EXAMINATION TENSOR CALCULUS AND DIFFERENTIAL GEOMETRY

Course code: 2WAH0. Date: Thursday June 27, 2017. Time: 18h00-21h00. Place: AUD 15.

Read this first!

- Write your name and student identification number on each paper.
- The exam consists of 3 problems. The maximum credit for each item is indicated in the margin.
- Einstein summation convention applies throughout for all repeated indices.
- You may consult an immaculate hardcopy of the online draft notes "Tensor Calculus and Differential Geometry (2WAH0)" by Luc Florack. No equipment may be used.

1. Strain in Euclidean Space.

Definition. The Lie derivative of a smooth scalar field $f \in C^{\infty}\left(\mathbb{R}^{n}\right)$ with respect to a smooth vector field $\mathbf{v} \in \mathbb{T R}^{n}$ is given by its directional derivative

$$
\mathscr{L}_{\mathbf{v}} f=\mathbf{v} f,
$$

with $\mathbf{v} f=v^{k} \partial_{k} f$.
Definition. The Lie derivative of a smooth covector field $\boldsymbol{\omega} \in \mathrm{T}^{*} \mathbb{R}^{n}$ with respect to a smooth vector field $\mathbf{v} \in \mathbb{R}^{n}$ is defined as

$$
\mathscr{L}_{\mathbf{v}} \boldsymbol{\omega}=d\langle\boldsymbol{\omega}, \mathbf{v}\rangle,
$$

in which $\langle,\rangle \in \mathrm{T}^{*} \mathbb{R}^{n} \otimes \mathbb{T}^{n}$ is the Kronecker tensor field and d denotes the differential with respect to the (implicit) basepoint coordinate chart $x \in \mathbb{R}^{n}$, i.e. $d f=\partial_{k} f d x^{k}$ for any $f \in C^{\infty}\left(\mathbb{R}^{n}\right)$.

Definition. The Lie derivative is extended to general cotensors $\mathbf{T} \in \mathrm{T}^{*} \mathbb{R}^{n} \otimes \ldots \otimes \mathrm{~T}^{*} \mathbb{R}^{n}$ via linearity and product rule in the usual way. For example, if $\mathbf{g}=g_{i j} d x^{i} \otimes d x^{j} \in \mathrm{~T}^{*} \mathbb{R}^{n} \otimes \mathbf{T}^{*} \mathbb{R}^{n}$ with smooth coefficient functions $g_{i j} \in C^{\infty}\left(\mathbb{R}^{n}\right)$, then $\mathscr{L}_{\mathbf{v}} \mathbf{g}=\left(\mathscr{L}_{\mathbf{v}} g_{i j}\right) d x^{i} \otimes d x^{j}+g_{i j}\left(\mathscr{L}_{\mathbf{v}} d x^{i}\right) \otimes d x^{j}+g_{i j} d x^{i} \otimes\left(\mathscr{L}_{\mathbf{v}} d x^{j}\right)$.

Terminology. If \mathbf{g} is the metric tensor field, with holor $g_{i j}=\left(\partial_{i} \mid \partial_{j}\right)$, then $\mathscr{L}_{\mathbf{v}} \mathbf{g}$ is known as the strain tensor field with respect to the displacement field \mathbf{v} induced by a deformation of the medium.
a. Compute the holor of the strain tensor field $\mathscr{L}_{\mathrm{v}} \mathrm{g}$ in a general coordinate chart.
b. Show that in Cartesian coordinates the strain tensor field simplifies to $\mathscr{L}_{\mathbf{v}} \mathbf{g}=\left(\partial_{i} v_{j}+\partial_{j} v_{i}\right) d x^{i} \otimes d x^{j}$.

Definition. We consider 4-dimensional Minkowski spacetime M, furnished with a Lorentzian metric $(\mathbf{x} \mid \mathbf{y})=G(\mathbf{x}, \mathbf{y})=g_{i j} x^{i} y^{j}$. The components of the corresponding Gram matrix \mathbf{G} are $g_{i j}=\left(\partial_{i} \mid \partial_{j}\right)$ $(i, j=1,2,3,4)$. We abbreviate $g=\operatorname{det} \mathbf{G}$.

Definition. We employ canonical coordinates, in terms of which $g_{11}=g_{22}=g_{33}=1, g_{44}=-1, g_{i j}=0$ otherwise. We abbreviate $\partial_{1}=\partial_{x}, \partial_{2}=\partial_{y}, \partial_{3}=\partial_{z}, \partial_{4}=\partial_{t}, d x^{1}=d x, d x^{2}=d y, d x^{3}=d z, d x^{4}=d t$.

Definition. The Levi-Civita tensor in n dimensions is given by

$$
\boldsymbol{\epsilon}=\sqrt{|g|} d x^{1} \wedge \ldots \wedge d x^{n}=\epsilon_{\left|i_{1} \ldots i_{n}\right|} d x^{i_{1}} \wedge \ldots \wedge d x^{i_{n}} .
$$

Definition. The linear Hodge star operator $*: \mathrm{T}^{*} \mathrm{M} \underbrace{\otimes_{A} \ldots \otimes_{A}}_{k} \mathrm{~T}^{*} \mathrm{M} \rightarrow \mathrm{T}^{*} \mathrm{M} \underbrace{\otimes_{A} \ldots \otimes_{A}}_{n-k} \mathrm{~T}^{*} \mathrm{M}$ satisfies

$$
*\left(d x^{i_{1}} \wedge \ldots \wedge d x^{i_{k}}\right)=\frac{1}{(n-k)!} g^{i_{1} j_{1}} \ldots g^{i_{k} j_{k}} \epsilon_{j_{1} \ldots j_{n}} d x^{j_{k+1}} \wedge \ldots \wedge d x^{j_{n}} .
$$

a. Compute the following forms in terms of wedge products of $d x, d y, d z$, and $d t$:
a1. $* 1$.
a2. $* d x ; * d y ; * d z ; * d t$.
a3. $*(d x \wedge d y) ; *(d x \wedge d z) ; *(d x \wedge d t) ; *(d y \wedge d z) ; *(d y \wedge d t) ; *(d z \wedge d t)$.
Definition. We define the electromagnetic Faraday 2-form $F \in \mathrm{~T}^{*} \mathrm{M} \otimes_{A} \mathrm{~T}^{*} \mathrm{M}$ as follows:
$F=-E_{1} d x \wedge d t-E_{2} d y \wedge d t-E_{3} d z \wedge d t-B_{1} d y \wedge d z+B_{2} d x \wedge d z-B_{3} d x \wedge d y \stackrel{\text { def }}{=} \Phi(\boldsymbol{B}, \boldsymbol{E})$.
The independent components E_{i} and $B_{i}(i=1,2,3)$ may be collected into 3-vectors $\boldsymbol{E}=\left(E_{1}, E_{2}, E_{3}\right)$ and $\boldsymbol{B}=\left(B_{1}, B_{2}, B_{3}\right)$. For $\mathbf{x}=(x, y, z) \in \mathbb{R}^{3}, \mathbf{u}=(u, v, w) \in \mathbb{R}^{3}$, standard norm and inner product are denoted by $\|\mathbf{x}\|$ and $\mathbf{x} \cdot \mathbf{y}$, respectively, with $\mathbf{x} \cdot \mathbf{u}=x u+y v+z w$ and $\|\mathbf{x}\|=\left(x^{2}+y^{2}+z^{2}\right)^{1 / 2}$.
(20) b. Compute the following tensor fields. Express your results in terms of the 3 -vectors \boldsymbol{B} and \boldsymbol{E} and derived quantities, such as $\|\boldsymbol{B}\|,\|\boldsymbol{E}\|$ and $\boldsymbol{B} \cdot \boldsymbol{E}$:
b1. $* F$.
[Hint: Write $* F \stackrel{\text { DEF }}{=} \Psi(\boldsymbol{B}, \boldsymbol{E})$. $\operatorname{Prove} \Psi(\boldsymbol{B}, \boldsymbol{E})=\Phi(-\boldsymbol{E}, \boldsymbol{B})$.]
b2. $F \wedge F$.
b3. $F \wedge * F$.

Definition. On a differentiable manifold M , torsion is defined in terms of a third order mixed tensor field $\mathbf{t} \in \mathrm{T}^{*} \mathrm{M} \otimes \mathrm{T}^{*} \mathrm{M} \otimes \mathrm{TM}$, viz. if $\mathbf{v}, \mathbf{w} \in \mathrm{TM}$ and $\boldsymbol{\omega} \in \mathrm{T}^{*} \mathrm{M}$ are vector and covector fields, respectively, then $\mathbf{t}(\mathbf{v}, \mathbf{w}, \boldsymbol{\omega})=\langle\boldsymbol{\omega}, \mathbf{T}(\mathbf{v}, \mathbf{w})\rangle$, in which

$$
\mathbf{T}(\mathbf{v}, \mathbf{w})=\nabla_{\mathbf{v}} \mathbf{w}-\nabla_{\mathbf{w}} \mathbf{v}-[\mathbf{v}, \mathbf{w}] .
$$

Definition. The Hessian $\mathbf{H}(f)$ of a scalar field $f \in C^{2}(\mathbf{M})$ on \mathbf{M} is defined as a second order cotensor field $\mathbf{H}(f) \in \mathrm{T}^{*} \mathbf{M} \otimes \mathrm{~T}^{*} \mathbf{M}$. Given two vector fields $\mathbf{v}, \mathbf{w} \in \mathrm{TM}$ we have, by definition,

$$
\mathbf{H}(f)(\mathbf{v}, \mathbf{w})=\nabla_{\mathbf{v}} \nabla_{\mathbf{w}} f-\nabla_{\nabla_{\mathbf{v}}} f,
$$

in which ∇ denotes an affine connection.
(10) a. Show that, in general, $\mathbf{H}(f)$ is not symmetric, and explain the role of \mathbf{T} in this matter.

Assumption. We henceforth assume M to be Riemannian, with torsion free Levi-Civita connection ∇.
(10) b. Show that, in this case, $\mathbf{H}(f)$ is symmetric.

Definition. Relative to a coordinate basis $\left\{\partial_{i}\right\}, i=1, \ldots, n$, we have $\nabla_{\partial_{j}} \partial_{i}=\Gamma_{i j}^{k} \partial_{k}$.
(10) c. Compute the holor $H_{i j}(f) \stackrel{\text { def }}{=} \mathbf{H}(f)\left(\partial_{i}, \partial_{j}\right)$ of $\mathbf{H}(f)$ in terms of the (holor of the) Riemannian metric $g_{i j}=\left(\partial_{i} \mid \partial_{j}\right)$ and/or its dual, and the Christoffel symbols $\Gamma_{i j}^{k}$.

Definition. The Laplacian of a scalar field f is the trace of its Hessian: $\Delta f \stackrel{\text { def }}{=} \operatorname{tr} \mathbf{H}(f) \stackrel{\text { def }}{=} g^{i j} H_{i j}(f)$.
(10) d. Show that $\Delta f=\frac{1}{\sqrt{g}} \partial_{i}\left(\sqrt{g} g^{i j} \partial_{j} f\right)$.
[Hint: Recall $\partial_{i} g=g g^{k \ell} \partial_{i} g_{k \ell}$. You may need the trivial observation $\partial_{i}\left(g^{j k} g_{k \ell}\right)=0$.]

The End

