
EXAMINATION MATHEMATICAL TECHNIQUES FOR IMAGE ANALYSIS

Course code: 8D020. Date: Monday January 17, 2011. Time: 09h00–12h00. Place: AUD 4

Read this first!

• Use a separate sheet of paper for each problem. Write your name and student ID on each paper.

• The exam consists of 4 problems. The maximum credit for each item is indicated in the margin.

• Motivate your answers. The use of course notes is allowed. The use of problem companion
(“opgaven- en tentamenbundel”), calculator, laptop, or other equipment, is not allowed.

• You may provide your answers in Dutch or English.

GOOD LUCK!

1. Vector Space(20)

We introduce the set V = R2 and furnish it with an addition and scalar multiplication operator,
as follows. For all (x, y) ∈ R2, (u, v) ∈ R2, and λ ∈ R we define

(x, y) + (u, v) = (x+ u, y + v) and λ · (x, y) = (λx, y) .

Show that, given these definitions, V does not constitute a vector space.

The only criterion this definition fails to pass is the distributivity requirement (λ + µ) · v = λ · v + µ · v for any vector
v ∈ V and all λ, µ ∈ R. Indeed, we have in this particular case,

(λ+ µ) · (x, y)
def
= ((λ+ µ)x, y) whereas λ · (x, y) + µ · (x, y)

def
= (λx, y) + (µx, y)

def
= ((λ+ µ)x, 2y) .

♣

2. Group Theory1(25)

We define the following grey-value transformation: Tγ : R → R : s 7→ Tγ(s)
def
= eγs, in

which γ ∈ R is an arbitrary constant. We furnish the set of all transformations of this type,
G = {Tγ | γ ∈ R}, with an infix multiplication operator ×, as follows:

(Tα × Tβ) (s)
def
= Tα(s)Tβ(s) for all s ∈ R.

a. Prove that G constitutes a group. Proceed as follows:

a1. Prove that G is closed with respect to multiplication, i.e. prove that Tα, Tβ ∈ G implies(5)
Tα × Tβ ∈ G for all α, β ∈ R.

1Exam June 28, 2006, problem 3.
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Suppose Tα(s) = eαs, Tβ(s) = eβs then
(
Tα × Tβ

)
(s)

def
= Tα(s)Tβ(s)

def
= eαseβs = eα+β(s)

def
= Tα+β(s) for all s ∈ R, so

Tα × Tβ = Tα+β ∈ G.

a2. Prove that multiplication is associative on G, i.e. prove that (Tα×Tβ)×Tγ = Tα×(Tβ×Tγ)(5)
for all α, β, γ ∈ R.

Using the proof of the previous part we obtain (Tα × Tβ) × Tγ
a1
= Tα+β × Tγ

a1
= T(α+β)+γ = Tα+β+γ = Tα+(β+γ)

a1
=

Tα × Tβ+γ
a1
= Tα × (Tβ × Tγ) for all α, β, γ ∈ R.

a3. Prove that G has a unit element, i.e. that there exists a ν ∈ R such that Tν × Tγ =(5)
Tγ × Tν = Tγ for all γ ∈ R. Moreover, give the explicit value of ν ∈ R corresponding to this
unit element Tν ∈ G.

The unit element is T0 ∈ G, for Tα × T0
a1
= Tα+0 = Tα for all α ∈ R. Likewise we have T0 × Tα

a1
= T0+α = Tα. A direct

proof goes as follows: T0(s)
def
= 1 for all s ∈ R, so (Tα × T0) (s)

def
= Tα(s)T0(s) = eαs · 1 = eαs = Tα(s), and analogously,

(T0 × Tα) (s)
def
= T0(s)Tα(s) = 1 · eαs = eαs = Tα(s) for all s ∈ R.

a4. Finally prove that each element of G has an inverse, i.e. that for each η ∈ R there exists(5)
a θ ∈ R such that Tη × Tθ = Tθ × Tη = Tν , in which ν ∈ R denotes the parameter value
corresponding to the unit element in part a3.

We already saw that ν = 0. For arbitrary η ∈ R the inverse of Tη is given by T−η ∈ G, since Tη × T−η
a1
= Tη+(−η) = T0,

and likewise T−η × Tη
a1
= T(−η)+η = T0.

b. Is G commutative? If yes, prove, if no, provide a counterexample.(5)

That G is indeed commutative has in fact already been proven under a1, for Tα × Tβ
a1
= Tα+β = Tβ+α = Tβ × Tα for all

α, β ∈ R.

♣

3. Distribution Theory(25)

The parameterized function fa : R→ R, with parameter a > 0, is defined as follows:

fa(x) =

{ 1

a2
(−|x|+ a) if x ∈ [−a, a]

0 elsewhere

a. Sketch the graph of y = fa(x) in the xy-plane, and compute the area enclosed by this graph(5)
and the x-axis.

See Figure 1. The area under the graph invariably equals 2× 1
2
a× 1

a
= 1 irrespective of the value of a > 0.

The regular tempered distribution Tfa : S (R)→ R associated with the function fa is given by

Tfa(φ) =

∫ ∞
−∞

fa(x)φ(x) dx
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Figure 1: Graphs of y = fa(x) for three distinct values of a. The area under a graph invariably
equals 1.

for any smooth test function φ ∈ S (R).

b. Show that Tfa(φ) =
1

a

∫ a

−a
φ(x) dx+

1

a2

∫ 0

−a
xφ(x) dx− 1

a2

∫ a

0
xφ(x) dx.(10)

Tfa (φ)
def
=

∫ ∞
−∞

fa(x)φ(x) dx
def
=

1

a2

∫ a

−a
(−|x|+ a)φ(x) dx =

1

a

∫ a

−a
φ(x) dx+

1

a2

∫ 0

−a
xφ(x) dx−

1

a2

∫ a

0
xφ(x) dx.

We now consider the limit of vanishing parameter a ↓ 0. It is clear that the function fa is
ill-defined in this limit. We wish to investigate whether the regular tempered distribution Tfa
does have a well-defined limit. To this end we recall Taylor’s theorem, which allows us to use
the following second order expansion for the test function around the origin:

φ(x) = φ(0) + φ′(0)x+
1

2
φ′′(ξ(x))x2 , (∗)

for any x ∈ (−a, a) and some ξ(x) in-between x and 0. The last term on the right hand side is
referred to as the Lagrange remainder, and is sometimes simplified as O(x2).

Finally, recall the Dirac distribution δ : S (R)→ R, defined by δ(φ) = φ(0) for all φ ∈ S (R).

c. Use Eq. (∗) to show that lim
a↓0

Tfa = δ, by showing that lim
a↓0

Tfa(φ) = φ(0) for all φ ∈ S (R).(10)

(Hint: Use b, and argue why you may ignore the Lagrange remainder in this limit.)

Substituting Eq. (∗) into Tfa (φ) =
1

a

∫ a

−a
φ(x) dx+

1

a2

∫ 0

−a
xφ(x) dx−

1

a2

∫ a

0
xφ(x) dx yields Tfa (φ) = I0 + I1 + I2 + I3,

in which, respectively,

I0 =
φ(0)

a

∫ a

−a
dx = 2φ(0)

I1 =
1

a2

∫ 0

−a
x (φ(0) + φ′(0)x) dx =

φ(0)

a2

∫ 0

−a
x dx+O(a) = −

1

2
φ(0) +O(a)

I2 = −
1

a2

∫ a

0
x (φ(0) + φ′(0)x) dx = −

φ(0)

a2

∫ a

0
x dx+O(a) = −

1

2
φ(0) +O(a)

I3 =
1

a

∫ a

−a
O(x2) dx+

1

a2

∫ 0

−a
O(x3) dx−

1

a2

∫ a

0
O(x3) dx = O(a2) .

Conclusion: lim
a↓0

Tfa (φ) = lim
a↓0

(φ(0) +O(a)) = φ(0) = δ(φ) for all φ ∈ S (R), i.e. lim
a↓0

Tfa = δ.
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♣

4. Fourier Transformation(30)

The Fourier convention used in this problem for functions of one variable is as follows:

f̂(ω) =

∫ ∞
−∞

e−iωx f(x) dx whence f(x) =
1

2π

∫ ∞
−∞

eiωx f̂(ω) dω .

We indicate the Fourier transform of a function f by F (f), and the inverse Fourier transform
of a function f̂ by F−1(f̂).

You may use the following standard limit, in which z ∈ C with real part Re z ∈ R:

lim
Re z→−∞

ez = 0 .

a. Let f̂+ and f̂− be any pair of C-valued functions defined in Fourier space, such that f̂−(ω) =(5)
f̂+(−ω). Assuming that the Fourier inverses f± = F−1(f̂±) exist, show that f−(x) = f+(−x).

f−(x) = 1
2π

∫∞
−∞ eiωx f̂−(ω) dω = 1

2π

∫∞
−∞ eiωx f̂+(−ω) dω

∗
= − 1

2π

∫−∞
∞ e−iω

′x f̂+(ω′) dω′ = 1
2π

∫∞
−∞ e−iωx f̂+(ω) dω =

f+(−x). In ∗ a new variable ω′ = −ω has been introduced, all other equalities follow from the given definitions.

We now consider the following particular instances:

f̂+
s (ω) =


e−sω if ω > 0
1
2 if ω = 0 (?)
0 if ω < 0

and f̂−s (ω) = f̂+
s (−ω), in which s > 0 is a parameter.

b. Give the explicit definition of f̂−s (ω) in a form similar to that of f̂+
s (ω) in Eq. (?).(5)

Replacing all instances of ω in Eq. (?) by −ω leads to

f̂−s (ω) =


esω if ω < 0
1
2

if ω = 0
0 if ω > 0

c1. Compute f+
s (x) =

(
F−1(f̂+

s )
)

(x).(5)

We have f+s (x) = 1
2π

∫∞
−∞ eiωx f̂+s (ω) dω = 1

2π

∫∞
0 eω(ix−s) dω = 1

2π
eω(ix−s)

ix−s

∣∣∣∞
0

= 1
2π

1
s−ix . In the last step we have used

the standard limit for the complex exponential function stated above.

c2. Compute f−s (x) =
(
F−1(f̂−s )

)
(x).(5)

According to the result under a1 we have f−s (x) = f+s (−x) = 1
2π

1
s+ix

.

d. We define f̂s = f̂+
s +f̂−s . Give the explicit form of f̂s(ω) and compute fs(x) =

(
F−1(f̂s)

)
(x).(5)
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Since F−1 is a linear operator we have fs = F−1(f̂s) = F−1(f̂+s + f̂−s ) = F−1(f̂+s ) + F−1(f̂−s ) = f+s + f−s . That is,

fs(x) = 1
2π

1
s−ix + 1

2π
1

s+ix
= 1

π
s

x2+s2
.

e. Show that F (fs ∗ ft) = f̂s+t.(5)

We have F (fs ∗ ft)
∗
= F (fs) F (ft) = f̂s f̂t

?
= f̂s+t. In ∗ we have used a well-known Fourier theorem, whereas ? makes

explicit use of the property f̂s(ω) = e−s|ω|.

THE END
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