
EXAMINATION TENSOR CALCULUS AND DIFFERENTIAL GEOMETRY

Course code: 2WAH0. Date: Tuesday June 26, 2018. Time: 18h00–21h00. Place: AUD 12

Read this first!

• Write your name and student identification number on each paper.

• The exam consists of 3 problems. The maximum credit for each item is indicated in the margin.

• You may consult an immaculate hardcopy of the online draft notes “Tensor Calculus and Differential
Geometry (2WAH0)” by Luc Florack. No other material or equipment may be used.

1. TENSOR CALCULUS MISCELLANY.(20)

Consider the mixed tensor X = Xi
j ei ⊗ êj , and a basis transformation ei = Aji fj , together with its

induced dual basis transformation, êi = Bi
j f̂
j . The transformed holorXi

j is defined via X = X
i
j fi⊗ f̂ j .

a1. Show that AkiB
j
k = δij .(5)

We have δji = 〈êj , ei〉 = 〈Bj
k f̂

k, A`
i f`〉 = A`

iB
j
k〈f̂

k, f̂`〉 = A`
iB

j
kδ

k
` = Ak

iB
j
k .

a2. Show that if the holor is invariant, i.e. if Xi
j = Xi

j for any basis transformation, then X must equal(5)
the Kronecker tensor up to a constant factor.

On the one hand we have the general ‘tensor transformation law’ Xi
j = Ai

kB
`
jX

k
` . On the other hand we have the invariance requirement

X
i
j = Xi

j . Combining these, and using a, it follows that Aj
kX

i
j = Ai

jX
j
k regardless of the choice of the transformation matrix. We may

therefore regard theAi
j as independent variables, and differentiate the equation with respect to these. This yieldsXi

jδ
p
q = Xp

q δ
i
j . Contraction

over p = q produces nXi
j = Xδij , in which X = Xk

k , in other words Xi
j = cδij , in which c = X/n is an arbitrary constant. We conclude

that X = cδij ei ⊗ êj = c ei ⊗ êi = c 〈 , 〉 is a multiple of the Kronecker tensor.

Next, consider the tensors V = V iei, S = Sij ei ⊗ ej and T = Tijk ê
i ⊗ êj ⊗ êk.

b1. Expand the holor V (iSjk) of S (V ⊗ S), i.e. the symmetrised outer product of V and S, explicitly(5)
in terms of the holors V i and Sjk.

We have
V (iSjk) .

= S (V ⊗ S)ijk =
1

6

(
V iSjk + V iSkj + V jSik + V jSki + V kSij + V kSji

)
.

b2. Suppose S (V ⊗ S) = 0 for all vectors V. Show that S (S) = 0.(5)



Differentiating the null function

0 = f ijk(V)
.
= V iSjk + V iSkj + V jSik + V jSki + V kSij + V kSji = 2

(
V iS(jk) + V jS(ik) + V kS(ij)

)
,

with respect to V ` for fixed S yields

0 =
1

2

∂f ijk(V)

∂V `
= δi`S

(jk) + δj`S
(ik) + δk` S

(ij) .

Contraction of the indices i and ` yields (n+ 2)S(jk) = 0, in which n is the dimension of the vector space, whence S(jk) = 0.

♣



2. LAPLACE-DE RHAM OPERATOR.(30)

The Laplace-de Rham operator ∆LDR, a generalization of the Laplace-Beltrami operator ∆LB, is defined
so as to act on sections of any k-form bundle over a Riemannian manifold M of dimension n, 0 ≤ k ≤ n.
Its formal definition is

∆LDR
.
= dδ + δd ,

in which d denotes the exterior derivative or differential, and δ the so-called codifferential. The latter is
defined for a k-form field in terms of the differential d and Hodge star operator ∗ as follows:

δ = (−1)(k+1)n+1 ∗ d ∗ .

For notational simplicity we denote the linear space of k-form fields by Λk(M), 0 ≤ k ≤ n. Recall
that for a k-form field ω = ωi1...ikdx

i1 ∧ . . . ∧ dxik ∈ Λk(M), say, the differential dω ∈ Λk+1(M) is
defined as dω = ∂iωi1...ikdx

i ∧ dxi1 ∧ . . . ∧ dxik , thus d increments covariant rank by one.

Terminology. A 0-form field is usually referred to as a scalar field, an n-form field as a volume form.

In this problem you may use the following lemma without proof.

Lemma. The double Hodge star ∗∗ preserves the covariant rank of its operand. More specifically, on a
(positive definite) Riemannian manifold M of dimension n we have:

∗∗ = (−1)k(n−k)1Λk(M) ,

in which 1Λk(M) is the identity operator (usually suppressed in the notation by writing ∗∗ = (−1)k(n−k)).

a1. Show that for a scalar field f ∈ Λ0(M) we have ∆LDRf = δdf .(5)

a2. Show that for a volume form ρ ∈ Λn(M) we have ∆LDRρ = dδρ.(5)

By definition ∗1 = ε ∈ Λn(M), the unit n-form. Since the differential d increments covariant order of its operand, we have dε ∈ Λn+1(M),

and therefore dε = 0. By linearity we then also have d ∗ f = fd ∗ 1 = fdε = 0, leading to the reduction ∆LDRf = (dδ + δd)f = δdf .

By the same token, dρ ∈ Λn+1(M) and thus dρ = 0, whence ∆LDRρ = (dδ + δd)ρ = dδρ.

b. Argue that if ω ∈ Λk(M), then δω ∈ Λk−1(M), i.e. δ decrements covariant rank by one.(5)
[Hint: Avoid explicit calculation of δω.]

Use the prototypes of ∗ : Λk(M)→ Λn−k(M) and d : Λk(M)→ Λk+1(M) for any 0 ≤ k ≤ n. Ignoring the irrelevant sign, we thus have

δ(k-form) = (∗d∗)(k-form) = (∗d)((n−k)-form) = ∗((n−k+1)-form) = (n−(n−k+1))-form = (k−1)-form.

c. Show that we may also write the definition of the Laplace-de Rham operator as ∆LDR = (d+ δ)2.(5)

This boils down to proving that d2 = δ2 = 0.

Proof of d2 = 0: Let ω ∈ Λk(M) be a section of the k-form bundle, say ω = ωi1...ikdx
i1 ∧ . . .∧ dxik . Then dω ∈ Λk+1(M) is defined

as dω = ∂iωi1...ikdx
i ∧ dxi1 ∧ . . . ∧ dxik , and d2ω = ∂j∂iωi1...ikdx

j ∧ dxi ∧ dxi1 ∧ . . . ∧ dxik = 0. The latter follows from
symmetry considerations w.r.t. the (i, j)-sum: ∂j∂i is symmetric, whereas dxj ∧ dxi antisymmetric.

Proof of δ2 = 0: δ2 ∝ (∗d∗)(∗d∗)
†
∝ ∗d2∗

‡
= 0, in which ∝ indicates equality up to a constant (sign) factor. In the step marked by † we

have used the fact that ∗∗ ∝ 1 is the identity operator up to a possible minus sign∗. In the step marked by ‡ we have used d2 = 0.



∗As an aside, the exact form of the double Hodge star in a pseudo-Riemannian manifold with metric determinant g 6= 0 is given by

∗∗ = (−1)k(n−k)sgn g. The codifferential then also acquires a possible minus sign: δ = (−1)(k+1)n+1sgn g ∗ d∗.

For a scalar field f the Laplace-Beltrami operator ∆LB is defined as

∆LBf
.
=

1
√
g
∂i
(√
ggij∂jf

)
,

with g the determinant of the Gram matrix with entries gij , and gij the holor of the inverse Gram matrix.

d. Derive the relation between ∆LDRf and ∆LBf for a scalar field f .(10)
[Hint: (i) ∗(ωkdx

k) = gk`ωkε`i2...indx
i2 ⊗ . . .⊗ dxin ; (ii) ∗∗ 1 = 1; (iii) εi1...in =

√
g [i1, . . . , in].]

We have ∆LDRf = δdf = −∗ d ∗ df . Notice the minus sign, which originates from the definition of δ acting on a 1-form (viz. df ). Working
this out from right to left we first obtain

df = ∂kfdx
k .

Taking the Hodge star yields, using the hint,

∗df = (gk`
√
g∂kf)µ`i2...indx

i2 ⊗ . . .⊗ dxin ,

in which the notation µi1...in = [i1, . . . , in] has been used merely to maintain manifest covariant indices. The factor
√
g has been factored

out so as to clarify the x-dependence of the holor of this (n−1)-form, viz. the part in parentheses. Taking the differential yields

d ∗ df = ∂m
(
gk`
√
g∂kf

)
µ`i2...indx

m ⊗ dxi2 ⊗ . . .⊗ dxin .

Putting back the original holor of the ε-tensor,
√
g µ`i2...in = ε`i2...in , we get

d ∗ df =
1
√
g
∂m
(
gk`
√
g∂kf

)
ε`i2...indx

m ⊗ dxi2 ⊗ . . .⊗ dxin .

Consider the tensor ε`i2...indx
m⊗dxi2⊗ . . .⊗dxin . Since all indices i2, . . . , in ∈ {1, . . . , n} are effectively distinct, the only nontrivial

option for the free index m results from the choice m = `, distinct from each i2, . . . , in. As a result we have

ε`i2...indx
m ⊗ dxi2 ⊗ . . .⊗ dxin = δm` εi1...indx

i1 ⊗ . . .⊗ dxin = δm` ε .

Consequently,

d ∗ df =
1
√
g
∂`

(
gk`
√
g∂kf

)
ε .

Next, taking the Hodge dual once again, using ∗ε = ∗∗ 1 = 1, we obtain

∗d ∗ df =
1
√
g
∂`

(
gk`
√
g∂kf

)
.

Finally, looking at the original definition, including a minus sign, we observe that

∆LDRf
.
= − ∗ d ∗ df .

= −∆LBf .

♣



3. RIEMANN, RICCI & COTTON TENSOR.(50)

Recall the definition of the (holor of the) Riemann tensor on an n-dimensional Riemannian manifold in
terms of the Levi-Civita Christoffel symbols Γkij :

Rki`j = ∂`Γ
k
ij − ∂jΓki` + Γkλ`Γ

λ
ij − ΓkλjΓ

λ
i` .

The (holor of the) Ricci tensor is defined as

Rij = Rkikj . (∗)

By definition, the fully covariant Riemann tensor has holor

Rijk` = gimR
m
jk` .

a. Show that Rij = Rji.(5)
[Hint: Write Rij = Rk

ikj = gk`R`ikj and observe that R`ikj = Rkj`i.]

Following the hint we write
Rij = Rk

ikj = gk`R`ikj = gk`Rkj`i = R`
j`i = Rji .

The Ricci scalar is the trace of the Ricci tensor: R = gijRij . Henceforth, Dk refers to a covariant
derivative corresponding to the Levi-Civita connection.

b. Expand DkRij in terms of (0th and 1st order) partial derivatives of Rij and Christoffel symbols, but(5)
do not expand Rij itself.

DkRij = ∂kRij − Γ`
ikR`j − Γ`

jkRi`.

c. Show that, in dimension n=1, Rijk` = 0.(5)
[Hint: The covariant holor Rijk` inherits a certain antisymmetry property from the mixed holor Rm

jk`.]

By antisymmetry Rijk` = −Rij`k we have, in n=1, R1111 = −R1111 as the single degree of freedom, whence Rijk` = 0.

Without proof we state that the fully covariant Riemann tensor in n=2 has the following form:

n = 2 : Rijk` = (gikgj` − gi`gjk)ψ ,

for some scalar field ψ ∈ C∞(M).

d. Show that, in this 2-dimensional case, ψ = 1
2R.(5)

We have Rij = gk`R`ikj
?
= gk`(g`kgij − g`jgik)ψ = (ngij − gij)ψ

n=2
= gijψ, whence R def

= gijRij = gijgijψ = nψ
?
= 2ψ. The

identities marked with ? exploit the conjecture for n=2.

Likewise without proof we state that, in n=3 dimensions,

n = 3 : Rijk` = a(gikRj` − gjkRi` − gi`Rjk + gj`Rik) + b(gikgj` − gi`gjk)R ,



for certain constants a, b ∈ R.

e. Show that a = 1 and b = −1
2 .(5)

Contraction with gik yields Rj`
def
= gikRijk`

?
= gik

(
a(gikRj` − gjkRi` − gi`Rjk + gj`Rik) + b(gikgj` − gi`gjk)

)
. The identity

marked with ? exploits the conjecture for n= 3. Simplifying the r.h.s. we obtain, using gikRik = R and gikgik = n = 3 in this specific

case: Rj` = (n−2)aRj` + (a+ (n−1)b)gj`R
n=3
= aRj` + (a+ 2b)gj`R, whence a = 1 and b = − 1

2
.

We consider a conformal metric transformation, g̃ij = e2φgij , in which φ ∈ C∞(M) is a smooth scalar
field. The Levi-Civita Christoffel symbols associated with the transformed metric are indicated by Γ̃kij .

f1. Show that Γ̃kij = Γkij + Skij and derive the explicit form of the symbols Skij in terms of the scalar(5)
field φ and the original Riemannian metric tensor gij .

We have Sk
ij = ∂iφδ

k
j + ∂jφδ

k
i − ∂kφgij , in which ∂kφ = gk`∂`φ.

f2. Argue why Skij , as opposed to Γkij , is the holor of a tensor.(5)
[Hint: Avoid elaborate computations. Use the observations Dkgij = 0 and Dkf = ∂kf for any scalar field f .]

In the expression Sk
ij = ∂iφδ

k
j + ∂jφδ

k
i − ∂kφgij we may, following the hint, replace each ∂ by D, showing the tensorial nature of Sk

ij .

g1. Show that in general dimension n the holor R̃ki`j of the Riemann tensor after conformal metric(5)
transformation is given in terms of Rki`j and the tensorial holor Skij as follows:

R̃ki`j = Rki`j +D`S
k
ij −DjS

k
i` + Skλ`S

λ
ij − SkλjSλi` .

Insert Γ̃k
ij = Γk

ij + Sk
ij into definition of R̃k

i`j in terms of Γ̃-symbols, and the result follows.

g2. Now take n=2. Find R̃ij in terms of Rij and φ.(5)

Using the definition of the Ricci tensor and its simplification in n=2, Rij = gk`R`ikj
d
= 1

2
Rgij , with Γk

ij replaced by Γ̃k
ij = Γk

ij + Sk
ij ,

we obtain, using f1, R̃ij = Rij − gij∆LBφ, in which ∆LBφ = DkDkφ = Dk∂kφ.

Note: In general dimension n we have R̃ij = Rij − gij∆LBφ − (n−2) (∂iφ∂jφ −Di∂jφ − ‖∇φ‖2 gij). This general result follows

from f1 and g1 after a more tedious but straightforward computation.

The so-called Cotton tensor is a third order covariant tensor with the following holor:

Cijk = DkRij −DjRik +
1

2(n−1)
(gikDjR− gijDkR) .

h. Show that in n=2 the Cotton vanishes identically: Cijk = 0.(5)

Using the n = 2 form of the fully covariant Riemann tensor we find Cijk =
1

2
(gjkDjR − gijDkR). With the help of e we obtain

Rij = 1
2
Rgij . Inserting this in the definition of the Cotton tensor yields (remember to take n=2) Cijk = 0.



THE END


