# **EXAMINATION TENSOR CALCULUS AND DIFFERENTIAL GEOMETRY**

Course code: 2WAH0. Date: Tuesday June 26, 2018. Time: 18h00-21h00. Place: AUD 12

### **Read this first!**

- Write your name and student identification number on each paper.
- The exam consists of 3 problems. The maximum credit for each item is indicated in the margin.
- You may consult an immaculate hardcopy of the online draft notes "Tensor Calculus and Differential Geometry (2WAH0)" by Luc Florack. No other material or equipment may be used.



## (20) 1. TENSOR CALCULUS MISCELLANY.

Consider the mixed tensor  $\mathbf{X} = X_j^i \mathbf{e}_i \otimes \hat{\mathbf{e}}^j$ , and a basis transformation  $\mathbf{e}_i = A_i^j \mathbf{f}_j$ , together with its induced dual basis transformation,  $\hat{\mathbf{e}}^i = B_j^i \hat{\mathbf{f}}^j$ . The transformed holor  $\overline{X}_j^i$  is defined via  $\mathbf{X} = \overline{X}_j^i \mathbf{f}_i \otimes \hat{\mathbf{f}}^j$ .

- (5) **a1.** Show that  $A_i^k B_k^j = \delta_j^i$ .
- (5) **a2.** Show that if the holor is invariant, i.e. if  $\overline{X}_{j}^{i} = X_{j}^{i}$  for any basis transformation, then **X** must equal the Kronecker tensor up to a constant factor.

Next, consider the tensors  $\mathbf{V} = V^i \mathbf{e}_i$ ,  $\mathbf{S} = S^{ij} \mathbf{e}_i \otimes \mathbf{e}_j$  and  $\mathbf{T} = T_{ijk} \hat{\mathbf{e}}^i \otimes \hat{\mathbf{e}}^j \otimes \hat{\mathbf{e}}^k$ .

- (5) **b1.** Expand the holor  $V^{(i}S^{jk)}$  of  $\mathscr{S}(\mathbf{V} \otimes \mathbf{S})$ , i.e. the symmetrised outer product of  $\mathbf{V}$  and  $\mathbf{S}$ , explicitly in terms of the holors  $V^i$  and  $S^{jk}$ .
- (5) **b2.** Suppose  $\mathscr{S}(\mathbf{V} \otimes \mathbf{S}) = 0$  for all vectors  $\mathbf{V}$ . Show that  $\mathscr{S}(\mathbf{S}) = 0$ .

### (30) 2. LAPLACE-DE RHAM OPERATOR.

The Laplace-de Rham operator  $\Delta_{LDR}$ , a generalization of the Laplace-Beltrami operator  $\Delta_{LB}$ , is defined so as to act on sections of any k-form bundle over a Riemannian manifold M of dimension  $n, 0 \le k \le n$ . Its formal definition is

$$\Delta_{\text{LDR}} \doteq d\delta + \delta d$$
,

in which d denotes the exterior derivative or differential, and  $\delta$  the so-called *codifferential*. The latter is defined for a k-form field in terms of the differential d and Hodge star operator \* as follows:

$$\delta = (-1)^{(k+1)n+1} * d * .$$

For notational simplicity we denote the linear space of k-form fields by  $\Lambda_k(M)$ ,  $0 \le k \le n$ .

Terminology. A 0-form field is usually referred to as a scalar field, an n-form field as a volume form.

In this problem you may use the following lemma without proof.

**Lemma.** The double Hodge star \*\* preserves the covariant rank of its operand. More specifically, on a (positive definite) Riemannian manifold M of dimension n we have:

$$** = (-1)^{k(n-k)} \mathbf{1}_{\Lambda_k(\mathbf{M})},$$

in which  $1_{\Lambda_k(M)}$  is the identity operator (often simply written as 1, or even suppressed altogether).

(5) **a1.** Show that for a scalar field  $f \in \Lambda_0(\mathbf{M})$  we have  $\Delta_{\text{LDR}} f = \delta df$ .

(5) **a2.** Show that for a volume form  $\rho \in \Lambda_n(M)$  we have  $\Delta_{LDR}\rho = d\delta\rho$ .

Recall that for a k-form field  $\boldsymbol{\omega} = \omega_{i_1...i_k} dx^{i_1} \wedge ... \wedge dx^{i_k} \in \Lambda_k(\mathbf{M})$ , say, the differential  $d\boldsymbol{\omega} \in \Lambda_{k+1}(\mathbf{M})$  is defined as  $d\boldsymbol{\omega} = \partial_i \omega_{i_1...i_k} dx^i \wedge dx^{i_1} \wedge ... \wedge dx^{i_k}$ , thus d increments covariant rank by one.

- (5) **b.** Argue that if  $\omega \in \Lambda_k(M)$ , then  $\delta \omega \in \Lambda_{k-1}(M)$ , i.e.  $\delta$  decrements covariant rank by one. [*Hint:* Avoid explicit calculation of  $\delta \omega$ .]
- (5) **c.** Show that we may also write the definition of the Laplace-de Rham operator as  $\Delta_{LDR} = (d + \delta)^2$ .

For a scalar field f the Laplace-Beltrami operator  $\Delta_{LB}$  is defined as

$$\Delta_{\text{\tiny LB}}f\doteqrac{1}{\sqrt{g}}\partial_i\left(\sqrt{g}g^{ij}\partial_jf
ight)\,,$$

with g the determinant of the Gram matrix with entries  $g_{ij}$ , and  $g^{ij}$  the holor of the inverse Gram matrix.

(10) **d.** Derive the relation between  $\Delta_{\text{LDR}} f$  and  $\Delta_{\text{LB}} f$  for a scalar field f. [*Hint:* You may use: (i)  $*(\omega_k dx^k) = g^{k\ell} \omega_k \epsilon_{\ell i_2...i_n} dx^{i_2} \otimes \ldots \otimes dx^{i_n}$ , (ii) \*\*1 = 1, (iii)  $\epsilon_{i_1...i_n} = \sqrt{g} [i_1, \ldots, i_n]$ .]

## (50) 3. RIEMANN, RICCI & COTTON TENSOR.

Recall the definition of the (holor of the) *Riemann tensor* on an *n*-dimensional Riemannian manifold in terms of the Levi-Civita Christoffel symbols  $\Gamma_{ij}^k$ :

$$R_{i\ell j}^{k} = \partial_{\ell} \Gamma_{ij}^{k} - \partial_{j} \Gamma_{i\ell}^{k} + \Gamma_{\lambda\ell}^{k} \Gamma_{ij}^{\lambda} - \Gamma_{\lambda j}^{k} \Gamma_{i\ell}^{\lambda}.$$

The (holor of the) Ricci tensor is defined as

$$R_{ij} = R_{ikj}^k \,. \tag{(*)}$$

By definition, the fully covariant Riemann tensor has holor

$$R_{ijk\ell} = g_{im} R^m_{ik\ell}$$
.

(5) **a.** Show that  $R_{ij} = R_{ji}$ . [*Hint:* Write  $R_{ij} = R_{ikj}^k = g^{k\ell} R_{\ell ikj}$  and observe that  $R_{\ell ikj} = R_{kj\ell i}$ .]

The *Ricci scalar* is the trace of the Ricci tensor:  $R = g^{ij}R_{ij}$ . Henceforth,  $D_k$  refers to a covariant derivative corresponding to the Levi-Civita connection.

- (5) **b.** Expand  $D_k R_{ij}$  in terms of (0<sup>th</sup> and 1<sup>st</sup> order) partial derivatives of  $R_{ij}$  and Christoffel symbols, but do *not* expand  $R_{ij}$  itself.
- (5) **c.** Show that, in dimension n = 1,  $R_{ijk\ell} = 0$ . [*Hint:* Recall the symmetry property in the previous hint.]

Without proof we state that the fully covariant Riemann tensor in n=2 has the following form:

$$n = 2: \qquad R_{ijk\ell} = (g_{ik}g_{j\ell} - g_{i\ell}g_{jk})\psi,$$

for some scalar field  $\psi \in C^{\infty}(\mathbf{M})$ .

(5) **d.** Show that, in this 2-dimensional case,  $\psi = \frac{1}{2}R$ .

Likewise without proof we state that, in n=3 dimensions,

$$n = 3: \qquad R_{ijk\ell} = a(g_{ik}R_{j\ell} - g_{jk}R_{i\ell} - g_{i\ell}R_{jk} + g_{j\ell}R_{ik}) + b(g_{ik}g_{j\ell} - g_{i\ell}g_{jk})R_{jk}$$

for certain constants  $a, b \in \mathbb{R}$ .

(5) **e.** Show that a = 1 and  $b = -\frac{1}{2}$ .

We consider a conformal metric transformation,  $\tilde{g}_{ij} = e^{2\phi}g_{ij}$ , in which  $\phi \in C^{\infty}(\mathbf{M})$  is a smooth scalar field. The Levi-Civita Christoffel symbols associated with the transformed metric are indicated by  $\tilde{\Gamma}_{ij}^k$ .

(5) **f1.** Show that  $\widetilde{\Gamma}_{ij}^k = \Gamma_{ij}^k + S_{ij}^k$  and derive the explicit form of the symbols  $S_{ij}^k$  in terms of the scalar field  $\phi$  and the original Riemannian metric tensor  $g_{ij}$ .

- (5) **f2.** Argue why  $S_{ij}^k$ , as opposed to  $\Gamma_{ij}^k$ , is the holor of a tensor. [*Hint:* Avoid elaborate computations. Use the observations  $D_k g_{ij} = 0$  and  $D_k f = \partial_k f$  for any scalar field f.]
- (5) **g1.** Show that in general dimension n the holor  $\tilde{R}_{i\ell j}^k$  of the Riemann tensor after conformal metric transformation is given in terms of  $R_{i\ell j}^k$  and the tensorial holor  $S_{ij}^k$  as follows:

$$\widetilde{R}^k_{i\ell j} = R^k_{i\ell j} + D_\ell S^k_{ij} - D_j S^k_{i\ell} + S^k_{\lambda\ell} S^\lambda_{ij} - S^k_{\lambda j} S^\lambda_{i\ell} \,.$$

(5) **g2.** Now take n = 2. Find  $\widetilde{R}_{ij}$  in terms of  $R_{ij}$  and  $\phi$ .

The so-called *Cotton tensor* is a third order covariant tensor with the following holor:

$$C_{ijk} = D_k R_{ij} - D_j R_{ik} + \frac{1}{2(n-1)} \left( g_{ik} D_j R - g_{ij} D_k R \right) \,.$$

(5) **h.** Show that in n=2 the Cotton vanishes identically:  $C_{ijk} = 0$ .

THE END