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1. TENSOR CALCULUS & DIFFERENTIAL GEOMETRY MISCELLANY(30)

a. Prove that the volume form
√
g dx1 ∧ . . . ∧ dxn on an n-dimensional Riemannian manifold M is(71

2 )
‘almost’ invariant under coordinate transformations. Explain ‘almost’.

We have

dx1 ∧ . . . ∧ dxn =
∂x1

∂xi1
. . .

∂xn

∂xin
dxi1 ∧ . . . ∧ dxin = [i1 . . . in]

∂x1

∂xi1
. . .

∂xn

∂xin
dx1 ∧ . . . ∧ dxn = det

∂x

∂x
dx1 ∧ . . . ∧ dxn .

Also,

g = det g•• = det

(
∂xk

∂x•
∂x`

∂x•
gk`

)
=

(
det

∂x

∂x

)2

g =

(
det

∂x

∂x

)−2

g .

Therefore
√
g dx1 ∧ . . . ∧ dxn = sgn

(
det ∂x

∂x

)
dx1 ∧ . . . ∧ dxn. This shows that the volume form is ‘almost’ invariant in the sense that

it will at most reverse sign, viz. under an orientation reversing basis transformation.

The Lie derivative of a 1-form field ω with respect to a vector field v is the 1-form field Lvω
.
= d〈ω,v〉,

in which 〈•, •〉 denotes the Kronecker tensor. The Lie derivative of a scalar field f with respect to a
vector field v is defined as the directional derivative Lv

.
= vf . Lie derivatives act linearly on their

operands and satisfy the product rule when applied to tensor products.

Definition. The strain tensor on a metric space M with metric g = gijdx
i ⊗ dxj with respect to a

displacement vector field v is defined as Lvg.

b. Compute the components of Lvg relative to a coordinate basis, with v
.
= vi∂i.(71

2 )

We have
Lvg = Lv

(
gijdx

i ⊗ dxj
)

= Lvgij dx
i ⊗ dxj + gijLvdx

i ⊗ dxj + gijdx
i ⊗Lvdx

j .



Using Lvgij = vk∂kgij and Lvdxi = d〈dxi,v〉 = dvi = ∂kv
idxk , we find, after some trivial dummy index manipulations to factorise

a common basis dxi ⊗ dxj ,
Lvg =

(
vk∂kgij + gkj∂iv

k + gik∂jv
k
)
dxi ⊗ dxj .

Let Γ`jk be the Christoffel symbols associated with g, and g .=det g the determinant of the Gram matrix.

c. Prove: Γ``k = ∂k ln
√
g.(71

2 )

Contracting the indices ` and m in the defining formula

Γmk` =
1

2
gmn (∂kgn` + ∂`gkn − ∂ngk`)

yields

Γ`k` =
1

2
g`n (∂kgn` + ∂`gkn − ∂ngk`)

∗
=

1

2
g`n∂kgn` ,

in which ∗ follows from the observation that the last two terms inside parenthesis are antisymmetric w.r.t. ` and n, whereas g`n is symmetric.
On the other hand we have the definition of the (symmetric) cofactor matrix

g̃ij
.
=

∂g

∂gij
,

besides the identity gij =
1

g
g̃ij , from which it follows, with the help of the chain rule and symmetry of the metric tensor, that

∂k ln
√
g =

1
√
g
∂k
√
g =

1

2g
∂kg =

1

2g

∂g

∂g`n
∂kg`n =

1

2
g`n∂kgn` = Γ`k` .

The last equality has been proven above.

Let Aij be the holor of an antisymmetric contravariant tensor field of rank 2.

d. Prove: DkA
ik =

1
√
g
∂k

(√
g Aik

)
.(71

2 )

We have
DkA

ij = ∂kA
ij + Γi`kA

`j + Γj`kA
i` .

Contracting the indices j and k yields

DkA
ik = ∂kA

ik + Γi`kA
`k + Γk`kA

i` ?= ∂kA
ik + Γk`kA

i` ,

in which ? follows from the fact that Aik is antisymmetric, whereas Γi`k is symmetric w.r.t. k and `. Inserting Γk`k = ∂` ln
√
g as obtained

in c, besides elementary dummy index manipulations, allows us to rewrite this as

DkA
ik = ∂kA

ik + ∂` ln
√
gAi` =

1
√
g
∂k

(√
g Aik

)
.

♣

2. TORSION(35)

Based on a given affine connection ∇ on a manifold M we stipulate a family of affine connections ∇A
of the form

∇AXY
.
= ∇XY +A(X,Y ) ,



in which X,Y are vector fields and A a tensor field of covariant rank 2 and contravariant rank 1.

a. Show that∇A is indeed an affine connection for any choice of A.(5)

Let f, f1, f2∈C∞(M), X,X1, X2, Y, Y1, Y2∈TM, and λ, λ1, λ2∈R, then, by definition, an affine connection must satisfy

1. ∇f1X1+f2X2
Y = f1∇X1

Y + f2∇X2
Y ,

2. ∇X (λ1Y1 + λ2Y2) = λ1∇XY1 + λ2∇XY2,

3. ∇X(fY ) = f∇X Y +Xf Y .

Assuming this to be the case for∇, we must work out the left hand sides for∇A and verify that we obtain the same right hand sides with∇
likewise replaced by∇A. Since A is bilinear, we may use

1. A(f1X1 + f2X2, Y ) = f1A(X1, Y ) + f2A(X2, Y ),

2. A(X,λ1Y1 + λ2Y2) = λ1A(X,Y1) + λ2A(X,Y2),

3. A(X, fY ) = fA(X,Y ).

Indeed, this implies

1. ∇Af1X1+f2X2
Y = ∇f1X1+f2X2

Y + A(f1X1 + f2X2, Y ) = f1∇X1
Y + f2∇X2

Y + f1A(X1, Y ) + f2A(X2, Y ) =

f1∇AX1
Y + f2∇AX2

Y ,

2. ∇AX (λ1Y1 + λ2Y2) = ∇X (λ1Y1 + λ2Y2)+A(X,λ1Y1 +λ2Y2) = λ1∇XY1 +λ2∇XY2 +λ1A(X,Y1)+λ2A(X,Y2) =

λ1∇AXY1 + λ2∇AXY2,

3. ∇AX(fY ) = ∇X(fY ) +A(X, fY ) = f∇X Y +Xf Y + fA(X,Y ) = f∇AX Y +Xf Y .

Thus∇A is an affine connection if∇ is.

Definition. The torsion T of an affine connection∇ is defined by T (X,Y )
.
= ∇XY −∇YX − [X,Y ].

b. Prove that T is a tensor field by showing that the following properties hold for all scalar fields
f1,2 ∈ C∞(M) as well as all vector fields X,Y,X1,2, Y1,2:

b1. T (f1X1 + f2X2, Y ) = f1T (X1, Y ) + f2T (X2, Y ), and(5)

b2. T (X, f1Y1 + f2Y2) = f1T (X,Y1) + f2T (X,Y2).(5)

Note that b2 follows from b1 by the observation that T is antisymmetric, since

T (X, f1Y1 + f2Y2) = −T (f1Y1 + f2Y2, X) = − (f1T (Y1, X) + f2T (Y2, X)) = f1T (X,Y1) + f2T (X,Y2) .

Thus we only need to prove b1. The proof relies on the defining properties of the affine connection∇ and the commutator [ , ], viz.

T (f1X1 + f2X2, Y ) = ∇f1X1+f2X2
Y −∇Y (f1X1 + f2X2)− [f1X1 + f2X2, Y ]

∗
=

f1∇X1
Y + f2∇X2

Y − f1∇YX1 − f2∇YX2 − f1[X1, Y ]− f2[X2, Y ] = f1T (X1, Y ) + f2T (X2, Y ) .

Note that in the identity marked by ∗ all terms have cancelled that involve the action of the vector field (or derivative) Y on the scalar functions

f1, f2. These terms arise both from the affine connection term involving∇Y (notably via defining property 3) as well as from the part of the

commutator term in which Y acts as the outermost vector field.



c. Show that the torsion TA of ∇A is A-invariant if and only if A is symmetric.(5)

We have

TA(X,Y )
.
= ∇AXY −∇

A
YX − [X,Y ] = ∇XY +A(X,Y )−∇YX −A(Y,X)− [X,Y ]

?
= ∇XY −∇YX − [X,Y ]

.
= T (X,Y ) ,

iff A(X,Y ) = A(Y,X), which has been used in ?.

d. Suppose∇ has nonzero torsion T . Find A such that∇A is torsion-free, i.e. TA = 0.(5)

From c it is clear that we may restrict our attention to antisymmetric tensors (w.r.t. their vector arguments). Take A(X,Y ) = − 1
2
T (X,Y ).

This results in ∇AXY = ∇XY + A(X,Y )
.
= ∇XY − 1

2
T (X,Y ) = 1

2
∇XY + 1

2
∇YX − 1

2
[X,Y ], with torsion TA(X,Y )

.
=

∇AXY −∇
A
YX − [X,Y ]

.
= ( 1

2
∇XY + 1

2
∇YX − 1

2
[X,Y ])− ( 1

2
∇YX + 1

2
∇XY − 1

2
[Y,X])− [X,Y ] = 0. In the last step we have

used antisymmetry of the commutator, [Y,X] = −[X,Y ].

Γ-Symbols. The Γ-symbols of∇ relative to a coordinate basis {∂i} are defined by∇∂j∂i = Γkij∂k.

e. Show that∇ is torsion-free (cf. problem d) if and only if Γkji = Γkij .(5)

Consider the coordinate vector fields X = ∂i and Y = ∂j . From the definition of torsion-freeness we infer that

0 = ∇∂i∂j −∇∂j∂i − [∂i, ∂j ] = ∇∂i∂j −∇∂j∂i ,

since partial derivatives commute, whence∇∂i∂j = ∇∂j∂i. Using the definition of the Γ-symbols we thus find that

Γkji
.
= 〈dxk,∇∂i∂j〉 = 〈dxk,∇∂j∂i〉

.
= Γkij .

f. Show that if ∇ is not torsion-free, then the connection symbols for the torsion-free connection ∇A(5)
constructed in problem d are given by Γ

k
ij = 1

2(Γkij + Γkji).

We have, by definition,

Γ
k
ij
.
= 〈dxk,∇A∂j∂i〉

.
= 〈dxk,∇∂j∂i +A(∂j , ∂i)〉

d
= 〈dxk,

1

2
∇∂j∂i +

1

2
∇∂i∂j −

1

2
[∂j , ∂i]〉 .

Again the commutator of partial derivatives vanishes identically, and so by linearity w.r.t. the second argument of the Kronecker tensor we
obtain

Γ
k
ij =

1

2
〈dxk,∇∂j∂i〉+

1

2
〈dxk,∇∂i∂j〉

.
=

1

2
Γkij +

1

2
Γkji .

♣

3. EINSTEIN FIELD EQUATIONS: DARK ENERGY(35)

Definition. The holor of the Riemann tensor is defined as

Rρµσν = 〈dxρ , R(∂σ, ∂ν)∂µ〉 = ∂σΓρµν − ∂νΓρµσ + ΓρλσΓλµν − ΓρλνΓλµσ .

The holor of the covariant Riemann tensor is defined asRλµσν = gλρR
ρ
µσν . The Ricci tensor has holor

Rµν = Rρµρν . The Ricci scalar equals R = gµνRµν .



The Einstein field equations in (3+1)-dimensional spacetime comprise a system of nonlinear partial
differential equations for the Lorentzian-type metric tensor gµν , driven by the distribution of matter and
energy captured by the stress-energy tensor Tµν :

(?) Rµν −
1

2
Rgµν + Λ gµν =

8πG

c4
Tµν .

Here Λ, G and c denote cosmological constant, Newton’s gravitational constant, and speed of light in
vacuum, respectively, and Rµν and R are the Ricci tensor and Ricci scalar, to be regarded as nonlinear
functions of the metric tensor and its derivatives. The signature1 of gµν is taken as (−+ ++).

In Einstein’s original formulation the cosmological term Λ gµν was absent. Einstein included this term
later so as to allow for a non-expanding and non-contracting universe.

In the absence of matter and energy, Tµν = 0, we refer to (?) as the vacuum field equations, and to any
solution gµν as a vacuum solution.

a1. Show that Γρσρ = ∂σ ln
√
|g|.(5)

[Hint: Use Dσgµν = 0 and the definition of a cofactor matrix and its relation to matrix inverse.]

From Dσgµν = 0 (metric compatibility) we obtain ∂σgµν = Γρµσgρν + Γρνσgµρ. Therefore, using the chain rule and the definition of the

cofactor matrix, ∂σg = g̃µν∂σgµν = ggµν∂σgµν . Inserting the previous expression for the metric derivatives in terms of the Γ-symbols

then yields ∂σg = 2gΓρσρ, from which the result follows by elementary calculus.

a2. Show that the Ricci tensor is symmetric.(5)

Rµν = Rρµρν = ∂ρΓρµν − ∂νΓρµρ + ΓρλρΓλµν − ΓρλνΓλµρ. All terms on the r.h.s. are obviously symmetric w.r.t. µ and ν, except for the

second one. A closer inspection, however, notably a1, reveals that ∂νΓρµρ = ∂µν ln
√
|g|, which is clearly also symmetric.

b1. Show that the vacuum field equations reduce to Rµν − Λ gµν = 0.(5)

Taking the trace of (?) by contraction with gµν yields, with the help of gµνgµν = 4, the identity R − 4Λ = 0, allowing elimination of R

from the vacuum field equations, from which the result then readily follows. Note the sign switch in the cosmological term.

b2. Show that (?) is equivalent to Rµν−Λ gµν =
8πG

c4

(
Tµν−

1

2
T gµν

)
, and explain the scalar field T .(5)

As before, take the trace of (?) by contraction with gµν , from which it follows that R = 4Λ− 8πG
c4

T , in which T = gµνTµν . Replace R

on the l.h.s. of (?) by this expression and the result follows. Note that a1 is a special case consistent with this result.

The cosmological term in (?) may be interpreted as a mysterious “vacuum” or “dark energy”, viz. by
replacing Tµν on the r.h.s. by TΛ

µν
.
= Tµν+T

vac
µν in return for dropping the geometric Λ-term on the l.h.s.

c. What should we take for the vacuum stress-energy tensor T vac
µν in this case?(5)

A straightforward algebraic manipulation gives T vac
µν = − Λc4

8πG
gµν .

Lemma. The holor of the covariant Riemann tensor has the following symmetry properties:
1This convention is used in C. W. Misner, K. S. Thorne, and J. A. Wheeler, Gravitation, W. H. Freeman, 1973.



• Rλσµν = −Rσλµν = −Rλσνµ

• Rλσµν = Rµνλσ

• Rλσµν +Rλµνσ +Rλνσµ = 0 (first Bianchi identity)

• DρRλσµν +DµRλσνρ +DνRλσρµ = 0 (second Bianchi identity)

Note that the Bianchi identities can be condensed to Rλ[σµν] = 0 and Rλσ[µν;ρ] = 0, respectively.

We stipulate a metric that satisfies Rρσµν =k (gρµgσν−gρνgσµ) for some constant k ∈ R.

d. Show that, if such a metric exists, then it is a solution to the vacuum equations for suitably chosen k.(5)

Computing the Ricci tensor and Ricci scalar yieldsRµν = 3k gµν , respectivelyR = 12k. This is consistent with the vacuum field equations,

cf. problem b1, provided we set k = Λ/3.

Conservation of energy and momentum can be geometrically formulated as DµT
µν = 0.

e. Show that Einstein’s field equations (?) are consistent with energy-momentum conservation.(5)

We have to show that Dµ
(
Rµν − 1

2
Rgµν + Λgµν

)
= 0, i.e.

(†) DµR
µν =

1

2
gµνDµR .

The proof relies on the second Bianchi identity, combined with covariant constancy of the (dual) metric, Dρgµν = 0 (which admits raising
and lowering indices after a covariant derivative), and symmetries of the Riemann and Ricci tensors (stated in the lemma, respectively proven
in a2). Namely, contract the second Bianchi identity in the form as stated in the lemma with gλµgσν and work out the result. This yields

DρR− 2gλµDµRρλ = 0 ,

which is equivalent to (†) and completes the proof.

♣

+ INSTRUCTION FOR LEGAL STATEMENT. Please read the following paragraph carefully, and
copy the text below it verbatim to your answer sheet.

By testing you remotely in this fashion, we express our trust that you will adhere to the ethical standard
of behaviour expected of you. This means that we trust you to answer the questions and perform the
assignments in this test to the best of your own ability, without seeking or accepting the help of any
source that is not explicitly allowed by the conditions of this test.

Text to be copied (with optional remarks):

- I made this test to the best of my own ability, without seeking or accepting the help of any source not
explicitly allowed by the conditions of the test.

Remarks from the student: . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

THE END


