
EXAMINATION TENSOR CALCULUS AND DIFFERENTIAL GEOMETRY

Course code: 2WAH0. Date: Tuesday June 26, 2018. Time: 18h00–21h00. Place: AUD 12

Read this first!

• Write your name and student identification number on each paper.

• The exam consists of 3 problems. The maximum credit for each item is indicated in the margin.

• You may consult an immaculate hardcopy of the online draft notes “Tensor Calculus and Differential
Geometry (2WAH0)” by Luc Florack. No other material or equipment may be used.

1. TENSOR CALCULUS MISCELLANY.(20)

Consider the mixed tensor X = Xi
j ei ⊗ êj , and a basis transformation ei = Aji fj , together with its

induced dual basis transformation, êi = Bi
j f̂
j . The transformed holorXi

j is defined via X = X
i
j fi⊗ f̂ j .

a1. Show that AkiB
j
k = δij .(5)

a2. Show that if the holor is invariant, i.e. if Xi
j = Xi

j for any basis transformation, then X must equal(5)
the Kronecker tensor up to a constant factor.

Next, consider the tensors V = V iei, S = Sij ei ⊗ ej and T = Tijk ê
i ⊗ êj ⊗ êk.

b1. Expand the holor V (iSjk) of S (V ⊗ S), i.e. the symmetrised outer product of V and S, explicitly(5)
in terms of the holors V i and Sjk.

b2. Suppose S (V ⊗ S) = 0 for all vectors V. Show that S (S) = 0.(5)

♣



2. LAPLACE-DE RHAM OPERATOR.(30)

The Laplace-de Rham operator ∆LDR, a generalization of the Laplace-Beltrami operator ∆LB, is defined
so as to act on sections of any k-form bundle over a Riemannian manifold M of dimension n, 0 ≤ k ≤ n.
Its formal definition is

∆LDR
.
= dδ + δd ,

in which d denotes the exterior derivative or differential, and δ the so-called codifferential. The latter is
defined for a k-form field in terms of the differential d and Hodge star operator ∗ as follows:

δ = (−1)(k+1)n+1 ∗ d ∗ .

For notational simplicity we denote the linear space of k-form fields by Λk(M), 0 ≤ k ≤ n.

Terminology. A 0-form field is usually referred to as a scalar field, an n-form field as a volume form.

In this problem you may use the following lemma without proof.

Lemma. The double Hodge star ∗∗ preserves the covariant rank of its operand. More specifically, on a
(positive definite) Riemannian manifold M of dimension n we have:

∗∗ = (−1)k(n−k)1Λk(M) ,

in which 1Λk(M) is the identity operator (often simply written as 1, or even suppressed altogether).

a1. Show that for a scalar field f ∈ Λ0(M) we have ∆LDRf = δdf .(5)

a2. Show that for a volume form ρ ∈ Λn(M) we have ∆LDRρ = dδρ.(5)

Recall that for a k-form fieldω = ωi1...ikdx
i1∧. . .∧dxik ∈ Λk(M), say, the differential dω ∈ Λk+1(M)

is defined as dω = ∂iωi1...ikdx
i ∧ dxi1 ∧ . . . ∧ dxik , thus d increments covariant rank by one.

b. Argue that if ω ∈ Λk(M), then δω ∈ Λk−1(M), i.e. δ decrements covariant rank by one.(5)
[Hint: Avoid explicit calculation of δω.]

c. Show that we may also write the definition of the Laplace-de Rham operator as ∆LDR = (d+ δ)2.(5)

For a scalar field f the Laplace-Beltrami operator ∆LB is defined as

∆LBf
.
=

1
√
g
∂i
(√
ggij∂jf

)
,

with g the determinant of the Gram matrix with entries gij , and gij the holor of the inverse Gram matrix.

d. Derive the relation between ∆LDRf and ∆LBf for a scalar field f .(10)
[Hint: You may use: (i) ∗(ωkdx

k) = gk`ωkε`i2...indx
i2⊗. . .⊗dxin , (ii) ∗∗1 = 1, (iii) εi1...in =

√
g [i1, . . . , in].]

♣



3. RIEMANN, RICCI & COTTON TENSOR.(50)

Recall the definition of the (holor of the) Riemann tensor on an n-dimensional Riemannian manifold in
terms of the Levi-Civita Christoffel symbols Γkij :

Rki`j = ∂`Γ
k
ij − ∂jΓki` + Γkλ`Γ

λ
ij − ΓkλjΓ

λ
i` .

The (holor of the) Ricci tensor is defined as

Rij = Rkikj . (∗)

By definition, the fully covariant Riemann tensor has holor

Rijk` = gimR
m
jk` .

a. Show that Rij = Rji.(5)
[Hint: Write Rij = Rk

ikj = gk`R`ikj and observe that R`ikj = Rkj`i.]

The Ricci scalar is the trace of the Ricci tensor: R = gijRij . Henceforth, Dk refers to a covariant
derivative corresponding to the Levi-Civita connection.

b. Expand DkRij in terms of (0th and 1st order) partial derivatives of Rij and Christoffel symbols, but(5)
do not expand Rij itself.

c. Show that, in dimension n=1, Rijk` = 0.(5)
[Hint: Recall the symmetry property in the previous hint.]

Without proof we state that the fully covariant Riemann tensor in n=2 has the following form:

n = 2 : Rijk` = (gikgj` − gi`gjk)ψ ,

for some scalar field ψ ∈ C∞(M).

d. Show that, in this 2-dimensional case, ψ = 1
2R.(5)

Likewise without proof we state that, in n=3 dimensions,

n = 3 : Rijk` = a(gikRj` − gjkRi` − gi`Rjk + gj`Rik) + b(gikgj` − gi`gjk)R ,

for certain constants a, b ∈ R.

e. Show that a = 1 and b = −1
2 .(5)

We consider a conformal metric transformation, g̃ij = e2φgij , in which φ ∈ C∞(M) is a smooth scalar
field. The Levi-Civita Christoffel symbols associated with the transformed metric are indicated by Γ̃kij .

f1. Show that Γ̃kij = Γkij + Skij and derive the explicit form of the symbols Skij in terms of the scalar(5)
field φ and the original Riemannian metric tensor gij .



f2. Argue why Skij , as opposed to Γkij , is the holor of a tensor.(5)
[Hint: Avoid elaborate computations. Use the observations Dkgij = 0 and Dkf = ∂kf for any scalar field f .]

g1. Show that in general dimension n the holor R̃ki`j of the Riemann tensor after conformal metric(5)
transformation is given in terms of Rki`j and the tensorial holor Skij as follows:

R̃ki`j = Rki`j +D`S
k
ij −DjS

k
i` + Skλ`S

λ
ij − SkλjSλi` .

g2. Now take n=2. Find R̃ij in terms of Rij and φ.(5)

The so-called Cotton tensor is a third order covariant tensor with the following holor:

Cijk = DkRij −DjRik +
1

2(n−1)
(gikDjR− gijDkR) .

h. Show that in n=2 the Cotton vanishes identically: Cijk = 0.(5)

THE END


