EXAMINATION MATHEMATICAL TECHNIQUES FOR IMAGE ANALYSIS

Course code: 8D020. Date: Monday January 17, 2011. Time: 09h00-12h00. Place: AUD 4

Read this first!

- Use a separate sheet of paper for each problem. Write your name and student ID on each paper.
- The exam consists of 4 problems. The maximum credit for each item is indicated in the margin.
- Motivate your answers. The use of course notes is allowed. The use of problem companion ("opgaven- en tentamenbundel"), calculator, laptop, or other equipment, is *not* allowed.
- You may provide your answers in Dutch or English.

GOOD LUCK!

(20) 1. Vector Space

We introduce the set $V = \mathbb{R}^2$ and furnish it with an addition and scalar multiplication operator, as follows. For all $(x, y) \in \mathbb{R}^2$, $(u, v) \in \mathbb{R}^2$, and $\lambda \in \mathbb{R}$ we define

$$(x,y) + (u,v) = (x+u,y+v)$$
 and $\lambda \cdot (x,y) = (\lambda x,y)$.

Show that, given these definitions, V does not constitute a vector space.

The only criterion this definition fails to pass is the distributivity requirement $(\lambda + \mu) \cdot v = \lambda \cdot v + \mu \cdot v$ for any vector $v \in V$ and all $\lambda, \mu \in \mathbb{R}$. Indeed, we have in this particular case,

$$(\lambda + \mu) \cdot (x, y) \stackrel{\text{def}}{=} ((\lambda + \mu)x, y)$$
 whereas $\lambda \cdot (x, y) + \mu \cdot (x, y) \stackrel{\text{def}}{=} (\lambda x, y) + (\mu x, y) \stackrel{\text{def}}{=} ((\lambda + \mu)x, 2y)$.

*

(25) 2. Group Theory¹

We define the following grey-value transformation: $T_{\gamma}: \mathbb{R} \to \mathbb{R}: s \mapsto T_{\gamma}(s) \stackrel{\text{def}}{=} e^{\gamma s}$, in which $\gamma \in \mathbb{R}$ is an arbitrary constant. We furnish the set of all transformations of this type, $G = \{T_{\gamma} \mid \gamma \in \mathbb{R}\}$, with an infix multiplication operator \times , as follows:

$$(T_{\alpha} \times T_{\beta})(s) \stackrel{\text{def}}{=} T_{\alpha}(s) T_{\beta}(s)$$
 for all $s \in \mathbb{R}$.

- **a.** Prove that G constitutes a group. Proceed as follows:
- (5) **a1.** Prove that G is closed with respect to multiplication, i.e. prove that $T_{\alpha}, T_{\beta} \in G$ implies $T_{\alpha} \times T_{\beta} \in G$ for all $\alpha, \beta \in \mathbb{R}$.

¹Exam June 28, 2006, problem 3.

Suppose $T_{\alpha}(s) = e^{\alpha s}$, $T_{\beta}(s) = e^{\beta s}$ then $(T_{\alpha} \times T_{\beta})(s) \stackrel{\text{def}}{=} T_{\alpha}(s) T_{\beta}(s) \stackrel{\text{def}}{=} e^{\alpha s} e^{\beta s} = e^{\alpha + \beta}(s) \stackrel{\text{def}}{=} T_{\alpha + \beta}(s)$ for all $s \in \mathbb{R}$, so $T_{\alpha} \times T_{\beta} = T_{\alpha + \beta} \in G$.

(5) **a2.** Prove that multiplication is associative on G, i.e. prove that $(T_{\alpha} \times T_{\beta}) \times T_{\gamma} = T_{\alpha} \times (T_{\beta} \times T_{\gamma})$ for all $\alpha, \beta, \gamma \in \mathbb{R}$.

Using the proof of the previous part we obtain $(T_{\alpha} \times T_{\beta}) \times T_{\gamma} \stackrel{\text{al}}{=} T_{\alpha+\beta} \times T_{\gamma} \stackrel{\text{al}}{=} T_{(\alpha+\beta)+\gamma} = T_{\alpha+\beta+\gamma} = T_{\alpha+(\beta+\gamma)} \stackrel{\text{al}}{=} T_{\alpha} \times T_{\beta+\gamma} \stackrel{\text{al}}{=} T_{\alpha} \times (T_{\beta} \times T_{\gamma})$ for all $\alpha, \beta, \gamma \in \mathbb{R}$.

(5) **a3.** Prove that G has a unit element, i.e. that there exists a $\nu \in \mathbb{R}$ such that $T_{\nu} \times T_{\gamma} = T_{\gamma} \times T_{\nu} = T_{\gamma}$ for all $\gamma \in \mathbb{R}$. Moreover, give the explicit value of $\nu \in \mathbb{R}$ corresponding to this unit element $T_{\nu} \in G$.

The unit element is $T_0 \in G$, for $T_\alpha \times T_0 \stackrel{\text{al}}{=} T_{\alpha+0} = T_\alpha$ for all $\alpha \in \mathbb{R}$. Likewise we have $T_0 \times T_\alpha \stackrel{\text{al}}{=} T_{0+\alpha} = T_\alpha$. A direct proof goes as follows: $T_0(s) \stackrel{\text{def}}{=} 1$ for all $s \in \mathbb{R}$, so $(T_\alpha \times T_0)(s) \stackrel{\text{def}}{=} T_\alpha(s)T_0(s) = e^{\alpha s} \cdot 1 = e^{\alpha s} = T_\alpha(s)$, and analogously, $(T_0 \times T_\alpha)(s) \stackrel{\text{def}}{=} T_0(s)T_\alpha(s) = 1 \cdot e^{\alpha s} = e^{\alpha s} = T_\alpha(s)$ for all $s \in \mathbb{R}$.

(5) **a4.** Finally prove that each element of G has an inverse, i.e. that for each $\eta \in \mathbb{R}$ there exists a $\theta \in \mathbb{R}$ such that $T_{\eta} \times T_{\theta} = T_{\theta} \times T_{\eta} = T_{\nu}$, in which $\nu \in \mathbb{R}$ denotes the parameter value corresponding to the unit element in part a3.

We already saw that $\nu = 0$. For arbitrary $\eta \in \mathbb{R}$ the inverse of T_{η} is given by $T_{-\eta} \in G$, since $T_{\eta} \times T_{-\eta} \stackrel{\text{al}}{=} T_{\eta + (-\eta)} = T_0$, and likewise $T_{-\eta} \times T_{\eta} \stackrel{\text{al}}{=} T_{(-\eta) + \eta} = T_0$.

(5) **b.** Is G commutative? If yes, prove, if no, provide a counterexample.

That G is indeed commutative has in fact already been proven under a1, for $T_{\alpha} \times T_{\beta} \stackrel{\text{al}}{=} T_{\alpha+\beta} = T_{\beta+\alpha} = T_{\beta} \times T_{\alpha}$ for all $\alpha, \beta \in \mathbb{R}$.

*

(25) 3. Distribution Theory

The parameterized function $f_a: \mathbb{R} \to \mathbb{R}$, with parameter a > 0, is defined as follows:

$$f_a(x) = \begin{cases} \frac{1}{a^2}(-|x|+a) & \text{if } x \in [-a,a] \\ 0 & \text{elsewhere} \end{cases}$$

(5) **a.** Sketch the graph of $y = f_a(x)$ in the xy-plane, and compute the area enclosed by this graph and the x-axis.

See Figure 1. The area under the graph invariably equals $2 \times \frac{1}{2} a \times \frac{1}{a} = 1$ irrespective of the value of a > 0.

The regular tempered distribution $T_{f_a}: \mathscr{S}(\mathbb{R}) \to \mathbb{R}$ associated with the function f_a is given by

$$T_{f_a}(\phi) = \int_{-\infty}^{\infty} f_a(x) \, \phi(x) \, dx$$

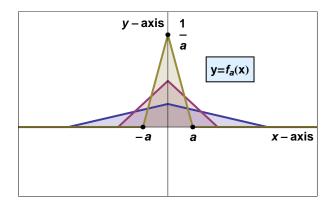


Figure 1: Graphs of $y = f_a(x)$ for three distinct values of a. The area under a graph invariably equals 1.

for any smooth test function $\phi \in \mathscr{S}(\mathbb{R})$.

(10) **b.** Show that
$$T_{f_a}(\phi) = \frac{1}{a} \int_{-a}^{a} \phi(x) dx + \frac{1}{a^2} \int_{-a}^{0} x \phi(x) dx - \frac{1}{a^2} \int_{0}^{a} x \phi(x) dx$$
.

$$T_{f_a}(\phi) \stackrel{\text{def}}{=} \int_{-\infty}^{\infty} f_a(x) \,\phi(x) \, dx \stackrel{\text{def}}{=} \frac{1}{a^2} \int_{-a}^{a} (-|x| + a) \,\phi(x) \, dx = \frac{1}{a} \int_{-a}^{a} \phi(x) \, dx + \frac{1}{a^2} \int_{-a}^{0} x \,\phi(x) \, dx - \frac{1}{a^2} \int_{0}^{a} x \,\phi(x) \, dx.$$

We now consider the limit of vanishing parameter $a \downarrow 0$. It is clear that the function f_a is ill-defined in this limit. We wish to investigate whether the regular tempered distribution T_{f_a} does have a well-defined limit. To this end we recall Taylor's theorem, which allows us to use the following second order expansion for the test function around the origin:

$$\phi(x) = \phi(0) + \phi'(0) x + \frac{1}{2} \phi''(\xi(x)) x^2, \qquad (*)$$

for any $x \in (-a, a)$ and some $\xi(x)$ in-between x and 0. The last term on the right hand side is referred to as the Lagrange remainder, and is sometimes simplified as $\mathcal{O}(x^2)$.

Finally, recall the Dirac distribution $\delta: \mathscr{S}(\mathbb{R}) \to \mathbb{R}$, defined by $\delta(\phi) = \phi(0)$ for all $\phi \in \mathscr{S}(\mathbb{R})$.

(10) **c.** Use Eq. (*) to show that $\lim_{a\downarrow 0} T_{f_a} = \delta$, by showing that $\lim_{a\downarrow 0} T_{f_a}(\phi) = \phi(0)$ for all $\phi \in \mathscr{S}(\mathbb{R})$. (*Hint:* Use b, and argue why you may ignore the Lagrange remainder in this limit.)

Substituting Eq. (*) into $T_{f_a}(\phi) = \frac{1}{a} \int_{-a}^a \phi(x) dx + \frac{1}{a^2} \int_{-a}^0 x \phi(x) dx - \frac{1}{a^2} \int_0^a x \phi(x) dx$ yields $T_{f_a}(\phi) = I_0 + I_1 + I_2 + I_3$, in which, respectively,

$$\begin{split} & \mathrm{I}_0 &= \frac{\phi(0)}{a} \int_{-a}^a dx = 2 \, \phi(0) \\ & \mathrm{I}_1 &= \frac{1}{a^2} \int_{-a}^0 x \, (\phi(0) + \phi'(0) \, x) \, dx = \frac{\phi(0)}{a^2} \int_{-a}^0 x \, dx + \mathcal{O}(a) = -\frac{1}{2} \phi(0) + \mathcal{O}(a) \\ & \mathrm{I}_2 &= -\frac{1}{a^2} \int_0^a x \, (\phi(0) + \phi'(0) \, x) \, dx = -\frac{\phi(0)}{a^2} \int_0^a x \, dx + \mathcal{O}(a) = -\frac{1}{2} \phi(0) + \mathcal{O}(a) \\ & \mathrm{I}_3 &= \frac{1}{a} \int_{-a}^a \mathcal{O}(x^2) \, dx + \frac{1}{a^2} \int_{-a}^0 \mathcal{O}(x^3) \, dx - \frac{1}{a^2} \int_0^a \mathcal{O}(x^3) \, dx = \mathcal{O}(a^2) \, . \end{split}$$

 $\text{Conclusion: } \lim_{a\downarrow 0} T_{f_a}(\phi) = \lim_{a\downarrow 0} (\phi(0) + \mathcal{O}(a)) = \phi(0) = \delta(\phi) \text{ for all } \phi \in \mathscr{S}(\mathbb{R}), \text{ i.e. } \lim_{a\downarrow 0} T_{f_a} = \delta.$

(30) 4. Fourier Transformation

The Fourier convention used in this problem for functions of one variable is as follows:

$$\widehat{f}(\omega) = \int_{-\infty}^{\infty} e^{-i\omega x} f(x) dx$$
 whence $f(x) = \frac{1}{2\pi} \int_{-\infty}^{\infty} e^{i\omega x} \widehat{f}(\omega) d\omega$.

We indicate the Fourier transform of a function f by $\mathscr{F}(f)$, and the inverse Fourier transform of a function \widehat{f} by $\mathscr{F}^{-1}(\widehat{f})$.

You may use the following standard limit, in which $z \in \mathbb{C}$ with real part $\text{Re } z \in \mathbb{R}$:

$$\lim_{\mathrm{Re}\,z\to-\infty}e^z=0\,.$$

(5) **a.** Let \hat{f}^+ and \hat{f}^- be any pair of \mathbb{C} -valued functions defined in Fourier space, such that $\hat{f}^-(\omega) = \hat{f}^+(-\omega)$. Assuming that the Fourier inverses $f^{\pm} = \mathscr{F}^{-1}(\hat{f}^{\pm})$ exist, show that $f^-(x) = f^+(-x)$.

 $f^{-}(x) = \frac{1}{2\pi} \int_{-\infty}^{\infty} e^{i\omega x} \, \widehat{f}^{-}(\omega) \, d\omega = \frac{1}{2\pi} \int_{-\infty}^{\infty} e^{i\omega x} \, \widehat{f}^{+}(-\omega) \, d\omega \stackrel{*}{=} -\frac{1}{2\pi} \int_{\infty}^{-\infty} e^{-i\omega' x} \, \widehat{f}^{+}(\omega') \, d\omega' = \frac{1}{2\pi} \int_{-\infty}^{\infty} e^{-i\omega x} \, \widehat{f}^{+}(\omega) \, d\omega = f^{+}(-x).$ In * a new variable $\omega' = -\omega$ has been introduced, all other equalities follow from the given definitions.

We now consider the following particular instances:

$$\widehat{f}_s^+(\omega) = \begin{cases} e^{-s\omega} & \text{if } \omega > 0\\ \frac{1}{2} & \text{if } \omega = 0\\ 0 & \text{if } \omega < 0 \end{cases}$$
 (*)

and $\widehat{f}_s^-(\omega) = \widehat{f}_s^+(-\omega)$, in which s > 0 is a parameter.

(5) **b.** Give the explicit definition of $\widehat{f}_s^-(\omega)$ in a form similar to that of $\widehat{f}_s^+(\omega)$ in Eq. (\star) .

Replacing all instances of ω in Eq. (*) by $-\omega$ leads to

$$\widehat{f}_s^-(\omega) = \left\{ \begin{array}{ll} e^{s\omega} & \text{if } \omega < 0 \\ \frac{1}{2} & \text{if } \omega = 0 \\ 0 & \text{if } \omega > 0 \end{array} \right.$$

(5) **c1.** Compute $f_s^+(x) = \left(\mathscr{F}^{-1}(\widehat{f}_s^+)\right)(x)$.

We have $f_s^+(x) = \frac{1}{2\pi} \int_{-\infty}^{\infty} e^{i\omega x} \hat{f}_s^+(\omega) d\omega = \frac{1}{2\pi} \int_0^{\infty} e^{\omega(ix-s)} d\omega = \frac{1}{2\pi} \frac{e^{\omega(ix-s)}}{ix-s} \Big|_0^{\infty} = \frac{1}{2\pi} \frac{1}{s-ix}$. In the last step we have used the standard limit for the complex exponential function stated above.

(5) **c2.** Compute $f_s^-(x) = \left(\mathscr{F}^{-1}(\widehat{f}_s^-)\right)(x)$.

According to the result under all we have $f_s^-(x) = f_s^+(-x) = \frac{1}{2\pi} \frac{1}{s+ix}$.

(5) **d.** We define
$$\hat{f}_s = \hat{f}_s^+ + \hat{f}_s^-$$
. Give the explicit form of $\hat{f}_s(\omega)$ and compute $f_s(x) = \left(\mathscr{F}^{-1}(\hat{f}_s)\right)(x)$.

Since \mathscr{F}^{-1} is a linear operator we have $f_s = \mathscr{F}^{-1}(\widehat{f}_s) = \mathscr{F}^{-1}(\widehat{f}_s^+ + \widehat{f}_s^-) = \mathscr{F}^{-1}(\widehat{f}_s^+) + \mathscr{F}^{-1}(\widehat{f}_s^-) = f_s^+ + f_s^-$. That is, $f_s(x) = \frac{1}{2\pi} \frac{1}{s-ix} + \frac{1}{2\pi} \frac{1}{s+ix} = \frac{1}{\pi} \frac{s}{x^2+s^2}$.

(5) **e.** Show that $\mathscr{F}(f_s * f_t) = \widehat{f}_{s+t}$.

We have $\mathscr{F}(f_s*f_t)\stackrel{*}{=}\mathscr{F}(f_s)\mathscr{F}(f_t)=\widehat{f}_s\widehat{f}_t\stackrel{\star}{=}\widehat{f}_{s+t}$. In * we have used a well-known Fourier theorem, whereas \star makes explicit use of the property $\widehat{f}_s(\omega)=e^{-s|\omega|}$.

THE END