EXAMINATION MATHEMATICAL TECHNIQUES FOR IMAGE ANALYSIS

Course code: 8D020. Date: Wednesday April 22, 2009. Time: 14h00-17h00. Place: HG 10.01 C.

Read this first!

- Use a separate sheet of paper for each problem. Write your name and student identification number on each paper.
- The exam consists of 4 problems. The maximum credit for each item is indicated in the margin.
- Motivate your answers. The use of course notes and calculator is allowed. The use of the problem companion, "opgaven- en tentamenbundel", is not allowed.
- You may provide your answers in Dutch or (preferably) in English.

GOOD LUCK!

(35) 1. Consider the collection of square matrices,

$$
\mathbb{M}_{n}=\left\{\left.X=\left(\begin{array}{ccc}
X_{11} & \ldots & X_{1 n} \\
\vdots & & \vdots \\
X_{n 1} & \ldots & X_{n n}
\end{array}\right) \right\rvert\, X_{i j} \in \mathbb{K}\right\} \text {, in which } \mathbb{K} \text { denotes either } \mathbb{R} \text { or } \mathbb{C} \text {. }
$$

a. Provide explicit definitions for the operators $\otimes: \mathbb{K} \times \mathbb{M}_{n} \rightarrow \mathbb{M}_{n}$ ("scalar multiplication") and $\oplus: \mathbb{M}_{n} \times \mathbb{M}_{n} \rightarrow \mathbb{M}_{n}$ ("vector addition") needed to turn this set into a linear space over \mathbb{K}. Make sure to use parentheses so as to avoid confusion on operator precedence, if necessary.

The necessary operators are scalar multiplication and vector addition. If $\lambda, \mu \in \mathbb{K}$ and $X, Y \in \mathbb{M}_{n}$, then

$$
((\lambda \otimes X) \oplus(\mu \otimes Y))_{i j}=\lambda X_{i j}+\mu Y_{i j} \quad \text { for all } i, j=1, \ldots, n .
$$

Henceforth we write λX instead of $\lambda \otimes X$ and $X+Y$ instead of $X \oplus Y$ for $\lambda \in \mathbb{K}$ and $X, Y \in \mathbb{M}_{n}$. Furthermore, let $\mathscr{L}\left(\mathbb{M}_{n}, \mathbb{M}_{n}\right)$ denote the linear space of linear operators on \mathbb{M}_{n}.
b. Provide explicit definitions for the operators $\otimes: \mathbb{R} \times \mathscr{L}\left(\mathbb{M}_{n}, \mathbb{M}_{n}\right) \rightarrow \mathscr{L}\left(\mathbb{M}_{n}, \mathbb{M}_{n}\right)$ and $\oplus: \mathscr{L}\left(\mathbb{M}_{n}, \mathbb{M}_{n}\right) \times \mathscr{L}\left(\mathbb{M}_{n}, \mathbb{M}_{n}\right) \rightarrow \mathscr{L}\left(\mathbb{M}_{n}, \mathbb{M}_{n}\right)$ that justifies the claim that $\mathscr{L}\left(\mathbb{M}_{n}, \mathbb{M}_{n}\right)$ is a linear space over \mathbb{K}. Make sure to use parentheses so as to avoid confusion on operator precedence, if necessary.

The necessary operators are scalar multiplication and vector addition. If $\lambda, \mu \in \mathbb{K}$ and $A, B \in \mathscr{L}\left(\mathbb{M}_{n}, \mathbb{M}_{n}\right)$, then

$$
((\lambda \otimes A) \oplus(\mu \otimes B))(X)=\lambda A(X)+\mu B(X) \quad \text { for all } X \in \mathbb{M}_{n}
$$

Again we write λA instead of $\lambda \otimes A$ and $A+B$ instead of $A \oplus B$ for $\lambda \in \mathbb{K}$ and $A, B \in \mathscr{L}\left(\mathbb{M}_{n}, \mathbb{M}_{n}\right)$. With X as above, the transposed matrix X^{T} and the conjugate matrix X^{\dagger} are defined as

$$
X^{\mathrm{T}}=\left(\begin{array}{ccc}
X_{11} & \ldots & X_{n 1} \\
\vdots & & \vdots \\
X_{1 n} & \ldots & X_{n n}
\end{array}\right) \quad \text { respectively } \quad X^{\dagger}=\left(\begin{array}{ccc}
X_{11}^{*} & \ldots & X_{n 1}^{*} \\
\vdots & & \vdots \\
X_{1 n}^{*} & \ldots & X_{n n}^{*}
\end{array}\right)
$$

Here, $*$ denotes complex conjugation, i.e. if $z=x+i y$ for $x, y \in \mathbb{R}$, then $z^{*}=x-i y$.
Furthermore, the operators $\mathrm{P}_{ \pm}: \mathbb{M}_{n} \rightarrow \mathbb{M}_{n}$ and $\mathrm{Q}_{ \pm}: \mathbb{M}_{n} \rightarrow \mathbb{M}_{n}$ are defined by

$$
\mathrm{P}_{ \pm}(X)=\frac{1}{2}\left(X \pm X^{\mathrm{T}}\right) \quad \text { respectively } \quad \mathrm{Q}_{ \pm}(X)=\frac{1}{2}\left(X \pm X^{\dagger}\right) .
$$

c1. Show that matrix transposition, $\mathrm{T}: \mathbb{M}_{n} \rightarrow \mathbb{M}_{n}: X \mapsto \mathrm{~T}(X) \stackrel{\text { def }}{=} X^{\mathrm{T}}$, is a linear operator.
For all $\lambda, \mu \in \mathbb{K}$ and $X, Y \in \mathbb{M}_{n}$ we have $\mathrm{T}(\lambda X+\mu Y) \stackrel{\text { def }}{=}(\lambda X+\mu Y)^{\mathrm{T}}=\lambda X^{\mathrm{T}}+\mu Y^{\mathrm{T}} \stackrel{\text { def }}{=} \lambda \mathrm{T}(X)+\mu \mathrm{T}(Y)$.
c2. Show that matrix conjugation, $\mathrm{C}: \mathbb{M}_{n} \rightarrow \mathbb{M}_{n}: X \mapsto \mathbb{C}(X) \stackrel{\text { def }}{=} X^{\dagger}$, is not a linear operator.
For all $\lambda, \mu \in \mathbb{K}$ and $X, Y \in \mathbb{M}_{n}$ we have $\mathrm{C}(\lambda X+\mu Y) \stackrel{\text { def }}{=}(\lambda X+\mu Y)^{\dagger}=\lambda^{*} X^{\dagger}+\mu^{*} Y^{\dagger} \stackrel{\text { def }}{=} \lambda^{*} \mathrm{C}(X)+\mu^{*} \mathrm{C}(Y) \neq$ $\lambda \mathrm{C}(X)+\mu \mathrm{C}(Y)$. (If $\mathbb{K}=\mathbb{R}$ then $\mathrm{C}=\mathrm{T}$, so then it does define a linear operator.)
c3. Show that $\mathrm{P}_{ \pm}: \mathbb{M}_{n} \rightarrow \mathbb{M}_{n}$ are linear operators.
For all $\lambda, \mu \in \mathbb{K}$ and $X, Y \in \mathbb{M}_{n}$ we have $\mathrm{P}_{ \pm}(\lambda X+\mu Y) \stackrel{\text { def }}{=} \frac{1}{2}\left(\lambda X+\mu Y \pm(\lambda X+\mu Y)^{\mathrm{T}}\right)=\lambda\left(\frac{1}{2}\left(X \pm X^{\mathrm{T}}\right)\right)+\mu\left(\frac{1}{2}\left(Y \pm Y^{\mathrm{T}}\right)\right) \xlongequal{\text { def }}$ $\lambda \mathrm{P}_{ \pm}(X)+\mu \mathrm{P}_{ \pm}(Y)$.
c4. Show that $\mathrm{Q}_{ \pm}: \mathbb{M}_{n} \rightarrow \mathbb{M}_{n}$ are not linear operators.
For all $\lambda, \mu \in \mathbb{K}$ and $X, Y \in \mathbb{M}_{n}$ we have $Q_{ \pm}(\lambda X+\mu Y) \xlongequal{\text { def }} \frac{1}{2}\left(\lambda X+\mu Y \pm(\lambda X+\mu Y)^{\dagger}\right)=\frac{1}{2}\left(\lambda X \pm \lambda^{*} X^{\dagger}\right)+\frac{1}{2}\left(\mu Y \pm \mu^{*} Y^{\dagger}\right) \neq$ $\lambda\left(\frac{1}{2}\left(X \pm X^{\dagger}\right)\right)+\mu\left(\frac{1}{2}\left(Y \pm Y^{\dagger}\right)\right) \stackrel{\text { def }}{=} \lambda Q_{ \pm}(X)+\mu \mathrm{Q}_{ \pm}(Y) .\left(\operatorname{If} \mathbb{K}=\mathbb{R}\right.$ then $\mathrm{Q}_{ \pm}=\mathrm{P}_{ \pm}$, so then they do define linear operators.)

The null matrix in \mathbb{M}_{n} is indicated by Ω, i.e. $\Omega_{i j}=0$ for all $i, j=1, \ldots, n$. The identity matrix in \mathbb{M}_{n} is indicated by I, i.e. $I_{i j}=1$ if $i=j=1, \ldots, n$, otherwise $I_{i j}=0$. The null operator $\mathrm{N}: \mathbb{M}_{n} \rightarrow \mathbb{M}_{n}$ is defined by $\mathrm{N}(X)=\Omega \in \mathbb{M}_{n}$ for all $X \in \mathbb{M}_{n}$. The identity operator $\operatorname{id}: \mathbb{M}_{n} \rightarrow \mathbb{M}_{n}$ is defined by $\operatorname{id}(X)=X$ for all $X \in \mathbb{M}_{n}$. Operator composition (i.e. successive application of operators in right-to-left order) is indicated by the infix operator \circ.
d1. Show that $P_{+}+P_{-}=i d$.
We have $\left(\mathrm{P}_{+}+\mathrm{P}_{-}\right)(X) \stackrel{\text { def }}{=} \mathrm{P}_{+}(X)+\mathrm{P}_{-}(X) \stackrel{\text { def }}{=} \frac{1}{2}\left(X+X^{\mathrm{T}}\right)+\frac{1}{2}\left(X-X^{\mathrm{T}}\right)=X=\operatorname{id}(X)$ for all $X \in \mathbb{M}_{n}$, so $\mathrm{P}_{+}+\mathrm{P}_{-}=$id.
d2. Show that $P_{+}-P_{-}=T$.
We have $\left(\mathrm{P}_{+}-\mathrm{P}_{-}\right)(X) \stackrel{\text { def }}{=} \mathrm{P}_{+}(X)-\mathrm{P}_{-}(X) \stackrel{\text { def }}{=} \frac{1}{2}\left(X+X^{\mathrm{T}}\right)-\frac{1}{2}\left(X-X^{\mathrm{T}}\right)=X^{\mathrm{T}}=\mathrm{T}(X)$ for all $X \in \mathbb{M}_{n}$, so $\mathrm{P}_{+}+\mathrm{P}_{-}=\mathrm{T}$.
d3. Show that $P_{+} \circ P_{-}=P_{-} \circ P_{+}=N$.

We have $\left(\mathrm{P}_{+} \circ \mathrm{P}_{-}\right)(X) \stackrel{\text { def }}{=} \mathrm{P}_{+}\left(\mathrm{P}_{-}(X)\right) \stackrel{\text { def }}{=} \frac{1}{2}\left(\mathrm{P}_{-}(X)+\mathrm{P}_{-}(X)^{\mathrm{T}}\right)=\frac{1}{2}\left(\frac{1}{2}\left(X-X^{\mathrm{T}}\right)+\frac{1}{2}\left(X^{\mathrm{T}}-X\right)\right)=0$ for all $X \in \mathbb{M}_{n}$, so $\mathrm{P}_{+} \circ \mathrm{P}_{-}=\mathrm{N}$. By interchanging all + and - signs in the above argument, it follows that $\mathrm{P}_{-} \circ \mathrm{P}_{+}=\mathrm{N}$.
d4. Show that $P_{ \pm} \circ P_{ \pm}=P_{ \pm}$.
We have $\left(\mathrm{P}_{ \pm} \circ \mathrm{P}_{ \pm}\right)(X) \stackrel{\text { def }}{=} \mathrm{P}_{ \pm}\left(\mathrm{P}_{ \pm}(X)\right) \stackrel{\text { def }}{=} \frac{1}{2}\left(\mathrm{P}_{ \pm}(X) \pm \mathrm{P}_{ \pm}(X)^{\mathrm{T}}\right)=\frac{1}{2}\left(\frac{1}{2}\left(X \pm X^{\mathrm{T}}\right) \pm \frac{1}{2}\left(X^{\mathrm{T}} \pm X\right)\right)=\frac{1}{2}\left(X \pm X^{\mathrm{T}}\right) \stackrel{\text { def }}{=}$ $\mathrm{P}_{ \pm}(X)$ for all $X \in \mathbb{M}_{n}$, so $\mathrm{P}_{ \pm} \circ \mathrm{P}_{ \pm}=\mathrm{P}_{ \pm}$.

Consider the following binary operator: $\langle\mid\rangle: \mathbb{M}_{n} \times \mathbb{M}_{n} \rightarrow \mathbb{K}:(X, Y) \mapsto\langle X \mid Y\rangle \stackrel{\text { def }}{=} \operatorname{trace}\left(X^{\mathrm{T}} Y\right)$. Here, trace : $\mathbb{M}_{n} \rightarrow \mathbb{K}$ is the (linear) trace operator, defined as summation of diagonal elements:

$$
\begin{equation*}
\operatorname{trace} X=\sum_{i=1}^{n} X_{i i} \tag{1}
\end{equation*}
$$

e1. Show that if $\mathbb{K}=\mathbb{R}$ then $\langle\mid\rangle: \mathbb{M}_{n} \times \mathbb{M}_{n} \rightarrow \mathbb{R}$ defines a real inner product.
We may exploit the fact that both trace as well as transposition T are linear operators. Let $X, Y, Z \in \mathbb{M}_{n}$ and $\lambda, \mu \in \mathbb{K}$ be arbitrary. Then we have

- $\langle X \mid Y\rangle \stackrel{\text { def }}{=} \operatorname{trace}\left(X^{\mathrm{T}} Y\right) \stackrel{\text { def }}{=} \sum_{i=1}^{n}\left(X^{\mathrm{T}} Y\right)_{i i}=\sum_{i=1}^{n} \sum_{j=1}^{n} X_{i j} Y_{i j}=\sum_{i=1}^{n}\left(Y^{\mathrm{T}} X\right)_{i i}=\langle Y \mid X\rangle$.
- $\langle\lambda X+\mu Y \mid Z\rangle \stackrel{\text { def }}{=} \operatorname{trace}\left((\lambda X+\mu Y)^{\mathrm{T}} Z\right)=\operatorname{trace}\left(\left(\lambda X^{\mathrm{T}}+\mu Y^{\mathrm{T}}\right) Z\right)=\lambda \operatorname{trace}\left(X^{\mathrm{T}} Z\right)+\mu \operatorname{trace}\left(Y^{\mathrm{T}} Z\right) \stackrel{\text { def }}{=} \lambda\langle X \mid Z\rangle+\mu\langle Y \mid Z\rangle$.
- $\langle X \mid X\rangle \stackrel{\text { def }}{=} \operatorname{trace}\left(X^{\mathrm{T}} X\right) \stackrel{\text { def }}{=} \sum_{i=1}^{n}\left(X^{\mathrm{T}} X\right)_{i i}=\sum_{i=1}^{n} \sum_{j=1}^{n} X_{i j} X_{i j} \geq 0$, and clearly the sum of squares equals zero iff $X=\Omega$, the zero matrix.
e2. Show that if $\mathbb{K}=\mathbb{C}$ then $\langle\mid\rangle: \mathbb{M}_{n} \times \mathbb{M}_{n} \rightarrow \mathbb{C}$ does not define a complex inner product.
Take $\lambda \in \mathbb{C} \backslash \mathbb{R}$, and $X, Y \in \mathbb{M}_{n}$, then $\langle\lambda X \mid Y\rangle \stackrel{\text { def }}{=} \operatorname{trace}\left((\lambda X)^{\mathrm{T}} Y\right)=\operatorname{trace}\left(\lambda X^{\mathrm{T}} Y\right)=\lambda \operatorname{trace}\left(X^{\mathrm{T}} Y\right) \stackrel{\text { def }}{=} \lambda\langle X \mid Y\rangle \neq \lambda^{*}\langle X \mid Y\rangle$.
f. How would you modify the definition of $\langle\mid\rangle: \mathbb{M}_{n} \times \mathbb{M}_{n} \rightarrow \mathbb{C}$ in the complex case, $\mathbb{K}=\mathbb{C}$, such that it does define a complex inner product? You may state your definition without proof.

We must use conjugation instead of transposition: $\langle\mid\rangle: \mathbb{M}_{n} \times \mathbb{M}_{n} \rightarrow \mathbb{C}:(X, Y) \mapsto\langle X \mid Y\rangle \stackrel{\text { def }}{=} \operatorname{trace}\left(X^{\dagger} Y\right)$.
In the remainder of this problem we restrict ourselves to $\mathbb{K}=\mathbb{R}$. In particular, we consider the case of the real inner product, recall e1.

Operator transposition, $\mathrm{T}: \mathscr{L}\left(\mathbb{M}_{n}, \mathbb{M}_{n}\right) \rightarrow \mathscr{L}\left(\mathbb{M}_{n}, \mathbb{M}_{n}\right)$, is implicitly defined by the identity

$$
\left\langle A^{\mathrm{T}}(X) \mid Y\right\rangle \stackrel{\text { def }}{=}\langle X \mid A(Y)\rangle \quad \text { for all } A \in \mathscr{L}\left(\mathbb{M}_{n}, \mathbb{M}_{n}\right) \text { and } X, Y \in \mathbb{M}_{n} .
$$

g. Show that $P_{ \pm}^{T}=P_{ \pm}$. (Together with $\mathbf{d} 4$ this shows that $P_{ \pm}$are orthogonal projections.)

Let $X, Y \in \mathbb{M}_{n}$. Using the properties of the inner product and previous definitions we find $\left\langle X \mid \mathrm{P}_{ \pm}(Y)\right\rangle \stackrel{\text { def }}{=}\left\langle X \left\lvert\, \frac{1}{2}\left(Y \pm Y^{\mathrm{T}}\right)\right.\right\rangle=$ $\frac{1}{2}\langle X \mid Y\rangle \pm \frac{1}{2}\left\langle X \mid Y^{\mathrm{T}}\right\rangle \stackrel{*}{=} \frac{1}{2}\langle X \mid Y\rangle \pm \frac{1}{2}\left\langle X^{\mathrm{T}} \mid Y\right\rangle=\left\langle\left.\frac{1}{2}\left(X \pm X^{\mathrm{T}}\right) \right\rvert\, Y\right\rangle \stackrel{\text { def }}{=}\left\langle\mathrm{P}_{ \pm}(X) \mid Y\right\rangle$. In $*$ we have used the fact that $\left\langle X \mid Y^{\mathrm{T}}\right\rangle=\operatorname{trace}\left(X^{\mathrm{T}} Y^{\mathrm{T}}\right)=\operatorname{trace}\left((Y X)^{\mathrm{T}}\right)=\operatorname{trace}(Y X)=\operatorname{trace}(X Y)=\left\langle X^{\mathrm{T}} \mid Y\right\rangle$, which in turn follows from the properties $\operatorname{trace}(X)=\operatorname{trace}\left(X^{\mathrm{T}}\right)$, $\operatorname{trace}(X Y)=\operatorname{trace}(Y X)$, and $X^{\mathrm{TT}}=X$.
$\left(32 \frac{1}{2}\right)$ 2. Consider the Laplace equation for the function $u \in C^{\infty}\left(\mathbb{R}^{2}\right)$:

$$
\Delta u=0 \quad \text { in which } \Delta=\frac{\partial^{2}}{\partial x^{2}}+\frac{\partial^{2}}{\partial y^{2}} .
$$

Our aim is to find a first order partial differential equation, such that its solutions also satisfy the Laplace equation. To this end we introduce a real linear space V, the dimension $n \geq 2$ of which is yet to be determined, and furnish it with an additional operator henceforth referred to as "multiplication". The product of $v, w \in V$ is then simply written as $v w \in V$. In this way V is turned into a so-called algebra, for which we stipulate the following algebraic axioms, viz. for all $u, v, w \in V$ and $\lambda, \mu \in \mathbb{R}$:

- $(u v) w=u(v w)$,
- $u(v+w)=u v+u w$,
- $(u+v) w=u w+v w$,
- $\lambda(u v)=(\lambda u) v=u(\lambda v)$,
(Multiplication takes precedence over vector addition unless parentheses indicate otherwise.)
We now attempt to decompose the Laplacian operator as follows:

$$
\Delta=\left(a \frac{\partial}{\partial x}+b \frac{\partial}{\partial y}\right)\left(a \frac{\partial}{\partial x}+b \frac{\partial}{\partial y}\right) .
$$

Here $a, b \in V$ are two fixed, independent elements (vectors). For consistency we assume that $u(x, y) \in V$ (instead of our original assumption $u(x, y) \in \mathbb{R})$.
a. Show that V is not commutative, and that it must possess an identity element $1 \in V$ that has to be formally identified with the scalar number $1 \in \mathbb{R}$, by showing that
a1. $a b+b a=0$,
a2. $a^{2}=b^{2}=1$.
Expanding

$$
\left(a \frac{\partial}{\partial x}+b \frac{\partial}{\partial y}\right)\left(a \frac{\partial}{\partial x}+b \frac{\partial}{\partial y}\right)=a^{2} \frac{\partial^{2}}{\partial x^{2}}+(a b+b a) \frac{\partial^{2}}{\partial x \partial y}+b^{2} \frac{\partial^{2}}{\partial y^{2}} \stackrel{\text { def }}{=} \frac{\partial^{2}}{\partial x^{2}}+\frac{\partial^{2}}{\partial y^{2}}
$$

shows that we must set $a b+b a=0$ and $a^{2}=b^{2}=1$. Notice that we may not assume that $a b=b a$.
(5) b. Show that the (unordered) pair (a, b) satisfying the conditions of a1 and $\mathbf{a} \mathbf{2}$ is not unique. (Hint: Suppose $a^{\prime}=a_{1} a+a_{2} b, b^{\prime}=b_{1} a+b_{2} b$ for some $a_{1}, a_{2}, b_{1}, b_{2} \in \mathbb{R}$.)

Following the hint we subject the transformed pair $\left(a^{\prime}, b^{\prime}\right)$ to the required conditions of $\mathbf{a} \mathbf{1}-\mathbf{a 2}$. This leads to the following system of equations for the coefficients $a_{1}, a_{2}, b_{1}, b_{2} \in \mathbb{R}$:

$$
\begin{cases}a_{1}^{2}+a_{2}^{2} & =1 \\ b_{1}^{2}+b_{2}^{2} & =1 \\ a_{1} b_{1}+a_{2} b_{2} & =0\end{cases}
$$

In other words, apart from the choice $\left(a_{1}, a_{2}\right)=(1,0),\left(b_{1}, b_{2}\right)=(0,1)$ corresponding to the solution under a1-a2 we may take any pair of mutually perpendicular unit vectors $\left(a_{1}, a_{2}\right),\left(b_{1}, b_{2}\right) \in \mathbb{R}^{2}$. (This ambiguity is not surprising, since the Laplacian is invariant under orthogonal transformations of (x, y)-coordinates.)
c. Suppose $v, w \in \operatorname{span}\{a, b\} \subset V$ are such that, say, $v=v_{1} a+v_{2} b$ and $w=w_{1} a+w_{2} b$ for some $v_{1}, v_{2}, w_{1}, w_{2} \in \mathbb{R}$. Compute
c1. $v w+w v$,
c2. v^{2}.
We find $v w+w v=\left(v_{1} a+v_{2} b\right)\left(w_{1} a+w_{2} b\right)=2 v_{1} w_{1} a^{2}+\left(v_{1} w_{2}+v_{2} w_{1}\right)(a b+b a)+2 v_{2} w_{2} b^{2}{ }^{\mathbf{a} 1-\mathbf{a} 2} 2\left(v_{1} w_{1}+v_{2} w_{2}\right)$, from which it follows, by setting $v_{1}=w_{1}$ and $v_{2}=w_{2}$, that $v^{2}=v_{1}^{2}+v_{2}^{2}$.
d. Show that $\operatorname{dim} V>2$.
(Hint: Alternatively, show that $\operatorname{span}\{a, b\} \subset V$ is not closed under multiplication.)
Take $v=v_{1} a+v_{2} b \in V$, with $v_{1}, v_{2} \in \mathbb{R}$ arbitrary. Suppose $1 \in \operatorname{span}\{a, b\}$, i.e. there exist $e_{1}, e_{2} \in \mathbb{R}$, at least one of which is nonzero, such that $1=e_{1} a+e_{2} b$, then, again using $\mathbf{a} 1-\mathbf{a} 2$ and the definition of the unit element $1 \in V$,

$$
v_{1} a+v_{2} b=v \xlongequal{\text { def }} 1 v=e_{1} v_{1}+e_{2} v_{2}+\left(e_{1} v_{2}-e_{2} v_{1}\right) a b \quad \text { for all } v_{1}, v_{2} \in \mathbb{R} .
$$

However, $a, b, a b \notin \mathbb{R}$, whereas $e_{1} v_{1}+e_{2} v_{2} \in \mathbb{R}$, so that we conclude that $e_{1} v_{1}+e_{2} v_{2}=0$ for all $v_{1}, v_{2} \in \mathbb{R}$, implying $e_{1}=e_{2}=0$, which is a contradiction. (To see that $a, b, a b \notin \mathbb{R}$, consider a1-a2, from which it is immediately obvious that $a, b \notin \mathbb{R}$. That $a b \notin \mathbb{R}$ follows e.g. by taking its square: $(a b)^{2}=a b a b=-a b^{2} a=-a^{2}=-1$.)

We add two more independent elements to the set $\{a, b\}$, viz. the unit element 1 and the element $a b$, and define $V=\operatorname{span}\{1, a, b, a b\}$. Instead of $\lambda 1+\mu a+\nu b+\rho a b(\lambda, \mu, \nu, \rho \in \mathbb{R})$ we write $\lambda+\mu a+\nu b+\rho a b$ for an arbitrary element of V.
e. Show that V is closed under multiplication, i.e. show that if $v=v_{0}+v_{1} a+v_{2} b+v_{3} a b \in V$, $w=w_{0}+w_{1} a+w_{2} b+w_{3} a b \in V$, then also $v w \in V$.

The easiest answer is as follows. Multiplication of v and w, expanded as given, will generate $4 \times 4=16$ terms, each of which is a multiple of any of the following product forms: $1, a, b, a b, a^{2}, b^{2}, b a, a^{2} b, a b^{2}, a b a, b a b,(a b)^{2}$. With the properties a1-a2 of a and b these can all be reduced to multiples involving only $1, a, b, a b$ (for we have $a^{2}=1, b^{2}=1, b a=-a b$, $a^{2} b=b, a b^{2}=a, a b a=-a^{2} b=-b, b a b=-b^{2} a=-a$, and finally $\left.(a b)^{2}=-a b^{2} a=-a^{2}=-1\right)$. The more cumbersome answer is to write out the product explicitly, and to apply the above simplification rules, yielding $v w=$ $\left(v_{0}+v_{1} a+v_{2} b+v_{3} a b\right)\left(w_{0}+w_{1} a+w_{2} b+w_{3} a b\right)=v_{0} w_{0}+v_{1} w_{1}+v_{2} w_{2}-v_{3} w_{3}+\left(v_{0} w_{1}+v_{1} w_{0}-v_{2} w_{3}+v_{3} w_{2}\right) a+\left(v_{0} w_{2}+\right.$ $\left.v_{1} w_{3}+v_{2} w_{0}-v_{3} w_{1}\right) b+\left(v_{0} w_{3}+v_{1} w_{2}-v_{2} w_{1}+v_{3} w_{0}\right) a b \in V$.

We now try to realize elements of V in terms of real-valued 2×2-matrices. To this end we hypothesize that

$$
V \subset \mathbb{M}_{2}=\left\{\left.\left(\begin{array}{ll}
a_{11} & a_{12} \\
a_{21} & a_{22}
\end{array}\right) \right\rvert\, a_{i j} \in \mathbb{R}\right\}
$$

(5) f. Construct explicit matrices $A, B \in \mathbb{M}_{2}$ corresponding to $a, b \in V$ in the sense that

- $A B+B A=\Omega$,
- $A^{2}=B^{2}=I$.

Here $\Omega \in \mathbb{M}_{2}$ is the null matrix, corresponding to the null element $0 \in V$, and $I \in \mathbb{M}_{2}$ is the identity matrix, corresponding to the identity element $1 \in V$.
(Hint: As an ansatz, stipulate a diagonal matrix A, and show that B must then be anti-diagonal.)
Some examples of $a \sim A$ and $b \sim B$, and $a b \sim A B$, and the element $1 \sim I$:

$$
I=\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right) \quad A=\left(\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right) \quad B=\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right) \quad A B=\left(\begin{array}{cc}
0 & 1 \\
-1 & 0
\end{array}\right) .
$$

Many other choices are possible, recall b. Examples such as the above are found by trial and error. Following the hint $\left(a_{12}=a_{21}=0\right)$, setting $A=\operatorname{diag}\left\{a_{11}, a_{22}\right\}$, and taking B arbitrary, one finds by writing out the conditions $A^{2}=I$ and $A B+B A=\Omega$ that $a_{11}= \pm 1, a_{22}=\mp 1$, and that B must have zeros on its diagonal, and writing out $B^{2}=I$ reveals that its remaining elements must equal $b_{12}=b_{21}= \pm 1$.
g. Given A and B as determined under \mathbf{f}, what is the matrix form $v_{0}+v_{1} A+v_{2} B+v_{3} A B \in \mathbb{M}_{2}$ corresponding to a general element $v_{0}+v_{1} a+v_{2} b+v_{3} a b \in V$?

From \mathbf{f} it follows by superposition $X=v_{0} I+v_{1} A+v_{2} B+v_{3} A B$ that

$$
X=\left(\begin{array}{ll}
v_{0}+v_{1} & v_{2}+v_{3} \\
v_{2}-v_{3} & v_{0}-v_{1}
\end{array}\right)
$$

Note that any matrix $Y \in \mathbb{M}_{2}$ can be realized in this way, viz. by setting

$$
v_{0}=\frac{1}{2}\left(Y_{11}+Y_{22}\right) \quad v_{1}=\frac{1}{2}\left(Y_{11}-Y_{22}\right) \quad v_{2}=\frac{1}{2}\left(Y_{12}+Y_{21}\right) \quad v_{3}=\frac{1}{2}\left(Y_{12}-Y_{21}\right)
$$

h. Show that if $u: \mathbb{R}^{2} \rightarrow V$ satisfies the first order partial differential equation

$$
\begin{equation*}
a \frac{\partial u}{\partial x}+b \frac{\partial u}{\partial y}=0 \tag{1}
\end{equation*}
$$

then it is also a solution of $\Delta u=0$.

Recall a1-a2. By construction we now have

$$
\Delta u=\frac{\partial^{2} u}{\partial x^{2}}+\frac{\partial^{2} u}{\partial y^{2}}=\left(a \frac{\partial}{\partial x}+b \frac{\partial}{\partial y}\right)\left(a \frac{\partial u}{\partial x}+b \frac{\partial u}{\partial y}\right)=0 \text { since } \quad\left(a \frac{\partial u}{\partial x}+b \frac{\partial u}{\partial y}\right)=0 .
$$

(5) 3. Consider a strictly monotonic, continuously differentiable function $f: \mathbb{R} \rightarrow \mathbb{R}: x \mapsto f(x)$, with $f^{\prime}(x)>0$ for all $x \in \mathbb{R}$, and $f(\pm \infty)= \pm \infty$. The inverse function theorem states that such a function has an inverse, $f^{-1}: \mathbb{R} \rightarrow \mathbb{R}: y \mapsto f^{-1}(y)$, such that $\left(f^{-1} \circ f\right)(x)=x$ for all $x \in \mathbb{R}$, and $\left(f \circ f^{-1}\right)(y)=y$ for all $y \in \mathbb{R}$.
$\left(2 \frac{1}{2}\right)$ a. Argue why the equation $f(x)=0$ has precisely one solution for $x \in \mathbb{R}$ ($x=a$, say).
(Hint: Sketch the graph of such a function f.)

Suppose there are two distinct solutions, $f(a)=f(b)=0$, with $a<b$, say. According to the mean value theorem there exists a c in-between a and b, such that $f^{\prime}(c)=(f(b)-f(a)) /(b-a)=0$ (average slope on (a, b)). This is a contradiction. Rephrased in terms of the graph of f, the argument is as follows. Since f is continuous, the graph of f is uninterrupted. Since $f^{\prime}>0$, the graph is monotonically increasing, so it can intersect the x-axis at most once. It actually does intersect the x-axis exactly once, since f is continuous and f assumes both negative and positive values, whence it must assume all intermediate values, in particular $f(a)=0$ for some unique $a \in \mathbb{R}$.
(21 $\left.\frac{1}{2}\right)$
b. Show that $\delta(f(x))=\frac{\delta(x-a)}{f^{\prime}(a)}$, in which $a \in \mathbb{R}$ is the unique point for which $f(a)=0$.
(Hint: Evaluate the distribution corresponding to the Dirac function on the left hand side on an arbitrary test function $\phi \in \mathscr{S}(\mathbb{R})$, i.e. $\int_{-\infty}^{\infty} \delta(f(x)) \phi(x) d x$, and apply substitution of variables.)

Consider

$$
\int_{-\infty}^{\infty} \delta(f(x)) \phi(x) d x \stackrel{*}{=} \int_{-\infty}^{\infty} \delta(y) \phi\left(f^{-1}(y)\right) \frac{d y}{f^{\prime}\left(f^{-1}(y)\right)} \stackrel{\star}{=} \frac{\phi\left(f^{-1}(0)\right)}{f^{\prime}\left(f^{-1}(0)\right)} \stackrel{\circ}{=} \frac{\phi(a)}{f^{\prime}(a)} \stackrel{\star}{=} \int_{-\infty}^{\infty} \frac{\delta(x-a)}{f^{\prime}(a)} \phi(x) d x
$$

In $*$ substitution $y=f(x)$ has been carried out, which implies $d y=f^{\prime}(x) d x$ and, by the inverse function theorem, $x=f^{-1}(y)$. Boundary values remain unchanged because $f(\pm \infty)= \pm \infty$. In \star the definition of the Dirac- δ "function" has been used. In \circ the identity $a=f^{-1}(0)$ (the equivalent of $f(a)=0$, cf. a) has been invoked. Since this holds for all $\phi \in \mathscr{S}(\mathbb{R})$ we conclude that $\delta(f(x))=\frac{\delta(x-a)}{f^{\prime}(a)}$.
$\left(\mathbf{2 7} \frac{1}{2}\right) 4$. In this problem we consider a synthetic signal $f: \mathbb{R} \longrightarrow \mathbb{R}$, defined as follows:

$$
f(x)= \begin{cases}0 & \text { if } x<0 \\ \frac{1}{2} & \text { if } x=0 \\ 1 & \text { if } x>0\end{cases}
$$

Furthermore, we define the so-called Poisson filter $\phi_{\sigma}: \mathbb{R} \longrightarrow \mathbb{R}$ for $\sigma>0$ as

$$
\phi_{\sigma}(x)=\frac{1}{\pi} \frac{\sigma}{x^{2}+\sigma^{2}} .
$$

In this problem you may use the following standard formulas (cf. the graph shown below):

$$
\int \frac{1}{1+x^{2}} d x=\arctan x+c \quad \text { resp. } \quad \lim _{x \rightarrow \pm \infty} \arctan x= \pm \frac{\pi}{2}
$$

Throughout this problem we employ the following Fourier convention:

$$
\widehat{u}(\omega)=\mathcal{F}(u)(\omega)=\int_{-\infty}^{\infty} e^{-i \omega x} u(x) d x \quad \text { whence } \quad u(x)=\mathcal{F}^{-1}(\widehat{u})(x)=\frac{1}{2 \pi} \int_{-\infty}^{\infty} e^{i \omega x} \widehat{u}(\omega) d \omega .
$$

a. Show that $\int_{-\infty}^{\infty} \phi_{\sigma}(x) d x=1$ regardless of the value of σ.
$\int_{-\infty}^{\infty} \phi_{\sigma}(x) d x=\frac{\sigma}{\pi} \int_{-\infty}^{\infty} \frac{1}{x^{2}+\sigma^{2}} d x=\frac{1}{\pi} \int_{-\infty}^{\infty} \frac{1}{1+y^{2}} d y=\frac{1}{\pi}[\arctan y]_{y \rightarrow-\infty}^{y \rightarrow+\infty}=\frac{1}{\pi}\left(\frac{\pi}{2}+\frac{\pi}{2}\right)=1$. Hierin is de volgende substitutie van variabelen toegepast: $y=x / \sigma$.
b1. Prove that for any, sufficiently smooth, integrable filter ϕ we have:

$$
\begin{equation*}
(f * \phi)(x)=\int_{-\infty}^{x} \phi(\xi) d \xi \tag{1}
\end{equation*}
$$

$(f * \phi)(x)=\int_{-\infty}^{\infty} f(y) \phi(x-y) d y=\int_{0}^{\infty} \phi(x-y) d y=\int_{-\infty}^{x} \phi(\xi) d \xi$. In de laatste stap is substitutie van variabelen, $\xi=x-y$, toegepast.
b2. Show by explicit computation that the convolution product $f * \phi_{\sigma}$ is given by

$$
\begin{equation*}
\left(f * \phi_{\sigma}\right)(x)=\frac{1}{2}+\frac{1}{\pi} \arctan \frac{x}{\sigma} . \tag{1}
\end{equation*}
$$

$\left(f * \phi_{\sigma}\right)(x)=\int_{-\infty}^{\infty} f(y) \phi_{\sigma}(x-y) d y=\frac{\sigma}{\pi} \int_{0}^{\infty} \frac{1}{(x-y)^{2}+\sigma^{2}} d y=\int_{-\infty}^{x / \sigma} \frac{1}{1+\xi^{2}} d \xi=\frac{1}{\pi}[\arctan \xi\} \xi_{\xi \rightarrow-\infty}^{\xi=x / \sigma}=\frac{1}{\pi}\left(\arctan \frac{x}{\sigma}+\frac{\pi}{2}\right)=$ $\frac{1}{2}+\frac{1}{\pi} \arctan \frac{x}{\sigma}$. Hierin is de volgende substitutie van variabelen toegepast: $\xi=(x-y) / \sigma$. Gebruik van onderdeel b1 leidt uiteraard tot hetzelfde resultaat.
c. Show that the Fourier transform $\widehat{f}=\mathcal{F}(f)$ of f is given by

$$
\begin{equation*}
\widehat{f}(\omega)=\frac{1}{i \omega} . \tag{5}
\end{equation*}
$$

(Hint: From part b1 it follows that $\frac{d}{d x}(f * \phi)(x)=\phi(x)$. Subject this to Fourier transformation.)
Uit $\frac{d}{d x}\left(f * \phi_{\sigma}\right)(x)=\phi_{\sigma}(x)$ volgt dat $\mathcal{F}\left(\frac{d}{d x}\left(f * \phi_{\sigma}\right)\right)(\omega)=\mathcal{F}\left(\phi_{\sigma}\right)(\omega)$. Met behulp van Result 6 op blz. 97 en Theorem 17 op blz. 104 volgt dat dit equivalent is met $i \omega \mathcal{F}(f)(\omega) \mathcal{F}\left(\phi_{\sigma}\right)(\omega)=\mathcal{F}\left(\phi_{\sigma}\right)(\omega)$. Ervan uitgaand dat $\mathcal{F}\left(\phi_{\sigma}\right)(\omega) \neq 0$ voor (bijna) alle ω concluderen we dat $\mathcal{F}(f)(\omega)=\frac{1}{i \omega}$.
d. Without proof we state the Fourier transform $\widehat{\phi}_{\sigma}=\mathcal{F}\left(\phi_{\sigma}\right)$ of ϕ_{σ} :

$$
\widehat{\phi}_{\sigma}(\omega)=e^{-\sigma|\omega|} .
$$

d1. Explain the behaviour of $\widehat{\phi}_{\sigma}(\omega)$ for $\omega \rightarrow 0$ in terms of properties of the corresponding spatial filter $\phi_{\sigma}(x)$.
(Hint: Cf. problem a.)
d2. Explain the behaviour of $\widehat{f}(\omega)$ for $\omega \rightarrow 0$ in terms of properties of the corresponding spatial
signal $f(x)$.

Zie de definitie van $\widehat{u}(\omega)$: Indien $\widehat{u}(0)$ bestaat dan moet hiervoor kennelijk gelden $\widehat{u}(0)=\int_{-\infty}^{\infty} u(x) d x$. Dit verklaart zowel het gedrag van $\widehat{\phi}_{\sigma}(\omega)$ als van $\widehat{f}(\omega)$ voor $\omega \rightarrow 0$: $\widehat{\phi}_{\sigma}(0)=\int_{-\infty}^{\infty} \phi_{\sigma}(x) d x=1$ (zie a), terwijl $\widehat{f}(0)$ niet bestaat omdat $\int_{-\infty}^{\infty} f(x) d x=\int_{0}^{\infty} d x$ niet convergeert.
(5) e. Determine the function $\mathcal{F}\left(f * \phi_{\sigma}\right)$.

Noteren we gemakshalve $f_{\sigma}=f * \phi_{\sigma}$ dan geldt hiervoor in de gehanteerde Fourierconventie $\widehat{f_{\sigma}}=\mathcal{F}\left(f * \phi_{\sigma}\right)=\mathcal{F}(f) \mathcal{F}\left(\phi_{\sigma}\right)=$ $\widehat{f} \widehat{\phi}_{\sigma}$, dus $\widehat{f}_{\sigma}(\omega)=\frac{1}{i \omega} e^{-\sigma|\omega|}$.
$\left(2 \frac{1}{2}\right)$ f. Show that $\lim _{\sigma \rightarrow 0} f * \phi_{\sigma}=f$. Hint: Take the "Fourier route".

Schrijf wederom $f_{\sigma}=f * \phi_{\sigma}$. Uit e blijkt dat in het Fourierdomein geldt $\lim _{\sigma \rightarrow 0} \widehat{f}_{\sigma}(\omega)=\lim _{\sigma \rightarrow 0} \frac{1}{i \omega} e^{-\sigma|\omega|}=\frac{1}{i \omega}=\widehat{f}(\omega)$, dus volgt $\lim _{\sigma \rightarrow 0} f_{\sigma}(x)=f(x)$.
$\left(2 \frac{1}{2}\right)$ g. Prove the claim under d: $\widehat{\phi}_{\sigma}(\omega)=e^{-\sigma|\omega|}$. (Hint: Apply the inverse Fourier transform.)

Following the hint we get

$$
\begin{aligned}
\frac{1}{2 \pi} \int_{-\infty}^{\infty} e^{i \omega x} e^{-\sigma|\omega|} d \omega & =\frac{1}{2 \pi}\left(\int_{-\infty}^{0} e^{(\sigma+i x) \omega} d \omega+\int_{0}^{\infty} e^{(-\sigma+i x) \omega} d \omega\right)=\frac{1}{2 \pi}\left(\left[\frac{e^{(\sigma+i x) \omega}}{\sigma+i x}\right]_{-\infty}^{0}+\left[\frac{e^{(-\sigma+i x) \omega}}{-\sigma+i x}\right]_{0}^{\infty}\right) \\
& =\frac{1}{2 \pi}\left(\frac{1}{\sigma+i x}+\frac{1}{\sigma-i x}\right)=\frac{1}{\pi} \frac{\sigma}{x^{2}+\sigma^{2}} \stackrel{\text { def }}{=} \phi_{\sigma}(x)
\end{aligned}
$$

THE END

