EXAMINATION MATHEMATICAL TECHNIQUES FOR IMAGE ANALYSIS

Course code: 8D020. Date: Monday January 17, 2011. Time: 09h00-12h00. Place: AUD 4

Read this first!

e Use a separate sheet of paper for each problem. Write your name and student ID on each paper.

e The exam consists of 4 problems. The maximum credit for each item is indicated in the margin.

Motivate your answers. The use of course notes is allowed. The use of problem companion
(“opgaven- en tentamenbundel”), calculator, laptop, or other equipment, is not allowed.

e You may provide your answers in Dutch or English.

GOOD LUCK!
1. VECTOR SPACE

We introduce the set V' = R? and furnish it with an addition and scalar multiplication operator,
as follows. For all (z,y) € R?, (u,v) € R?, and A € R we define

(z,y) + (u,v) = (r+u,y+v) and A-(x,y) = (A\z,y).

Show that, given these definitions, V' does not constitute a vector space.

The only criterion this definition fails to pass is the distributivity requirement (A 4+ p)-v = A - v + p - v for any vector
v € V and all A\, u € R. Indeed, we have in this particular case,

A+ 4) - (2y) (A + p)z,y) whereas - (,9) + p- (2,9) = (Ae,y) + (uz,y) (A + p)z, 2y) .

2. GROUP THEORY!

We define the following grey-value transformation: 7, : R — R : s = T,(s) def e’ in

which v € R is an arbitrary constant. We furnish the set of all transformations of this type,
G = {T, | v € R}, with an infix multiplication operator x, as follows:

(T x Tp) (s) o To(s)Tp(s) for all s € R.

a. Prove that G constitutes a group. Proceed as follows:

al. Prove that G is closed with respect to multiplication, i.e. prove that T,,,Ts € G implies
T, xTg € G for all a, B € R.
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Suppose Ta(s) = e*®, Tg(s) = €P* then (Ta x Tj) (s) def Ta(s)Tp(s) def pasefs = gath (s) def a+p(s) for all s € R, so

Toa X Tg = Tuyp € G.

a2. Prove that multiplication is associative on G, i.e. prove that (T, xT3) x T, = To, x (T3 X T’)
for all «, 8,7 € R.

Using the proof of the previous part we obtain (T x Tg) X T al at+8 X Ty al Ta+8)+y = Tatp+y = Tat(B+v) =
To X Ty 2 T x (T x Ty) for all a, 8,7 € R.

a3. Prove that G has a unit element, i.e. that there exists a v € R such that T, x T}, =
T, x T, =T, for all v € R. Moreover, give the explicit value of v € R corresponding to this
unit element 7T, € G.

The unit element is Ty € G, for Ty, X T a To+0 = To for all @ € R. Likewise we have Ty X To al To+a = Ta. A direct

proof goes as follows: Ty(s) 4 ) for all s € R, so (Ta X Tp) (s) 7, (s)To(s) = e*® -1 = e*® = T, (s), and analogously,

(To X Ta) (8) & To(s)Ta(s) = 1- e = e = Ty (s) for all s € R.

a4. Finally prove that each element of G has an inverse, i.e. that for each n € R there exists
a 0 € R such that T;) x Ty = Ty x T;, = T,, in which v € R denotes the parameter value
corresponding to the unit element in part a3.

We already saw that v = 0. For arbitrary n € R the inverse of T}, is given by T, € G, since Ty x T, o Tyt (—n) = To,

and likewise Ty x Ty 2 T(_ )4y = To.
b. Is G commutative? If yes, prove, if no, provide a counterexample.

That G is indeed commutative has in fact already been proven under al, for Ty, x Tg al Tat4p =Tgta =T X Ty for all
a, B €R.

[ )

3. DISTRIBUTION THEORY

The parameterized function f, : R — R, with parameter a > 0, is defined as follows:

1 .
ful@) = ﬁ(_m +a) ifz€[—a,q
0 elsewhere

a. Sketch the graph of y = f,(z) in the xy-plane, and compute the area enclosed by this graph
and the z-axis.

1

See Figure 1. The area under the graph invariably equals 2 X 5 a X % = 1 irrespective of the value of a > 0.

The regular tempered distribution T}, : .#(R) — R associated with the function f, is given by

T;.(6) = /_ " ful) éla) da
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Figure 1: Graphs of y = f,(z) for three distinct values of a. The area under a graph invariably
equals 1.

for any smooth test function ¢ € .#(R).

0 1

b. Show that T, (¢) = % _a ¢(x) dx + al2/ x¢(x)dr — o /Oa:cqb(x) dz.

o) a a 0 a
7.0 [~ fe@o@ar ™ 5 [ i+ ayo@ds = [ swdet 5 [ wo@ar— 5 [Taow

a2

We now consider the limit of vanishing parameter a | 0. It is clear that the function f, is
ill-defined in this limit. We wish to investigate whether the regular tempered distribution 7',
does have a well-defined limit. To this end we recall Taylor’s theorem, which allows us to use
the following second order expansion for the test function around the origin:

Bx) = 6(0) + $O)x + 38" (€@, (x)

for any = € (—a,a) and some {(x) in-between z and 0. The last term on the right hand side is
referred to as the Lagrange remainder, and is sometimes simplified as O(z?).

Finally, recall the Dirac distribution ¢ : .(R) — R, defined by 6(¢) = ¢(0) for all ¢ € . (R).

c. Use Eq. (*) to show that h&)l Ty, = 6, by showing that hfol Ty, (¢) = ¢(0) for all ¢ € #(R).

(Hint: Use b, and argue why you may ignore the Lagrange remainder in this limit.)

1 e 1 0 1 [
Substituting Eq. (*) into Ty, (¢) = — / ¢(x) de + — / z ¢(x) de — — / x ¢(x) dx yields Ty, (¢) =To + 11 + 12 + 13,
aJ_q a —a a 0

in which, respectively,

I @/j dz = 2 $(0)

0 0
L = a—12/_aac(¢(0)+¢/(0)9ﬁ)d$= %/_adeO(a):—%MOHO(a)
I, = —a—12 Oax(¢(0)+¢/(0)x)da::—%/()axdx—l—(?(a):—%(bm)-i-@(a)
I, — 2/_‘1 O(IQ)d:hLaiz/_o o(xa)dg;—a%/oa O(z®) dz = O(a?).

Conclusion: li% Ty, (9) = li%(¢(0) + O(a)) = ¢(0) = 6(¢) for all € Z(R), i.e. li% Ty, =90.
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(30) 4. FOURIER TRANSFORMATION

The Fourier convention used in this problem for functions of one variable is as follows:

f(w) = /00 e ™ f(z)dx whence f() 1 /00 e f(w) dw .

o DY .
We indicate the Fourier transform of a function f by .Z(f), and the inverse Fourier transform

of a function f by 9_1(f).

You may use the following standard limit, in which z € C with real part Rez € R:

lim e*=0.
Rez——o0

a. Let ]?Jr and ]?* be any pair of C-valued functions defined in Fourier space, such that ff (w) =
fT(—w). Assuming that the Fourier inverses f* = .Z 1(f¥) exist, show that f~(z) = f*(—x).

f(z) = i ffooo eiwe ]/c\— (w) dw = ﬁ f—oooo eiwz f+(_w) dw = _i fo;oo e—iw'z f+(w/) dow' = i fooo e—iwe f—!—(w) dw =

ft(—z). In * a new variable w’ = —w has been introduced, all other equalities follow from the given definitions.

We now consider the following particular instances:

Yo fw >0
ifw=0 (%)
fw<0

fiw) =

O rl— ®

and ]/";_ (w) = fj(—w), in which s > 0 is a parameter.
b. Give the explicit definition of ﬁ_ (w) in a form similar to that of f: (w) in Eq. (%).
Replacing all instances of w in Eq. (x) by —w leads to

N e’ ifw<0
fs (w) = % fw=0
0

ifw>0

~

cl. Compute f (x) = (ﬂ“%fj)) ().

PN , (im—s) |
We have fi (z) = % [ e fo (W) dw = % I ew(iT—s) qoy, = % ewi:iss 0 = %ﬁ In the last step we have used

the standard limit for the complex exponential function stated above.

c2. Compute f; (z) = (ﬁ_l(z_» (x).
According to the result under al we have fi (z) = f (—z) = ﬁﬁ

d. We define f, = fF+f. . Give the explicit form of f,(w) and compute fs(z) = <9*1(f8)> ().
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Since .# 1 is a linear operator we have fs =

_ 1 1 1 1 _ 1 s
fs(llT) T 27 s—ix + 2w s+ix W x24s2°

e. Show that .7 (fs x f;) = f;th.

—slw]

explicit use of the property ﬂ(w) =ec

FU ) = F I+ 1) = FTN I + F71IS) = S5+ £ That s,

* .
fs+t- In * we have used a well-known Fourier theorem, whereas x makes

We have 7 (fs * fr) = F (fs) F (fe) = fs 1 =

THE END



