
EXAMINATION TENSOR CALCULUS AND DIFFERENTIAL GEOMETRY

Course code: 2WAH0. Date: Thursday June 27, 2017. Time: 18h00–21h00. Place: AUD 15.

Read this first!

• Write your name and student identification number on each paper.

• The exam consists of 3 problems. The maximum credit for each item is indicated in the margin.

• Einstein summation convention applies throughout for all repeated indices.

• You may consult an immaculate hardcopy of the online draft notes “Tensor Calculus and Differential
Geometry (2WAH0)” by Luc Florack. No equipment may be used.

1. STRAIN IN EUCLIDEAN SPACE.(20)

Definition. The Lie derivative of a smooth scalar field f ∈ C∞(Rn) with respect to a smooth vector
field v ∈ TRn is given by its directional derivative

Lvf = vf ,

with vf = vk∂kf .

Definition. The Lie derivative of a smooth covector field ω ∈ T∗Rn with respect to a smooth vector
field v ∈ TRn is defined as

Lvω = d〈ω,v〉 ,

in which 〈 , 〉 ∈ T∗Rn ⊗ TRn is the Kronecker tensor field and d denotes the differential with respect
to the (implicit) basepoint coordinate chart x ∈ Rn, i.e. df = ∂kfdx

k for any f ∈ C∞(Rn).

Definition. The Lie derivative is extended to general cotensors T ∈ T∗Rn⊗. . .⊗T∗Rn via linearity and
product rule in the usual way. For example, if g = gij dx

i⊗dxj ∈ T∗Rn⊗T∗Rn with smooth coefficient
functions gij ∈ C∞(Rn), then Lvg = (Lvgij) dx

i ⊗ dxj + gij (Lvdx
i)⊗ dxj + gij dx

i ⊗ (Lvdx
j).

Terminology. If g is the metric tensor field, with holor gij = (∂i|∂j), then Lvg is known as the strain
tensor field with respect to the displacement field v induced by a deformation of the medium.

a. Compute the holor of the strain tensor field Lvg in a general coordinate chart.(10)

We have Lvg = Lv(gij dx
i ⊗ dxj) = (Lvgij) dxi ⊗ dxj + gij (Lvdxi)⊗ dxj + gij dx

i ⊗ (Lvdxj), i.e., following the definitions,

Lvg = vgij dx
i⊗dxj +gij d〈dxi,v〉⊗dxj +gij dx

i⊗d〈dxj ,v〉 = vk∂kgij dx
i⊗dxj +gij ∂kv

idxk⊗dxj +gij dx
i⊗∂kv

jdxk .

Rearranging dummies this can be simplified to Lvg = (vk∂kgij + ∂iv
kgkj + ∂jv

kgik) dxi ⊗ dxj , in which one recognizes the holor.



b. Show that in Cartesian coordinates the strain tensor field simplifies to Lvg = (∂ivj+∂jvi) dx
i⊗dxj .(10)

Using the previous result in combination with gij = 1 iff i = j and zero otherwise, and denoting vi = gijv
j as usual, the result follows

straightforwardly by virtue of global constancy of gij .

♣

2. HODGE STAR AND FARADAY 2-FORM IN MINKOWSKI SPACETIME.(40)

Definition. We consider 4-dimensional Minkowski spacetime M, furnished with a Lorentzian metric
(x|y) = G(x,y) = gijx

iyj . The components of the corresponding Gram matrix G are gij = (∂i|∂j)
(i, j = 1, 2, 3, 4). We abbreviate g = detG.

Definition. We employ canonical coordinates, in terms of which g11 =g22 =g33 = 1, g44 =−1, gij =0
otherwise. We abbreviate ∂1 =∂x, ∂2 =∂y, ∂3 =∂z , ∂4 =∂t, dx1 =dx, dx2 =dy, dx3 =dz, dx4 =dt.

Definition. The Levi-Civita tensor in n dimensions is given by

ε =
√
|g| dx1 ∧ . . . ∧ dxn = ε|i1...in|dx

i1 ∧ . . . ∧ dxin .

Definition. The linear Hodge star operator ∗ : T∗M⊗A . . .⊗A︸ ︷︷ ︸
k

T∗M→ T∗M⊗A . . .⊗A︸ ︷︷ ︸
n−k

T∗M satisfies

∗
(
dxi1 ∧ . . . ∧ dxik

)
=

1

(n− k)!
gi1j1 . . . gikjkεj1...jndx

jk+1 ∧ . . . ∧ dxjn .

a. Compute the following forms in terms of wedge products of dx, dy, dz, and dt:(20)

a1. ∗1.

a2. ∗dx; ∗dy; ∗dz; ∗dt.

a3. ∗(dx ∧ dy); ∗(dx ∧ dz); ∗(dx ∧ dt); ∗(dy ∧ dz); ∗(dy ∧ dt); ∗(dz ∧ dt).

We have, respectively,

• ∗1 = dx ∧ dy ∧ dz ∧ dt;

• ∗dx = dy ∧ dz ∧ dt;

• ∗dy = −dx ∧ dz ∧ dt;

• ∗dz = dx ∧ dy ∧ dt;

• ∗dt = dx ∧ dy ∧ dz;

• ∗(dx ∧ dy) = dz ∧ dt;

• ∗(dx ∧ dz) = −dy ∧ dt;

• ∗(dx ∧ dt) = −dy ∧ dz;



• ∗(dy ∧ dz) = dx ∧ dt;

• ∗(dy ∧ dt) = dx ∧ dz;

• ∗(dz ∧ dt) = −dx ∧ dy.

Definition. We define the electromagnetic Faraday 2-form F ∈ T∗M⊗A T∗M as follows:

F = −E1 dx∧ dt−E2 dy ∧ dt−E3 dz ∧ dt−B1 dy ∧ dz+B2 dx∧ dz−B3 dx∧ dy
def
= Φ(B,E) .

The independent componentsEi andBi (i = 1, 2, 3) may be collected into 3-vectorsE = (E1, E2, E3)
and B = (B1, B2, B3). For x = (x, y, z) ∈ R3, u = (u, v, w) ∈ R3, standard norm and inner product
are denoted by ‖x‖ and x · y, respectively, with x · u = xu+ yv + zw and ‖x‖ = (x2 + y2 + z2)1/2.

b. Compute the following tensor fields. Express your results in terms of the 3-vectors B and E and(20)
derived quantities, such as ‖B‖, ‖E‖ andB ·E:

b1. ∗F .
[HINT: WRITE ∗F DEF

= Ψ(B,E). PROVE Ψ(B,E) = Φ(−E,B).]

Linearity of ∗ in combination with the results of problem a3 reveals that Ψ(B,E) = Φ(−E,B).

b2. F ∧ F .

Using antisymmetry of the ∧ product to rearrange factors in an exterior product, in particular dx∧dx = dy∧dy = dz∧dz = dt∧dt = 0,
the only nontrivial product terms are proportional to ε = dx∧ dy ∧ dz ∧ dt. A straightforward calculation, based on the results of a3, yields

F ∧ F = Φ(B,E) ∧ Φ(B,E) = 2(B1E1 + B2E2 + B3E3) dx ∧ dy ∧ dz ∧ dt = 2B ·E ε .

b3. F ∧ ∗F .

Using the definition of F and the calculation of ∗F from b1 we find, by a calculation similar to the one in b2,

F ∧∗F = Φ(B,E)∧Ψ(B,E) = Φ(B,E)∧Φ(−E,B) = (B2
1 +B2

2 +B2
3−E2

1−E2
2−E2

3) dx∧dy∧dz∧dt = (‖B‖2−‖E‖2) ε .

♣



3. HESSIAN OF A SCALAR FIELD WITH AND WITHOUT RIEMANNIAN METRIC.(40)

Definition. On a differentiable manifold M, torsion is defined in terms of a third order mixed tensor field
t ∈ T∗M ⊗ T∗M ⊗ TM, viz. if v,w ∈ TM and ω ∈ T∗M are vector and covector fields, respectively,
then t(v,w,ω) = 〈ω,T(v,w)〉, in which

T(v,w) = ∇vw −∇wv − [v,w] .

Definition. The Hessian H(f) of a scalar field f ∈ C2(M) on M is defined as a second order cotensor
field H(f) ∈ T∗M⊗ T∗M. Given two vector fields v,w ∈ TM we have, by definition,

H(f)(v,w) = ∇v∇wf −∇∇vwf ,

in which∇ denotes an affine connection.

a. Show that, in general, H(f) is not symmetric, and explain the role of T in this matter.(10)

Using∇xf = xf for any vector field x ∈ TM and scalar function f ∈ C2(M), we have

H(f)(v,w)−H(f)(w,v) = ∇v∇wf −∇∇vwf −∇w∇vf +∇∇wvf = vwf −∇vwf −wvf +∇wvf = −T(v,w)f .

Assumption. We henceforth assume M to be Riemannian, with torsion free Levi-Civita connection∇.

b. Show that, in this case, H(f) is symmetric.(10)

For the Levi-Civita connection we have, by definition, T = 0, so that H(f)(v,w) = H(f)(w,v), recall a.

Definition. Relative to a coordinate basis {∂i}, i=1, . . . , n, we have∇∂j∂i = Γk
ij∂k.

c. Compute the holorHij(f)
def
= H(f)(∂i, ∂j) of H(f) in terms of the (holor of the) Riemannian metric(10)

gij = (∂i|∂j) and/or its dual, and the Christoffel symbols Γk
ij .

We have, again making repetitive use of the identity∇xf = xf ,

Hij(f) = H(f)(∂i, ∂j) = ∇∂i
∇∂j

f −∇∇∂i
∂j

f = ∂i∂jf − Γk
ji∂kf .

Definition. The Laplacian of a scalar field f is the trace of its Hessian: ∆f
def
= trH(f)

def
= gijHij(f).

d. Show that ∆f =
1
√
g
∂i
(√
ggij∂jf

)
.(10)

[HINT: RECALL ∂ig = ggk`∂igk` . YOU MAY NEED THE TRIVIAL OBSERVATION ∂i(g
jkgk`) = 0.]

Using the product rule we may expand

∆f =
1
√
g
∂i

(√
ggij∂jf

)
= gij∂i∂jf +

1

2g
∂ig g

ij∂jf + ∂ig
ij∂jf .

Following the hint we may rewrite the second and third term as follows. Substituting ∂ig = ggk`∂igk` and ∂ig
ij = −gikg`j∂igk` into

these terms, we observe, using some elementary dummy relabelings (using symmetry of the metric holor), that

1

2g
∂igg

ij∂jf + ∂ig
ij∂jf = gij

{
1

2
gk`

(
∂`gij − ∂ig`j − ∂jgi`

)}
∂kf = −gijΓk

ji∂kf .



THE END


