EXAMINATION MATHEMATICAL TECHNIQUES FOR IMAGE ANALYSIS

Course code: 8D020. Date: Wednesday April 22, 2009. Time: 14h00–17h00. Place: HG 10.01 C.

Read this first!

- Use a separate sheet of paper for each problem. Write your name and student identification number on each paper.
- The exam consists of 4 problems. The maximum credit for each item is indicated in the margin.
- Motivate your answers. The use of course notes and calculator is allowed. The use of the problem companion, "opgaven- en tentamenbundel", is *not* allowed.
- You may provide your answers in Dutch or (preferably) in English.

GOOD LUCK!

(35) 1. Consider the collection of square matrices,

$$\mathbb{M}_n = \left\{ X = \begin{pmatrix} X_{11} & \dots & X_{1n} \\ \vdots & & \vdots \\ X_{n1} & \dots & X_{nn} \end{pmatrix} \middle| X_{ij} \in \mathbb{K} \right\}, \text{ in which } \mathbb{K} \text{ denotes either } \mathbb{R} \text{ or } \mathbb{C}.$$

(2¹/₂) **a.** Provide explicit definitions for the operators $\otimes : \mathbb{K} \times \mathbb{M}_n \to \mathbb{M}_n$ ("scalar multiplication") and $\oplus : \mathbb{M}_n \times \mathbb{M}_n \to \mathbb{M}_n$ ("vector addition") needed to turn this set into a linear space over \mathbb{K} . Make sure to use parentheses so as to avoid confusion on operator precedence, if necessary.

The necessary operators are scalar multiplication and vector addition. If $\lambda, \mu \in \mathbb{K}$ and $X, Y \in \mathbb{M}_n$, then

 $((\lambda \otimes X) \oplus (\mu \otimes Y))_{ij} = \lambda X_{ij} + \mu Y_{ij}$ for all $i, j = 1, \dots, n$.

Henceforth we write λX instead of $\lambda \otimes X$ and X + Y instead of $X \oplus Y$ for $\lambda \in \mathbb{K}$ and $X, Y \in \mathbb{M}_n$. Furthermore, let $\mathscr{L}(\mathbb{M}_n, \mathbb{M}_n)$ denote the linear space of linear operators on \mathbb{M}_n .

(2¹/₂) **b.** Provide explicit definitions for the operators $\otimes : \mathbb{R} \times \mathscr{L}(\mathbb{M}_n, \mathbb{M}_n) \to \mathscr{L}(\mathbb{M}_n, \mathbb{M}_n)$ and $\oplus : \mathscr{L}(\mathbb{M}_n, \mathbb{M}_n) \times \mathscr{L}(\mathbb{M}_n, \mathbb{M}_n) \to \mathscr{L}(\mathbb{M}_n, \mathbb{M}_n)$ that justifies the claim that $\mathscr{L}(\mathbb{M}_n, \mathbb{M}_n)$ is a linear space over \mathbb{K} . Make sure to use parentheses so as to avoid confusion on operator precedence, if necessary.

The necessary operators are scalar multiplication and vector addition. If $\lambda, \mu \in \mathbb{K}$ and $A, B \in \mathscr{L}(\mathbb{M}_n, \mathbb{M}_n)$, then

$$((\lambda \otimes A) \oplus (\mu \otimes B))(X) = \lambda A(X) + \mu B(X)$$
 for all $X \in \mathbb{M}_n$.

Again we write λA instead of $\lambda \otimes A$ and A+B instead of $A \oplus B$ for $\lambda \in \mathbb{K}$ and $A, B \in \mathscr{L}(\mathbb{M}_n, \mathbb{M}_n)$. With X as above, the transposed matrix X^{T} and the conjugate matrix X^{\dagger} are defined as

$$X^{\mathrm{T}} = \begin{pmatrix} X_{11} & \dots & X_{n1} \\ \vdots & & \vdots \\ X_{1n} & \dots & X_{nn} \end{pmatrix} \quad \text{respectively} \quad X^{\dagger} = \begin{pmatrix} X_{11}^{*} & \dots & X_{n1}^{*} \\ \vdots & & \vdots \\ X_{1n}^{*} & \dots & X_{nn}^{*} \end{pmatrix}.$$

Here, * denotes complex conjugation, i.e. if z = x + iy for $x, y \in \mathbb{R}$, then $z^* = x - iy$.

Furthermore, the operators $P_{\pm}: \mathbb{M}_n \to \mathbb{M}_n$ and $Q_{\pm}: \mathbb{M}_n \to \mathbb{M}_n$ are defined by

$$P_{\pm}(X) = \frac{1}{2} \left(X \pm X^{T} \right)$$
 respectively $Q_{\pm}(X) = \frac{1}{2} \left(X \pm X^{\dagger} \right)$.

 $(2\frac{1}{2})$ **c1.** Show that *matrix transposition*, $T: \mathbb{M}_n \to \mathbb{M}_n : X \mapsto T(X) \stackrel{\text{def}}{=} X^T$, is a linear operator.

For all $\lambda, \mu \in \mathbb{K}$ and $X, Y \in \mathbb{M}_n$ we have $T(\lambda X + \mu Y) \stackrel{\text{def}}{=} (\lambda X + \mu Y)^T = \lambda X^T + \mu Y^T \stackrel{\text{def}}{=} \lambda T(X) + \mu T(Y).$

 $(2\frac{1}{2})$ **c2.** Show that *matrix conjugation*, $C : \mathbb{M}_n \to \mathbb{M}_n : X \mapsto C(X) \stackrel{\text{def}}{=} X^{\dagger}$, is not a linear operator.

For all $\lambda, \mu \in \mathbb{K}$ and $X, Y \in \mathbb{M}_n$ we have $C(\lambda X + \mu Y) \stackrel{\text{def}}{=} (\lambda X + \mu Y)^{\dagger} = \lambda^* X^{\dagger} + \mu^* Y^{\dagger} \stackrel{\text{def}}{=} \lambda^* C(X) + \mu^* C(Y) \neq \lambda C(X) + \mu C(Y)$. (If $\mathbb{K} = \mathbb{R}$ then C = T, so then it does define a linear operator.)

 $(2\frac{1}{2})$ c3. Show that $P_{\pm}: \mathbb{M}_n \to \mathbb{M}_n$ are linear operators.

For all $\lambda, \mu \in \mathbb{K}$ and $X, Y \in \mathbb{M}_n$ we have $P_{\pm}(\lambda X + \mu Y) \stackrel{\text{def}}{=} \frac{1}{2} \left(\lambda X + \mu Y \pm (\lambda X + \mu Y)^T \right) = \lambda \left(\frac{1}{2} (X \pm X^T) \right) + \mu \left(\frac{1}{2} (Y \pm Y^T) \right) \stackrel{\text{def}}{=} \lambda P_{\pm}(X) + \mu P_{\pm}(Y).$

 $(2\frac{1}{2})$ c4. Show that $Q_{\pm} : \mathbb{M}_n \to \mathbb{M}_n$ are not linear operators.

For all $\lambda, \mu \in \mathbb{K}$ and $X, Y \in \mathbb{M}_n$ we have $Q_{\pm}(\lambda X + \mu Y) \stackrel{\text{def}}{=} \frac{1}{2} (\lambda X + \mu Y \pm (\lambda X + \mu Y)^{\dagger}) = \frac{1}{2} (\lambda X \pm \lambda^* X^{\dagger}) + \frac{1}{2} (\mu Y \pm \mu^* Y^{\dagger}) \neq \lambda (\frac{1}{2} (X \pm X^{\dagger})) + \mu (\frac{1}{2} (Y \pm Y^{\dagger})) \stackrel{\text{def}}{=} \lambda Q_{\pm}(X) + \mu Q_{\pm}(Y).$ (If $\mathbb{K} = \mathbb{R}$ then $Q_{\pm} = P_{\pm}$, so then they do define linear operators.)

The null matrix in \mathbb{M}_n is indicated by Ω , i.e. $\Omega_{ij} = 0$ for all $i, j = 1, \ldots, n$. The identity matrix in \mathbb{M}_n is indicated by I, i.e. $I_{ij} = 1$ if $i = j = 1, \ldots, n$, otherwise $I_{ij} = 0$. The null operator $\mathbb{N} : \mathbb{M}_n \to \mathbb{M}_n$ is defined by $\mathbb{N}(X) = \Omega \in \mathbb{M}_n$ for all $X \in \mathbb{M}_n$. The identity operator id : $\mathbb{M}_n \to \mathbb{M}_n$ is defined by $\mathrm{id}(X) = X$ for all $X \in \mathbb{M}_n$. Operator composition (i.e. successive application of operators in right-to-left order) is indicated by the infix operator \circ .

 $(2\frac{1}{2})$ **d1.** Show that $P_+ + P_- = id$.

We have
$$(P_++P_-)(X) \stackrel{\text{def}}{=} P_+(X) + P_-(X) \stackrel{\text{def}}{=} \frac{1}{2} (X + X^T) + \frac{1}{2} (X - X^T) = X = id(X)$$
 for all $X \in M_n$, so $P_+ + P_- = id$.

 $(2\frac{1}{2})$ **d2.** Show that $P_+ - P_- = T$.

We have $(\mathbf{P}_+ - \mathbf{P}_-)(X) \stackrel{\text{def}}{=} \mathbf{P}_+(X) - \mathbf{P}_-(X) \stackrel{\text{def}}{=} \frac{1}{2} (X + X^{\mathrm{T}}) - \frac{1}{2} (X - X^{\mathrm{T}}) = X^{\mathrm{T}} = \mathbf{T}(X)$ for all $X \in \mathbb{M}_n$, so $\mathbf{P}_+ + \mathbf{P}_- = \mathbf{T}$.

 $(2\frac{1}{2})$ **d3.** Show that $P_+ \circ P_- = P_- \circ P_+ = N$.

We have $(P_+ \circ P_-)(X) \stackrel{\text{def}}{=} P_+(P_-(X)) \stackrel{\text{def}}{=} \frac{1}{2} \left(P_-(X) + P_-(X)^T \right) = \frac{1}{2} \left(\frac{1}{2} \left(X - X^T \right) + \frac{1}{2} \left(X^T - X \right) \right) = 0$ for all $X \in \mathbb{M}_n$, so $P_+ \circ P_- = \mathbb{N}$. By interchanging all + and - signs in the above argument, it follows that $P_- \circ P_+ = \mathbb{N}$.

$(2\frac{1}{2})$ **d4.** Show that $P_{\pm} \circ P_{\pm} = P_{\pm}$.

We have $(\mathbf{P}_{\pm} \circ \mathbf{P}_{\pm})(X) \stackrel{\text{def}}{=} \mathbf{P}_{\pm}(\mathbf{P}_{\pm}(X)) \stackrel{\text{def}}{=} \frac{1}{2} \left(\mathbf{P}_{\pm}(X) \pm \mathbf{P}_{\pm}(X)^{\mathrm{T}} \right) = \frac{1}{2} \left(\frac{1}{2} \left(X \pm X^{\mathrm{T}} \right) \pm \frac{1}{2} \left(X^{\mathrm{T}} \pm X \right) \right) = \frac{1}{2} \left(X \pm X^{\mathrm{T}} \right) \stackrel{\text{def}}{=} \mathbf{P}_{\pm}(X)$ for all $X \in \mathbb{M}_n$, so $\mathbf{P}_{\pm} \circ \mathbf{P}_{\pm} = \mathbf{P}_{\pm}$.

Consider the following binary operator: $\langle | \rangle : \mathbb{M}_n \times \mathbb{M}_n \to \mathbb{K} : (X, Y) \mapsto \langle X | Y \rangle \stackrel{\text{def}}{=} \operatorname{trace}(X^{\mathrm{T}}Y).$ Here, trace : $\mathbb{M}_n \to \mathbb{K}$ is the (linear) *trace* operator, defined as summation of diagonal elements:

$$\operatorname{trace} X = \sum_{i=1}^{n} X_{ii} \,.$$

 $(2\frac{1}{2})$ e1. Show that if $\mathbb{K} = \mathbb{R}$ then $\langle | \rangle : \mathbb{M}_n \times \mathbb{M}_n \to \mathbb{R}$ defines a real inner product.

We may exploit the fact that both trace as well as transposition T are linear operators. Let $X, Y, Z \in \mathbb{M}_n$ and $\lambda, \mu \in \mathbb{K}$ be arbitrary. Then we have

- $\langle X|Y \rangle \stackrel{\text{def}}{=} \operatorname{trace}(X^{\mathrm{T}}Y) \stackrel{\text{def}}{=} \sum_{i=1}^{n} (X^{\mathrm{T}}Y)_{ii} = \sum_{i=1}^{n} \sum_{j=1}^{n} X_{ij}Y_{ij} = \sum_{i=1}^{n} (Y^{\mathrm{T}}X)_{ii} = \langle Y|X \rangle.$
- $\langle \lambda X + \mu Y | Z \rangle \stackrel{\text{def}}{=} \operatorname{trace}((\lambda X + \mu Y)^{\mathrm{T}}Z) = \operatorname{trace}((\lambda X^{\mathrm{T}} + \mu Y^{\mathrm{T}})Z) = \lambda \operatorname{trace}(X^{\mathrm{T}}Z) + \mu \operatorname{trace}(Y^{\mathrm{T}}Z) \stackrel{\text{def}}{=} \lambda \langle X | Z \rangle + \mu \langle Y | Z \rangle.$
- $\langle X|X \rangle \stackrel{\text{def}}{=} \operatorname{trace}(X^{\mathrm{T}}X) \stackrel{\text{def}}{=} \sum_{i=1}^{n} (X^{\mathrm{T}}X)_{ii} = \sum_{i=1}^{n} \sum_{j=1}^{n} X_{ij}X_{ij} \ge 0$, and clearly the sum of squares equals zero iff $X = \Omega$, the zero matrix.
- $(2\frac{1}{2})$ e2. Show that if $\mathbb{K} = \mathbb{C}$ then $\langle | \rangle : \mathbb{M}_n \times \mathbb{M}_n \to \mathbb{C}$ does not define a complex inner product.

$$\text{Take } \lambda \in \mathbb{C} \setminus \mathbb{R}, \text{ and } X, Y \in \mathbb{M}_n, \text{ then } \langle \lambda X | Y \rangle \stackrel{\text{def}}{=} \text{trace}((\lambda X)^{\mathrm{T}}Y) = \text{trace}(\lambda X^{\mathrm{T}}Y) = \lambda \text{trace}(X^{\mathrm{T}}Y) \stackrel{\text{def}}{=} \lambda \langle X | Y \rangle \neq \lambda^* \langle X | Y \rangle$$

 $(2\frac{1}{2})$ **f.** How would you modify the definition of $\langle | \rangle : \mathbb{M}_n \times \mathbb{M}_n \to \mathbb{C}$ in the complex case, $\mathbb{K} = \mathbb{C}$, such that it does define a complex inner product? You may state your definition without proof.

We must use conjugation instead of transposition: $\langle | \rangle : \mathbb{M}_n \times \mathbb{M}_n \to \mathbb{C} : (X, Y) \mapsto \langle X | Y \rangle \stackrel{\text{def}}{=} \operatorname{trace}(X^{\dagger}Y).$

In the remainder of this problem we restrict ourselves to $\mathbb{K} = \mathbb{R}$. In particular, we consider the case of the real inner product, recall **e1**.

Operator transposition, $T: \mathscr{L}(\mathbb{M}_n, \mathbb{M}_n) \to \mathscr{L}(\mathbb{M}_n, \mathbb{M}_n)$, is implicitly defined by the identity

$$\langle A^{\mathrm{T}}(X)|Y\rangle \stackrel{\mathrm{def}}{=} \langle X|A(Y)\rangle$$
 for all $A \in \mathscr{L}(\mathbb{M}_n, \mathbb{M}_n)$ and $X, Y \in \mathbb{M}_n$.

 $(2\frac{1}{2})$ g. Show that $P_{\pm}^{T} = P_{\pm}$. (Together with d4 this shows that P_{\pm} are orthogonal projections.)

Let $X, Y \in \mathbb{M}_n$. Using the properties of the inner product and previous definitions we find $\langle X | P_{\pm}(Y) \rangle \stackrel{\text{def}}{=} \langle X | \frac{1}{2}(Y \pm Y^{\mathrm{T}}) \rangle = \frac{1}{2} \langle X | Y \rangle \pm \frac{1}{2} \langle X | Y \rangle \pm \frac{1}{2} \langle X^{\mathrm{T}} | Y \rangle = \langle \frac{1}{2}(X \pm X^{\mathrm{T}}) | Y \rangle \stackrel{\text{def}}{=} \langle P_{\pm}(X) | Y \rangle$. In * we have used the fact that $\langle X | Y^{\mathrm{T}} \rangle = \operatorname{trace}(X^{\mathrm{T}}Y^{\mathrm{T}}) = \operatorname{trace}(YX)^{\mathrm{T}} = \operatorname{trace}(XY) = \langle X^{\mathrm{T}} | Y \rangle$, which in turn follows from the properties trace(X) = trace(X), trace(XY) = trace(YX), and $X^{\mathrm{TT}} = X$.

÷

 $(32\frac{1}{2})$ 2. Consider the Laplace equation for the function $u \in C^{\infty}(\mathbb{R}^2)$:

$$\Delta u = 0$$
 in which $\Delta = \frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial y^2}$

Our aim is to find a first order partial differential equation, such that its solutions also satisfy the Laplace equation. To this end we introduce a real linear space V, the dimension $n \ge 2$ of which is yet to be determined, and furnish it with an additional operator henceforth referred to as "multiplication". The product of $v, w \in V$ is then simply written as $vw \in V$. In this way V is turned into a so-called algebra, for which we stipulate the following algebraic axioms, viz. for all $u, v, w \in V$ and $\lambda, \mu \in \mathbb{R}$:

• (uv)w = u(vw),

•
$$u(v+w) = uv + uw$$
,

- (u+v)w = uw + vw,
- $\lambda(uv) = (\lambda u)v = u(\lambda v),$

(Multiplication takes precedence over vector addition unless parentheses indicate otherwise.)

We now attempt to decompose the Laplacian operator as follows:

$$\Delta = \left(a\frac{\partial}{\partial x} + b\frac{\partial}{\partial y}\right) \left(a\frac{\partial}{\partial x} + b\frac{\partial}{\partial y}\right) \,.$$

Here $a, b \in V$ are two fixed, independent elements (vectors). For consistency we assume that $u(x, y) \in V$ (instead of our original assumption $u(x, y) \in \mathbb{R}$).

a. Show that V is *not* commutative, and that it must possess an identity element $1 \in V$ that has to be formally identified with the scalar number $1 \in \mathbb{R}$, by showing that

- $(2\frac{1}{2})$ **a1.** ab + ba = 0,
- $(2\frac{1}{2})$ **a2.** $a^2 = b^2 = 1$.

Expanding

$$\left(a\frac{\partial}{\partial x} + b\frac{\partial}{\partial y}\right) \left(a\frac{\partial}{\partial x} + b\frac{\partial}{\partial y}\right) = a^2 \frac{\partial^2}{\partial x^2} + (ab + ba)\frac{\partial^2}{\partial x\partial y} + b^2 \frac{\partial^2}{\partial y^2} \stackrel{\text{def}}{=} \frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial y^2}$$

shows that we must set ab + ba = 0 and $a^2 = b^2 = 1$. Notice that we may *not* assume that ab = ba.

(5) **b.** Show that the (unordered) pair (a, b) satisfying the conditions of **a1** and **a2** is not unique. (*Hint:* Suppose $a' = a_1a + a_2b$, $b' = b_1a + b_2b$ for some $a_1, a_2, b_1, b_2 \in \mathbb{R}$.)

Following the hint we subject the transformed pair (a', b') to the required conditions of **a1–a2**. This leads to the following system of equations for the coefficients $a_1, a_2, b_1, b_2 \in \mathbb{R}$:

$$\begin{cases} a_1^2 + a_2^2 &= 1\\ b_1^2 + b_2^2 &= 1\\ a_1b_1 + a_2b_2 &= 0 \end{cases}$$

In other words, apart from the choice $(a_1, a_2) = (1, 0), (b_1, b_2) = (0, 1)$ corresponding to the solution under **a1-a2** we may take any pair of mutually perpendicular unit vectors $(a_1, a_2), (b_1, b_2) \in \mathbb{R}^2$. (This ambiguity is not surprising, since the Laplacian is invariant under orthogonal transformations of (x, y)-coordinates.)

c. Suppose $v, w \in \text{span}\{a, b\} \subset V$ are such that, say, $v = v_1 a + v_2 b$ and $w = w_1 a + w_2 b$ for some $v_1, v_2, w_1, w_2 \in \mathbb{R}$. Compute

- $(2\frac{1}{2})$ **c1.** vw + wv,
- $(2\frac{1}{2})$ **c2.** v^2 .

We find $vw + wv = (v_1a + v_2b)(w_1a + w_2b) = 2v_1w_1a^2 + (v_1w_2 + v_2w_1)(ab + ba) + 2v_2w_2b^2 \stackrel{\mathbf{a1}=\mathbf{a2}}{=} 2(v_1w_1 + v_2w_2)$, from which it follows, by setting $v_1 = w_1$ and $v_2 = w_2$, that $v^2 = v_1^2 + v_2^2$.

(2 $\frac{1}{2}$) **d.** Show that dim V > 2. (*Hint:* Alternatively, show that span{a, b} $\subset V$ is not closed under multiplication.)

Take $v = v_1 a + v_2 b \in V$, with $v_1, v_2 \in \mathbb{R}$ arbitrary. Suppose $1 \in \text{span}\{a, b\}$, i.e. there exist $e_1, e_2 \in \mathbb{R}$, at least one of which is nonzero, such that $1 = e_1 a + e_2 b$, then, again using **a1–a2** and the definition of the unit element $1 \in V$,

 $v_1a + v_2b = v \stackrel{\text{def}}{=} 1v = e_1v_1 + e_2v_2 + (e_1v_2 - e_2v_1)ab$ for all $v_1, v_2 \in \mathbb{R}$.

However, $a, b, ab \notin \mathbb{R}$, whereas $e_1v_1 + e_2v_2 \in \mathbb{R}$, so that we conclude that $e_1v_1 + e_2v_2 = 0$ for all $v_1, v_2 \in \mathbb{R}$, implying $e_1 = e_2 = 0$, which is a contradiction. (To see that $a, b, ab \notin \mathbb{R}$, consider **a1-a2**, from which it is immediately obvious that $a, b \notin \mathbb{R}$. That $ab \notin \mathbb{R}$ follows e.g. by taking its square: $(ab)^2 = abab = -ab^2a = -a^2 = -1$.)

We add two more independent elements to the set $\{a, b\}$, viz. the unit element 1 and the element ab, and define $V = \text{span}\{1, a, b, ab\}$. Instead of $\lambda 1 + \mu a + \nu b + \rho ab \ (\lambda, \mu, \nu, \rho \in \mathbb{R})$ we write $\lambda + \mu a + \nu b + \rho ab$ for an arbitrary element of V.

(5) **e.** Show that V is closed under multiplication, i.e. show that if $v = v_0 + v_1a + v_2b + v_3ab \in V$, $w = w_0 + w_1a + w_2b + w_3ab \in V$, then also $vw \in V$.

The easiest answer is as follows. Multiplication of v and w, expanded as given, will generate $4 \times 4 = 16$ terms, each of which is a multiple of any of the following product forms: $1, a, b, ab, a^2, b^2, ba, a^2b, ab^2, aba, bab, (ab)^2$. With the properties a1-a2 of a and b these can all be reduced to multiples involving only 1, a, b, ab (for we have $a^2 = 1, b^2 = 1, ba = -ab$, $a^2b = b, ab^2 = a, aba = -a^2b = -b, bab = -b^2a = -a$, and finally $(ab)^2 = -ab^2a = -a^2 = -1$). The more cumbersome answer is to write out the product explicitly, and to apply the above simplification rules, yielding $vw = (v_0 + v_1a + v_2b + v_3ab)(w_0 + w_1a + w_2b + w_3ab) = v_0w_0 + v_1w_1 + v_2w_2 - v_3w_3 + (v_0w_1 + v_1w_0 - v_2w_3 + v_3w_2)a + (v_0w_2 + v_1w_3 + v_2w_0 - v_3w_1)b + (v_0w_3 + v_1w_2 - v_2w_1 + v_3w_0)ab \in V$.

We now try to realize elements of V in terms of real-valued 2×2 -matrices. To this end we hypothesize that

$$V \subset \mathbb{M}_2 = \left\{ \left(\begin{array}{cc} a_{11} & a_{12} \\ a_{21} & a_{22} \end{array} \right) \middle| a_{ij} \in \mathbb{R} \right\} \,.$$

(5) **f.** Construct explicit matrices $A, B \in \mathbb{M}_2$ corresponding to $a, b \in V$ in the sense that

•
$$AB + BA = \Omega$$

• $A^2 = B^2 = I$.

Here $\Omega \in \mathbb{M}_2$ is the null matrix, corresponding to the null element $0 \in V$, and $I \in \mathbb{M}_2$ is the identity matrix, corresponding to the identity element $1 \in V$.

(*Hint:* As an ansatz, stipulate a diagonal matrix A, and show that B must then be anti-diagonal.)

Some examples of $a \sim A$ and $b \sim B$, and $ab \sim AB$, and the element $1 \sim I$:

$$I = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \quad A = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix} \quad B = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} \quad AB = \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix}.$$

Many other choices are possible, recall **b**. Examples such as the above are found by trial and error. Following the hint $(a_{12} = a_{21} = 0)$, setting $A = \text{diag} \{a_{11}, a_{22}\}$, and taking B arbitrary, one finds by writing out the conditions $A^2 = I$ and $AB + BA = \Omega$ that $a_{11} = \pm 1$, $a_{22} = \mp 1$, and that B must have zeros on its diagonal, and writing out $B^2 = I$ reveals that its remaining elements must equal $b_{12} = b_{21} = \pm 1$.

 $(2\frac{1}{2})$ g. Given A and B as determined under f, what is the matrix form $v_0 + v_1A + v_2B + v_3AB \in \mathbb{M}_2$ corresponding to a general element $v_0 + v_1a + v_2b + v_3ab \in V$?

From **f** it follows by superposition $X = v_0I + v_1A + v_2B + v_3AB$ that

$$X = \left(\begin{array}{cc} v_0 + v_1 & v_2 + v_3 \\ v_2 - v_3 & v_0 - v_1 \end{array}\right) \,.$$

Note that any matrix $Y \in \mathbb{M}_2$ can be realized in this way, viz. by setting

$$v_0 = \frac{1}{2} (Y_{11} + Y_{22})$$
 $v_1 = \frac{1}{2} (Y_{11} - Y_{22})$ $v_2 = \frac{1}{2} (Y_{12} + Y_{21})$ $v_3 = \frac{1}{2} (Y_{12} - Y_{21})$.

 $(2\frac{1}{2})$ h. Show that if $u: \mathbb{R}^2 \to V$ satisfies the first order partial differential equation

$$a\frac{\partial u}{\partial x} + b\frac{\partial u}{\partial y} = 0,$$

then it is also a solution of $\Delta u = 0$.

Recall a1-a2. By construction we now have

$$\Delta u = \frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} = \left(a\frac{\partial}{\partial x} + b\frac{\partial}{\partial y}\right) \left(a\frac{\partial u}{\partial x} + b\frac{\partial u}{\partial y}\right) = 0 \quad \text{since} \quad \left(a\frac{\partial u}{\partial x} + b\frac{\partial u}{\partial y}\right) = 0.$$

- (5) **3.** Consider a strictly monotonic, continuously differentiable function $f : \mathbb{R} \to \mathbb{R} : x \mapsto f(x)$, with f'(x) > 0 for all $x \in \mathbb{R}$, and $f(\pm \infty) = \pm \infty$. The inverse function theorem states that such a function has an inverse, $f^{-1} : \mathbb{R} \to \mathbb{R} : y \mapsto f^{-1}(y)$, such that $(f^{-1} \circ f)(x) = x$ for all $x \in \mathbb{R}$, and $(f \circ f^{-1})(y) = y$ for all $y \in \mathbb{R}$.
- (2¹/₂) **a.** Argue why the equation f(x) = 0 has precisely one solution for $x \in \mathbb{R}$ (x = a, say). (*Hint:* Sketch the graph of such a function f.)

Suppose there are two distinct solutions, f(a) = f(b) = 0, with a < b, say. According to the mean value theorem there exists a c in-between a and b, such that f'(c) = (f(b) - f(a))/(b - a) = 0 (average slope on (a, b)). This is a contradiction. Rephrased in terms of the graph of f, the argument is as follows. Since f is continuous, the graph of f is uninterrupted. Since f' > 0, the graph is monotonically increasing, so it can intersect the x-axis at most once. It actually does intersect the x-axis exactly once, since f is continuous and f assumes both negative and positive values, whence it must assume all intermediate values, in particular f(a) = 0 for some unique $a \in \mathbb{R}$.

 $(2\frac{1}{2})$ **b.** Show that $\delta(f(x)) = \frac{\delta(x-a)}{f'(a)}$, in which $a \in \mathbb{R}$ is the unique point for which f(a) = 0.

(*Hint:* Evaluate the distribution corresponding to the Dirac function on the left hand side on an arbitrary test function $\phi \in \mathscr{S}(\mathbb{R})$, i.e. $\int_{-\infty}^{\infty} \delta(f(x)) \phi(x) dx$, and apply substitution of variables.)

Consider

$$\int_{-\infty}^{\infty} \delta(f(x)) \,\phi(x) \,dx \stackrel{*}{=} \int_{-\infty}^{\infty} \delta(y) \,\phi(f^{-1}(y)) \,\frac{dy}{f'(f^{-1}(y))} \stackrel{*}{=} \frac{\phi(f^{-1}(0))}{f'(f^{-1}(0))} \stackrel{\circ}{=} \frac{\phi(a)}{f'(a)} \stackrel{*}{=} \int_{-\infty}^{\infty} \frac{\delta(x-a)}{f'(a)} \,\phi(x) \,dx$$

In * substitution y = f(x) has been carried out, which implies dy = f'(x) dx and, by the inverse function theorem, $x = f^{-1}(y)$. Boundary values remain unchanged because $f(\pm \infty) = \pm \infty$. In * the definition of the Dirac- δ "function" has been used. In \circ the identity $a = f^{-1}(0)$ (the equivalent of f(a) = 0, cf. **a**) has been invoked. Since this holds for all $\phi \in \mathscr{S}(\mathbb{R})$ we conclude that $\delta(f(x)) = \frac{\delta(x-a)}{f'(a)}$.

 $(27\frac{1}{2})$ 4. In this problem we consider a synthetic signal $f: \mathbb{R} \longrightarrow \mathbb{R}$, defined as follows:

$$f(x) = \begin{cases} 0 & \text{if } x < 0\\ \frac{1}{2} & \text{if } x = 0\\ 1 & \text{if } x > 0 \end{cases}$$

Furthermore, we define the so-called Poisson filter $\phi_{\sigma}: \mathbb{R} \longrightarrow \mathbb{R}$ for $\sigma > 0$ as

$$\phi_{\sigma}(x) = \frac{1}{\pi} \frac{\sigma}{x^2 + \sigma^2}.$$

In this problem you may use the following standard formulas (cf. the graph shown below):

$$\int \frac{1}{1+x^2} dx = \arctan x + c \qquad \text{resp.} \qquad \lim_{x \to \pm \infty} \arctan x = \pm \frac{\pi}{2}.$$

Throughout this problem we employ the following Fourier convention:

$$\widehat{u}(\omega) = \mathcal{F}(u)(\omega) = \int_{-\infty}^{\infty} e^{-i\omega x} u(x) \, dx \quad \text{whence} \quad u(x) = \mathcal{F}^{-1}(\widehat{u})(x) = \frac{1}{2\pi} \int_{-\infty}^{\infty} e^{i\omega x} \, \widehat{u}(\omega) \, d\omega \, .$$

 $(2\frac{1}{2})$ a. Show that $\int_{-\infty}^{\infty} \phi_{\sigma}(x) dx = 1$ regardless of the value of σ .

 $\int_{-\infty}^{\infty} \phi_{\sigma}(x) dx = \frac{\sigma}{\pi} \int_{-\infty}^{\infty} \frac{1}{x^2 + \sigma^2} dx = \frac{1}{\pi} \int_{-\infty}^{\infty} \frac{1}{1 + y^2} dy = \frac{1}{\pi} \left[\arctan y \right]_{y \to -\infty}^{y \to +\infty} = \frac{1}{\pi} \left(\frac{\pi}{2} + \frac{\pi}{2} \right) = 1.$ Hierin is de volgende substitutie van variabelen toegepast: $y = x/\sigma$.

 $(2\frac{1}{2})$ **b1.** Prove that for any, sufficiently smooth, integrable filter ϕ we have:

$$(f * \phi)(x) = \int_{-\infty}^{x} \phi(\xi) \, d\xi \, .$$

 $(f * \phi)(x) = \int_{-\infty}^{\infty} f(y) \phi(x - y) dy = \int_{0}^{\infty} \phi(x - y) dy = \int_{-\infty}^{x} \phi(\xi) d\xi$. In de laatste stap is substitutie van variabelen, $\xi = x - y$, toegepast.

 $(2\frac{1}{2})$ **b2.** Show by explicit computation that the convolution product $f * \phi_{\sigma}$ is given by

$$(f * \phi_{\sigma})(x) = \frac{1}{2} + \frac{1}{\pi} \arctan \frac{x}{\sigma}.$$

 $(f * \phi_{\sigma})(x) = \int_{-\infty}^{\infty} f(y) \phi_{\sigma}(x-y) dy = \frac{\sigma}{\pi} \int_{0}^{\infty} \frac{1}{(x-y)^{2}+\sigma^{2}} dy = \int_{-\infty}^{x/\sigma} \frac{1}{1+\xi^{2}} d\xi = \frac{1}{\pi} \left[\arctan \xi \right]_{\xi \to -\infty}^{\xi = x/\sigma} = \frac{1}{\pi} \left(\arctan \frac{x}{\sigma} + \frac{\pi}{2} \right) = \frac{1}{2} + \frac{1}{\pi} \arctan \frac{x}{\sigma}.$ Hierin is de volgende substitutie van variabelen toegepast: $\xi = (x-y)/\sigma$. Gebruik van onderdeel **b1** leidt uiteraard tot hetzelfde resultaat.

(5) **c.** Show that the Fourier transform $\widehat{f} = \mathcal{F}(f)$ of f is given by

$$\widehat{f}(\omega) = \frac{1}{i\omega}.$$

(*Hint:* From part **b1** it follows that $\frac{d}{dx}(f * \phi)(x) = \phi(x)$. Subject this to Fourier transformation.)

Uit $\frac{d}{dx}(f * \phi_{\sigma})(x) = \phi_{\sigma}(x)$ volgt dat $\mathcal{F}\left(\frac{d}{dx}(f * \phi_{\sigma})\right)(\omega) = \mathcal{F}(\phi_{\sigma})(\omega)$. Met behulp van Result 6 op blz. 97 en Theorem 17 op blz. 104 volgt dat dit equivalent is met $i\omega\mathcal{F}(f)(\omega)\mathcal{F}(\phi_{\sigma})(\omega) = \mathcal{F}(\phi_{\sigma})(\omega)$. Ervan uitgaand dat $\mathcal{F}(\phi_{\sigma})(\omega) \neq 0$ voor (bijna) alle ω concluderen we dat $\mathcal{F}(f)(\omega) = \frac{1}{i\omega}$.

d. Without proof we state the Fourier transform $\hat{\phi}_{\sigma} = \mathcal{F}(\phi_{\sigma})$ of ϕ_{σ} :

$$\widehat{\phi}_{\sigma}(\omega) = e^{-\sigma|\omega|}$$

- (2¹/₂) **d1.** Explain the behaviour of $\hat{\phi}_{\sigma}(\omega)$ for $\omega \to 0$ in terms of properties of the corresponding spatial filter $\phi_{\sigma}(x)$. (*Hint:* Cf. problem **a**.)
- $(2\frac{1}{2})$ **d2.** Explain the behaviour of $\widehat{f}(\omega)$ for $\omega \to 0$ in terms of properties of the corresponding spatial

signal f(x).

Zie de definitie van $\hat{u}(\omega)$: Indien $\hat{u}(0)$ bestaat dan moet hiervoor kennelijk gelden $\hat{u}(0) = \int_{-\infty}^{\infty} u(x) dx$. Dit verklaart zowel het gedrag van $\hat{\phi}_{\sigma}(\omega)$ als van $\hat{f}(\omega)$ voor $\omega \to 0$: $\hat{\phi}_{\sigma}(0) = \int_{-\infty}^{\infty} \phi_{\sigma}(x) dx = 1$ (zie **a**), terwijl $\hat{f}(0)$ niet bestaat omdat $\int_{-\infty}^{\infty} f(x) dx = \int_{0}^{\infty} dx$ niet convergeert.

(5) **e.** Determine the function $\mathcal{F}(f * \phi_{\sigma})$.

Noteren we gemakshalve $f_{\sigma} = f * \phi_{\sigma}$ dan geldt hiervoor in de gehanteerde Fourierconventie $\hat{f}_{\sigma} = \mathcal{F}(f * \phi_{\sigma}) = \mathcal{F}(f) \mathcal{F}(\phi_{\sigma}) = \hat{f} \phi_{\sigma}$, dus $\hat{f}_{\sigma}(\omega) = \frac{1}{i\omega} e^{-\sigma |\omega|}$.

 $(2\frac{1}{2})$ **f.** Show that $\lim_{\sigma \to 0} f * \phi_{\sigma} = f$. Hint: Take the "Fourier route".

Schrijf wederom $f_{\sigma} = f * \phi_{\sigma}$. Uit **e** blijkt dat in het Fourierdomein geldt $\lim_{\sigma \to 0} \widehat{f}_{\sigma}(\omega) = \lim_{\sigma \to 0} \frac{1}{i\omega} e^{-\sigma|\omega|} = \frac{1}{i\omega} = \widehat{f}(\omega)$, dus volgt $\lim_{\sigma \to 0} f_{\sigma}(x) = f(x)$.

(2¹/₂) **g.** Prove the claim under **d**: $\hat{\phi}_{\sigma}(\omega) = e^{-\sigma|\omega|}$. (*Hint:* Apply the inverse Fourier transform.)

Following the hint we get

$$\begin{aligned} \frac{1}{2\pi} \int_{-\infty}^{\infty} e^{i\omega x} e^{-\sigma|\omega|} \, d\omega &= \frac{1}{2\pi} \left(\int_{-\infty}^{0} e^{(\sigma+ix)\omega} \, d\omega + \int_{0}^{\infty} e^{(-\sigma+ix)\omega} \, d\omega \right) = \frac{1}{2\pi} \left(\left[\frac{e^{(\sigma+ix)\omega}}{\sigma+ix} \right]_{-\infty}^{0} + \left[\frac{e^{(-\sigma+ix)\omega}}{-\sigma+ix} \right]_{0}^{\infty} \right) \\ &= \frac{1}{2\pi} \left(\frac{1}{\sigma+ix} + \frac{1}{\sigma-ix} \right) = \frac{1}{\pi} \frac{\sigma}{x^2 + \sigma^2} \stackrel{\text{def}}{=} \phi_{\sigma}(x) \, . \end{aligned}$$

THE END