
EXAMINATION MATHEMATICAL TECHNIQUES FOR IMAGE ANALYSIS

Course code: 8D020. Date: Wednesday April 22, 2009. Time: 14h00–17h00. Place: HG 10.01 C.

Read this first!

• Use a separate sheet of paper for each problem. Write your name and student identification
number on each paper.

• The exam consists of 4 problems. The maximum credit for each item is indicated in the margin.

• Motivate your answers. The use of course notes and calculator is allowed. The use of the problem
companion, “opgaven- en tentamenbundel”, is not allowed.

• You may provide your answers in Dutch or (preferably) in English.

GOOD LUCK!

1. Consider the collection of square matrices,(35)

Mn =

X =

 X11 . . . X1n
...

...
Xn1 . . . Xnn


∣∣∣∣∣∣∣ Xij ∈ K

 , in which K denotes either R or C.

a. Provide explicit definitions for the operators ⊗ : K ×Mn → Mn (“scalar multiplication”)(21
2)

and ⊕ : Mn×Mn →Mn (“vector addition”) needed to turn this set into a linear space over K.
Make sure to use parentheses so as to avoid confusion on operator precedence, if necessary.

The necessary operators are scalar multiplication and vector addition. If λ, µ ∈ K and X,Y ∈ Mn, then

((λ⊗X)⊕ (µ⊗ Y ))ij = λXij + µYij for all i, j = 1, . . . , n.

Henceforth we write λX instead of λ⊗X and X+Y instead of X⊕Y for λ ∈ K and X,Y ∈Mn.
Furthermore, let L (Mn,Mn) denote the linear space of linear operators on Mn.

b. Provide explicit definitions for the operators ⊗ : R × L (Mn,Mn) → L (Mn,Mn) and(21
2)
⊕ : L (Mn,Mn) × L (Mn,Mn) → L (Mn,Mn) that justifies the claim that L (Mn,Mn) is
a linear space over K. Make sure to use parentheses so as to avoid confusion on operator
precedence, if necessary.

The necessary operators are scalar multiplication and vector addition. If λ, µ ∈ K and A,B ∈ L (Mn,Mn), then

((λ⊗A)⊕ (µ⊗B)) (X) = λA(X) + µB(X) for all X ∈ Mn.
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Again we write λA instead of λ⊗A and A+B instead of A⊕B for λ ∈ K and A,B ∈ L (Mn,Mn).
With X as above, the transposed matrix XT and the conjugate matrix X† are defined as

XT =

 X11 . . . Xn1
...

...
X1n . . . Xnn

 respectively X† =

 X∗11 . . . X∗n1
...

...
X∗1n . . . X∗nn

 .

Here, ∗ denotes complex conjugation, i.e. if z = x+ iy for x, y ∈ R, then z∗ = x− iy.

Furthermore, the operators P± : Mn →Mn and Q± : Mn →Mn are defined by

P±(X) =
1

2

(
X ±XT

)
respectively Q±(X) =

1

2

(
X ±X†

)
.

c1. Show that matrix transposition, T : Mn →Mn : X 7→ T(X)
def
= XT, is a linear operator.(21

2)

For all λ, µ ∈ K and X,Y ∈ Mn we have T(λX + µY )
def
= (λX + µY )T = λXT + µY T def

= λT(X) + µT(Y ).

c2. Show that matrix conjugation, C : Mn →Mn : X 7→ C(X)
def
= X†, is not a linear operator.(21

2)

For all λ, µ ∈ K and X,Y ∈ Mn we have C(λX + µY )
def
= (λX + µY )† = λ∗X† + µ∗Y †

def
= λ∗C(X) + µ∗C(Y ) 6=

λC(X) + µC(Y ). (If K = R then C = T, so then it does define a linear operator.)

c3. Show that P± : Mn →Mn are linear operators.(21
2)

For all λ, µ ∈ K andX,Y ∈ Mn we have P±(λX+µY )
def
= 1

2

(
λX + µY ± (λX + µY )T

)
= λ

(
1
2

(X ±XT)
)
+µ
(
1
2

(Y ± Y T)
) def

=

λP±(X) + µP±(Y ).

c4. Show that Q± : Mn →Mn are not linear operators.(21
2)

For all λ, µ ∈ K andX,Y ∈ Mn we have Q±(λX+µY )
def
= 1

2

(
λX + µY ± (λX + µY )†

)
= 1

2
(λX±λ∗X†)+ 1

2
(µY ±µ∗Y †) 6=

λ
(
1
2

(X ±X†)
)
+µ
(
1
2

(Y ± Y †)
) def

= λQ±(X)+µQ±(Y ). (If K = R then Q± = P±, so then they do define linear operators.)

The null matrix in Mn is indicated by Ω, i.e. Ωij = 0 for all i, j = 1, . . . , n. The identity
matrix in Mn is indicated by I, i.e. Iij = 1 if i = j = 1, . . . , n, otherwise Iij = 0. The null
operator N : Mn → Mn is defined by N(X) = Ω ∈ Mn for all X ∈ Mn. The identity operator
id : Mn → Mn is defined by id(X) = X for all X ∈ Mn. Operator composition (i.e. successive
application of operators in right-to-left order) is indicated by the infix operator ◦.

d1. Show that P+ + P− = id.(21
2)

We have (P++P−)(X)
def
= P+(X)+P−(X)

def
= 1

2

(
X +XT

)
+ 1

2

(
X −XT

)
= X = id(X) for all X ∈ Mn, so P++P− = id.

d2. Show that P+ − P− = T.(21
2)

We have (P+−P−)(X)
def
= P+(X)−P−(X)

def
= 1

2

(
X +XT

)
− 1

2

(
X −XT

)
= XT = T(X) for allX ∈ Mn, so P++P− = T.

d3. Show that P+ ◦ P− = P− ◦ P+ = N.(21
2)
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We have (P+ ◦P−)(X)
def
= P+(P−(X))

def
= 1

2

(
P−(X) + P−(X)T

)
= 1

2

(
1
2

(
X −XT

)
+ 1

2

(
XT −X

))
= 0 for all X ∈ Mn,

so P+ ◦ P− = N. By interchanging all + and − signs in the above argument, it follows that P− ◦ P+ = N.

d4. Show that P± ◦ P± = P±.(21
2)

We have (P± ◦ P±)(X)
def
= P±(P±(X))

def
= 1

2

(
P±(X)± P±(X)T

)
= 1

2

(
1
2

(
X ±XT

)
± 1

2

(
XT ±X

))
= 1

2

(
X ±XT

)
def
=

P±(X) for all X ∈ Mn, so P± ◦ P± = P±.

Consider the following binary operator: 〈 | 〉 : Mn×Mn → K : (X,Y ) 7→ 〈X|Y 〉 def
= trace(XTY ).

Here, trace : Mn → K is the (linear) trace operator, defined as summation of diagonal elements:

traceX =

n∑
i=1

Xii .

e1. Show that if K = R then 〈 | 〉 : Mn ×Mn → R defines a real inner product.(21
2)

We may exploit the fact that both trace as well as transposition T are linear operators. Let X,Y, Z ∈ Mn and λ, µ ∈ K
be arbitrary. Then we have

• 〈X|Y 〉 def= trace(XTY )
def
=
∑n
i=1(XTY )ii =

∑n
i=1

∑n
j=1XijYij =

∑n
i=1(Y TX)ii = 〈Y |X〉.

• 〈λX + µY |Z〉 def= trace((λX+µY )TZ) = trace((λXT+µY T)Z) = λtrace(XTZ)+µtrace(Y TZ)
def
= λ〈X|Z〉+µ〈Y |Z〉.

• 〈X|X〉 def
= trace(XTX)

def
=
∑n
i=1(XTX)ii =

∑n
i=1

∑n
j=1XijXij ≥ 0, and clearly the sum of squares equals zero

iff X = Ω, the zero matrix.

e2. Show that if K = C then 〈 | 〉 : Mn ×Mn → C does not define a complex inner product.(21
2)

Take λ ∈ C\R, and X,Y ∈ Mn, then 〈λX|Y 〉 def= trace((λX)TY ) = trace(λXTY ) = λtrace(XTY )
def
= λ〈X|Y 〉 6= λ∗〈X|Y 〉.

f. How would you modify the definition of 〈 | 〉 : Mn ×Mn → C in the complex case, K = C,(21
2)

such that it does define a complex inner product? You may state your definition without proof.

We must use conjugation instead of transposition: 〈 | 〉 : Mn ×Mn → C : (X,Y ) 7→ 〈X|Y 〉 def= trace(X†Y ).

In the remainder of this problem we restrict ourselves to K = R. In particular, we consider the
case of the real inner product, recall e1.

Operator transposition, T : L (Mn,Mn)→ L (Mn,Mn), is implicitly defined by the identity

〈AT(X)|Y 〉 def
= 〈X|A(Y )〉 for all A ∈ L (Mn,Mn) and X,Y ∈Mn.

g. Show that PT
± = P±. (Together with d4 this shows that P± are orthogonal projections.)(21

2)

LetX,Y ∈ Mn. Using the properties of the inner product and previous definitions we find 〈X|P±(Y )〉 def= 〈X| 1
2

(Y ± Y T)〉 =

1
2
〈X|Y 〉 ± 1

2
〈X|Y T〉 ∗= 1

2
〈X|Y 〉 ± 1

2
〈XT|Y 〉 = 〈 1

2
(X ±XT)|Y 〉 def

= 〈P±(X)|Y 〉. In ∗ we have used the fact that

〈X|Y T〉 = trace(XTY T) = trace((Y X)T) = trace(Y X) = trace(XY ) = 〈XT|Y 〉, which in turn follows from the properties

trace(X) = trace(XT), trace(XY ) = trace(Y X), and XTT = X.
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♣

2. Consider the Laplace equation for the function u ∈ C∞(R2):(321
2)

∆u = 0 in which ∆ =
∂2

∂x2
+

∂2

∂y2
.

Our aim is to find a first order partial differential equation, such that its solutions also satisfy
the Laplace equation. To this end we introduce a real linear space V , the dimension n ≥ 2 of
which is yet to be determined, and furnish it with an additional operator henceforth referred
to as “multiplication”. The product of v, w ∈ V is then simply written as vw ∈ V . In this way
V is turned into a so-called algebra, for which we stipulate the following algebraic axioms, viz.
for all u, v, w ∈ V and λ, µ ∈ R:

• (uv)w = u(vw),

• u(v + w) = uv + uw,

• (u+ v)w = uw + vw,

• λ(uv) = (λu)v = u(λv),

(Multiplication takes precedence over vector addition unless parentheses indicate otherwise.)

We now attempt to decompose the Laplacian operator as follows:

∆ =

(
a
∂

∂x
+ b

∂

∂y

)(
a
∂

∂x
+ b

∂

∂y

)
.

Here a, b ∈ V are two fixed, independent elements (vectors). For consistency we assume that
u(x, y) ∈ V (instead of our original assumption u(x, y) ∈ R).

a. Show that V is not commutative, and that it must possess an identity element 1 ∈ V that
has to be formally identified with the scalar number 1 ∈ R, by showing that

a1. ab+ ba = 0,(21
2)

a2. a2 = b2 = 1.(21
2)

Expanding (
a
∂

∂x
+ b

∂

∂y

)(
a
∂

∂x
+ b

∂

∂y

)
= a2

∂2

∂x2
+ (ab+ ba)

∂2

∂x∂y
+ b2

∂2

∂y2
def
=

∂2

∂x2
+

∂2

∂y2

shows that we must set ab+ ba = 0 and a2 = b2 = 1. Notice that we may not assume that ab = ba.

b. Show that the (unordered) pair (a, b) satisfying the conditions of a1 and a2 is not unique.(5)
(Hint: Suppose a′ = a1a+ a2b, b

′ = b1a+ b2b for some a1, a2, b1, b2 ∈ R.)

Following the hint we subject the transformed pair (a′, b′) to the required conditions of a1–a2. This leads to the following
system of equations for the coefficients a1, a2, b1, b2 ∈ R: a21 + a22 = 1

b21 + b22 = 1
a1b1 + a2b2 = 0 .
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In other words, apart from the choice (a1, a2) = (1, 0), (b1, b2) = (0, 1) corresponding to the solution under a1–a2 we may

take any pair of mutually perpendicular unit vectors (a1, a2), (b1, b2) ∈ R2. (This ambiguity is not surprising, since the

Laplacian is invariant under orthogonal transformations of (x, y)-coordinates.)

c. Suppose v, w ∈ span{a, b} ⊂ V are such that, say, v = v1a + v2b and w = w1a + w2b for
some v1, v2, w1, w2 ∈ R. Compute

c1. vw + wv,(21
2)

c2. v2.(21
2)

We find vw + wv = (v1a+ v2b)(w1a+ w2b) = 2v1w1a2 + (v1w2 + v2w1)(ab+ ba) + 2v2w2b2
a1–a2

= 2(v1w1 + v2w2), from

which it follows, by setting v1 = w1 and v2 = w2, that v2 = v21 + v22 .

d. Show that dimV > 2.(21
2)

(Hint: Alternatively, show that span{a, b} ⊂ V is not closed under multiplication.)

Take v = v1a+v2b ∈ V , with v1, v2 ∈ R arbitrary. Suppose 1 ∈ span{a, b}, i.e. there exist e1, e2 ∈ R, at least one of which
is nonzero, such that 1 = e1a+ e2b, then, again using a1–a2 and the definition of the unit element 1 ∈ V ,

v1a+ v2b = v
def
= 1v = e1v1 + e2v2 + (e1v2 − e2v1)ab for all v1, v2 ∈ R.

However, a, b, ab 6∈ R, whereas e1v1 + e2v2 ∈ R, so that we conclude that e1v1 + e2v2 = 0 for all v1, v2 ∈ R, implying

e1 = e2 = 0, which is a contradiction. (To see that a, b, ab 6∈ R, consider a1–a2, from which it is immediately obvious

that a, b 6∈ R. That ab 6∈ R follows e.g. by taking its square: (ab)2 = abab = −ab2a = −a2 = −1.)

We add two more independent elements to the set {a, b}, viz. the unit element 1 and the element
ab, and define V = span{1, a, b, ab}. Instead of λ 1 + µa + ν b + ρ ab (λ, µ, ν, ρ ∈ R) we write
λ+ µa+ ν b+ ρ ab for an arbitrary element of V .

e. Show that V is closed under multiplication, i.e. show that if v = v0 + v1a+ v2b+ v3ab ∈ V ,(5)
w = w0 + w1a+ w2b+ w3ab ∈ V , then also vw ∈ V .

The easiest answer is as follows. Multiplication of v and w, expanded as given, will generate 4 × 4 = 16 terms, each of

which is a multiple of any of the following product forms: 1, a, b, ab, a2, b2, ba, a2b, ab2, aba, bab, (ab)2. With the properties

a1–a2 of a and b these can all be reduced to multiples involving only 1, a, b, ab (for we have a2 = 1, b2 = 1, ba = −ab,
a2b = b, ab2 = a, aba = −a2b = −b, bab = −b2a = −a, and finally (ab)2 = −ab2a = −a2 = −1). The more

cumbersome answer is to write out the product explicitly, and to apply the above simplification rules, yielding vw =

(v0 + v1a+ v2b+ v3ab)(w0 +w1a+w2b+w3ab) = v0w0 + v1w1 + v2w2− v3w3 + (v0w1 + v1w0− v2w3 + v3w2)a+ (v0w2 +

v1w3 + v2w0 − v3w1)b+ (v0w3 + v1w2 − v2w1 + v3w0)ab ∈ V .

We now try to realize elements of V in terms of real-valued 2×2-matrices. To this end we
hypothesize that

V ⊂M2 =

{(
a11 a12

a21 a22

) ∣∣∣∣ aij ∈ R
}
.

f. Construct explicit matrices A,B ∈M2 corresponding to a, b ∈ V in the sense that(5)

• AB +BA = Ω,
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• A2 = B2 = I.

Here Ω ∈ M2 is the null matrix, corresponding to the null element 0 ∈ V , and I ∈ M2 is the
identity matrix, corresponding to the identity element 1 ∈ V .
(Hint: As an ansatz, stipulate a diagonal matrix A, and show that B must then be anti-diagonal.)

Some examples of a ∼ A and b ∼ B, and ab ∼ AB, and the element 1 ∼ I:

I =

(
1 0
0 1

)
A =

(
1 0
0 −1

)
B =

(
0 1
1 0

)
AB =

(
0 1
−1 0

)
.

Many other choices are possible, recall b. Examples such as the above are found by trial and error. Following the hint

(a12 = a21 = 0), setting A = diag {a11, a22}, and taking B arbitrary, one finds by writing out the conditions A2 = I and

AB+BA = Ω that a11 = ±1, a22 = ∓1, and that B must have zeros on its diagonal, and writing out B2 = I reveals that

its remaining elements must equal b12 = b21 = ±1.

g. Given A and B as determined under f, what is the matrix form v0 +v1A+v2B+v3AB ∈M2(21
2)

corresponding to a general element v0 + v1a+ v2b+ v3ab ∈ V ?

From f it follows by superposition X = v0I + v1A+ v2B + v3AB that

X =

(
v0 + v1 v2 + v3
v2 − v3 v0 − v1

)
.

Note that any matrix Y ∈ M2 can be realized in this way, viz. by setting

v0 =
1

2
(Y11 + Y22) v1 =

1

2
(Y11 − Y22) v2 =

1

2
(Y12 + Y21) v3 =

1

2
(Y12 − Y21) .

h. Show that if u : R2 → V satisfies the first order partial differential equation(21
2)

a
∂u

∂x
+ b

∂u

∂y
= 0 ,

then it is also a solution of ∆u = 0.

Recall a1–a2. By construction we now have

∆u =
∂2u

∂x2
+
∂2u

∂y2
=

(
a
∂

∂x
+ b

∂

∂y

)(
a
∂u

∂x
+ b

∂u

∂y

)
= 0 since

(
a
∂u

∂x
+ b

∂u

∂y

)
= 0 .

♣

3. Consider a strictly monotonic, continuously differentiable function f : R → R : x 7→ f(x),(5)
with f ′(x) > 0 for all x ∈ R, and f(±∞) = ±∞. The inverse function theorem states that
such a function has an inverse, f−1 : R → R : y 7→ f−1(y), such that (f−1 ◦ f)(x) = x for all
x ∈ R, and (f ◦ f−1)(y) = y for all y ∈ R.

a. Argue why the equation f(x) = 0 has precisely one solution for x ∈ R (x = a, say).(21
2)

(Hint: Sketch the graph of such a function f .)
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Suppose there are two distinct solutions, f(a) = f(b) = 0, with a < b, say. According to the mean value theorem there

exists a c in-between a and b, such that f ′(c) = (f(b)− f(a))/(b−a) = 0 (average slope on (a, b)). This is a contradiction.

Rephrased in terms of the graph of f , the argument is as follows. Since f is continuous, the graph of f is uninterrupted.

Since f ′ > 0, the graph is monotonically increasing, so it can intersect the x-axis at most once. It actually does intersect

the x-axis exactly once, since f is continuous and f assumes both negative and positive values, whence it must assume all

intermediate values, in particular f(a) = 0 for some unique a ∈ R.

b. Show that δ(f(x)) =
δ(x− a)

f ′(a)
, in which a ∈ R is the unique point for which f(a) = 0.(21

2)

(Hint: Evaluate the distribution corresponding to the Dirac function on the left hand side on an arbitrary

test function φ ∈ S (R), i.e.
∫∞
−∞ δ(f(x))φ(x) dx, and apply substitution of variables.)

Consider∫ ∞
−∞

δ(f(x))φ(x) dx
∗
=

∫ ∞
−∞

δ(y)φ(f−1(y))
dy

f ′(f−1(y))

?
=

φ(f−1(0))

f ′(f−1(0))

◦
=

φ(a)

f ′(a)

?
=

∫ ∞
−∞

δ(x− a)

f ′(a)
φ(x) dx .

In ∗ substitution y = f(x) has been carried out, which implies dy = f ′(x) dx and, by the inverse function theorem,

x = f−1(y). Boundary values remain unchanged because f(±∞) = ±∞. In ? the definition of the Dirac-δ “function”

has been used. In ◦ the identity a = f−1(0) (the equivalent of f(a) = 0, cf. a) has been invoked. Since this holds for all

φ ∈ S (R) we conclude that δ(f(x)) =
δ(x− a)

f ′(a)
.

♣

4. In this problem we consider a synthetic signal f : R −→ R, defined as follows:(271
2)

f(x) =


0 if x < 0
1
2 if x = 0
1 if x > 0

Furthermore, we define the so-called Poisson filter φσ : R −→ R for σ > 0 as

φσ(x) =
1

π

σ

x2 + σ2
.

In this problem you may use the following standard formulas (cf. the graph shown below):∫
1

1 + x2
dx = arctanx+ c resp. lim

x→±∞
arctanx = ±π

2
.
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Throughout this problem we employ the following Fourier convention:

û(ω) = F(u)(ω) =

∫ ∞
−∞

e−iωx u(x) dx whence u(x) = F−1(û)(x) =
1

2π

∫ ∞
−∞

eiωx û(ω) dω .

a. Show that
∫∞
−∞ φσ(x) dx = 1 regardless of the value of σ.(21

2)

∫∞
−∞ φσ(x) dx = σ

π

∫∞
−∞

1
x2+σ2 dx = 1

π

∫∞
−∞

1
1+y2

dy = 1
π

[arctan y]y→+∞
y→−∞ = 1

π
(π
2

+ π
2

) = 1. Hierin is de volgende

substitutie van variabelen toegepast: y = x/σ.

b1. Prove that for any, sufficiently smooth, integrable filter φ we have:(21
2)

(f ∗ φ)(x) =

∫ x

−∞
φ(ξ) dξ .

(f ∗ φ) (x) =
∫∞
−∞ f(y)φ(x − y) dy =

∫∞
0 φ(x − y) dy =

∫ x
−∞ φ(ξ) dξ. In de laatste stap is substitutie van variabelen,

ξ = x− y, toegepast.

b2. Show by explicit computation that the convolution product f ∗ φσ is given by(21
2)

(f ∗ φσ) (x) =
1

2
+

1

π
arctan

x

σ
.

(f ∗ φσ) (x) =
∫∞
−∞ f(y)φσ(x − y) dy = σ

π

∫∞
0

1
(x−y)2+σ2 dy =

∫ x/σ
−∞

1
1+ξ2

dξ = 1
π

[arctan ξ]
ξ=x/σ
ξ→−∞ = 1

π
(arctan x

σ
+ π

2
) =

1
2

+ 1
π

arctan x
σ

. Hierin is de volgende substitutie van variabelen toegepast: ξ = (x − y)/σ. Gebruik van onderdeel b1

leidt uiteraard tot hetzelfde resultaat.

c. Show that the Fourier transform f̂ = F(f) of f is given by(5)

f̂(ω) =
1

iω
.

(Hint: From part b1 it follows that d
dx (f ∗ φ) (x) = φ(x). Subject this to Fourier transformation.)

Uit d
dx

(f ∗ φσ) (x) = φσ(x) volgt dat F
(
d
dx

(f ∗ φσ)
)

(ω) = F (φσ) (ω). Met behulp van Result 6 op blz. 97 en Theorem 17

op blz. 104 volgt dat dit equivalent is met iωF (f) (ω)F (φσ) (ω) = F (φσ) (ω). Ervan uitgaand dat F (φσ) (ω) 6= 0 voor

(bijna) alle ω concluderen we dat F (f) (ω) = 1
iω

.

d. Without proof we state the Fourier transform φ̂σ = F(φσ) of φσ:

φ̂σ(ω) = e−σ|ω| .

d1. Explain the behaviour of φ̂σ(ω) for ω → 0 in terms of properties of the corresponding(21
2)

spatial filter φσ(x).
(Hint: Cf. problem a.)

d2. Explain the behaviour of f̂(ω) for ω → 0 in terms of properties of the corresponding spatial(21
2)
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signal f(x).

Zie de definitie van û(ω): Indien û(0) bestaat dan moet hiervoor kennelijk gelden û(0) =
∫∞
−∞ u(x) dx. Dit verklaart

zowel het gedrag van φ̂σ(ω) als van f̂(ω) voor ω → 0: φ̂σ(0) =
∫∞
−∞ φσ(x) dx = 1 (zie a), terwijl f̂(0) niet bestaat omdat∫∞

−∞ f(x) dx =
∫∞
0 dx niet convergeert.

e. Determine the function F(f ∗ φσ).(5)

Noteren we gemakshalve fσ = f∗φσ dan geldt hiervoor in de gehanteerde Fourierconventie f̂σ = F(f∗φσ) = F(f)F(φσ) =

f̂ φ̂σ , dus f̂σ(ω) = 1
iω
e−σ|ω|.

f. Show that lim
σ→0

f ∗ φσ = f . Hint: Take the “Fourier route”.(21
2)

Schrijf wederom fσ = f ∗φσ . Uit e blijkt dat in het Fourierdomein geldt limσ→0 f̂σ(ω) = limσ→0
1
iω
e−σ|ω| = 1

iω
= f̂(ω),

dus volgt limσ→0 fσ(x) = f(x).

g. Prove the claim under d: φ̂σ(ω) = e−σ|ω|.(21
2)

(Hint: Apply the inverse Fourier transform.)

Following the hint we get

1

2π

∫ ∞
−∞

eiωx e−σ|ω| dω =
1

2π

(∫ 0

−∞
e(σ+ix)ω dω +

∫ ∞
0

e(−σ+ix)ω dω

)
=

1

2π

[ e(σ+ix)ω
σ + ix

]0
−∞

+

[
e(−σ+ix)ω

−σ + ix

]∞
0


=

1

2π

(
1

σ + ix
+

1

σ − ix

)
=

1

π

σ

x2 + σ2

def
= φσ(x) .

THE END
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