonal transformations.(5)
(Hint: A matrix A corresponding to an orthogonal transformation satisfies ATA = I.)

e1. Show that δαβ = ωαi e
i
β .(5)

e2. Show that δij = eiαω
α
j .(5)

(Hint: Contract ωβj onto the result of e1.)

e3. Show that gij = ωαi δαβω
β
j =

∑
α ω

α
i ω

α
j .(5)

(Hint: First show that e2 implies ∂i = ωαi eα.)

e4. Show that gij = eiαδ
αβejβ =

∑
α e

i
αe
j
α.(5)

♣

2. MASSIVE VECTOR BOSONS(50)

We consider 4-dimensional spacetime, endowed with a non-positive “Minkowski metric”G=ηµνdx
µ⊗dxν .

The corresponding non-positive, symmetric, non-degenerate bilinear form, or “inner product”, of two
4-vectors, v=vµ∂µ and w=wµ∂µ say, is denoted by v ·w = vµηµνw

ν .

We henceforth restrict ourselves to so-called “inertial systems”, in which, by definition, the components
of the covariant metric tensor are η00=1, η11=η22=η33=−1, and ηµν=0 otherwise (µ, ν=0, 1, 2, 3).
The defining inertial coordinates are indicated by (x0, x1, x2, x3) = (ct, x, y, z) = (ct, ~x) ∈ R4, in
which c ≈ 3.00× 108 m/s denotes the universally constant speed of light in vacuum.

A so-called “Lorentz transformation” relates two inertial systems, with coordinates x ∈ R4 and x ∈ R4,
say, preserving the components of the Minkowski metric as stated above.

a1. Show that if xµ = Lµνxν is a Lorentz transformation, then the components Lµν must satisfy the(5)
condition LµρηµνL

ν
σ = ηρσ.

(Hint: Set ηµνdx
µ ⊗ dxν = ηµνdx

µ ⊗ dxν and impose the defining invariance property ηµν = ηµν .)

a2. Show that Lorentz transformations are closed under composition. In other words, show that the(5)
effective transformation x → x resulting from two consecutive Lorentz transformations, x → x → x
say, is itself a Lorentz transformation.

An energy-momentum vector p= pµ∂µ has a corresponding representation in terms of a wave vector
k= kµ∂µ given by p = ~k, in which ~ ≈ 1.05 × 10−34 J s denotes Planck’s constant. The following



notation is often used for the components:

k = (k0, k1, k2, k3) = (k0,~k) = (ω/c,~k) ,

in which ω ∈ R and ~k ∈ R3 denote temporal angular frequency and spatial frequency 3-vector, and

p = (p0, p1, p2, p3) = (p0, ~p) = (E/c, ~p) ,

in which E ∈ R and ~p ∈ R3 denote energy and momentum 3-vector, respectively. These are to be
distinguised from their dual (covector) counterparts k̂=kµdxµ and p̂=pµdx

µ.

b. Show that, in any inertial frame, k̂=(k0,−k1,−k2,−k3)=(k0,−~k)=(ω/c,−~k), respectively(21
2 )

p̂=(p0,−p1,−p2,−p3)=(p0,−~p)=(E/c,−~p).

We consider a force field F def
= dA, generated by a covector-valued potential field A = Aνdx

ν through
exterior derivation: dA = ∂µAν dx

µ ∧ dxν . The components of F relative to a standard tensor basis
{dxµ ⊗ dxν} are given by Fµν , i.e. F = Fµν dx

µ ⊗ dxν .

c1. Show that Fµν = ∂µAν − ∂νAµ.(21
2 )

c2. Show that, alternatively, F = 1
2 Fµν dx

µ ∧ dxν .(21
2 )

The (contravariant components of the) potential field, Aµ = ηµνAν , satisfy the Proca equation,

∂µF
µν +

m2c2

~2
Aν = 0 ,

in whichm>0 is some mass parameter. This field equation describes so-called “massive vector bosons”
(massive counterparts of the familiar massless photon in electromagnetism).

d1. Show that the components of the potential field are not independent, but satisfy ∂ ·A=∂µA
µ=0.(21

2 )

d2. Show that the Proca equation can be rewritten as (∂2 +
m2c2

~2
)Aν = 0, in which ∂2 = ηµν∂µ∂ν(5)

(i.e. the so-called d’Alembertian).

We use the following Fourier convention in Minkowski space (in an inertial system):

f(x) =
1

(2π)4

∫
R4

e−ik·xf̂(k)dk ,

in which k · x = ηµνk
µxν and dk = dk0dk1dk2dk3. (A ˆ henceforth denotes Fourier transform.) We

take for granted that f=0 is equivalent to f̂=0 (“completeness of the Fourier basis”).

e1. Show that the condition on the potential field (recall d1) is equivalent to k·Â(k) = ηµνk
µÂν(k) = 0.(5)

e2. Show that the Proca equation in Fourier space is (−k2+m
2c2

~2
)Âν(k)=0, with k2=k ·k=ηµνkµkν .(5)

For nontrivial Fourier amplitudes Âν(k) we apparently have the dispersion relation −k2 + m2c2

~2
= 0.



f1. Show that this is just the Einstein’s mass-energy equivalence relation E2 = m2c4 + ‖~p‖2c2 for a(21
2 )

moving particle with mass m and 3-momentum ~p.

Given the dispersion relation, the Proca equation admits plane wave solutions in Minkowski spacetime
of the form Aµ(x; k) = εµ(k)e−ik·x parameterized by k ∈ R4. Note that k · ε(k) = ηµνk

µεν(k)
e1
= 0.

f2. Show that there are precisely three independent “polarizations”, i.e. independent components of the(21
2 )

amplitude vector ε(k) = εµ(k)∂µ for each fixed k ∈ R4.

Thus admissible solutions are linear combinations of three “polarization states”, which we shall denote
by ε`(k) = εµ` (k)∂µ, ` = 1, 2, 3. Note that ` is a polarization state label, not a tensor index.

g1. Show that ε0` (k) = 0 for all ` = 1, 2, 3 if ~k = ~0.(21
2 )

g2. Show that, together with ε0` (k) = 0, εi`(k) = δi` for all i, ` = 1, 2, 3 provides a desired set of three(21
2 )

independent polarization states if ~k = ~0.

h. Show that, for general wave vectors k ∈ R4 (i.e. without the constraint ~k = ~0),(5)

3∑
`=1

εµ` (k)ε
ν
` (k) = ηµν − ~2

m2c2
kµkν .

(Hint: (i) The only contravariant 2-tensor holors that can be formed in this context are linear combinations of ηµν

and kµkν . (ii) Recall g1 and g2.)

FEYNMAN DIAGRAM: PRODUCTION OF A HIGGS BOSON (H0) FROM MASSIVE VECTOR BOSONS (W, Z) EMITTED BY QUARKS (q).

THE END


