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EXAMINATION MATHEMATICAL TECHNIQUES FOR IMAGE ANALYSIS
Course code: 8D020. Date: Wednesday April 22, 2009. Time: 14h00-17h00. Place: HG 10.01 C.

Read this first!

e Use a separate sheet of paper for each problem. Write your name and student identification
number on each paper.

e The exam consists of 4 problems. The maximum credit for each item is indicated in the margin.

e Motivate your answers. The use of course notes and calculator is allowed. The use of the problem
companion, “opgaven- en tentamenbundel”, is not allowed.

e You may provide your answers in Dutch or (preferably) in English.

GOOD LUCK!

1. Consider the collection of square matrices,

X117 ... Xin
M, =< X = : Xi; € K , in which K denotes either R or C.

Xn1 .o Xon

a. Provide explicit definitions for the operators ® : K x M,, — M, (“scalar multiplication”)
and @ : M,, x M,, - M, (“vector addition”) needed to turn this set into a linear space over K.
Make sure to use parentheses so as to avoid confusion on operator precedence, if necessary.

The necessary operators are scalar multiplication and vector addition. If A\, u € K and X,Y € M,,, then

(A®X)® (n®Y));; =Xy +pYy; foralli,j=1,...,n

Henceforth we write AX instead of A®@ X and X +Y instead of X ®Y for A € Kand X,Y € M,,.
Furthermore, let £ (M,,, ML) denote the linear space of linear operators on M,,.

b. Provide explicit definitions for the operators ® : R x Z(M,,M,) — Z(M,,,M,) and
@ ZM,,M,,) x ZM,,M,,) - ZM,,M,,) that justifies the claim that £ (M,,M,,) is
a linear space over K. Make sure to use parentheses so as to avoid confusion on operator
precedence, if necessary.

The necessary operators are scalar multiplication and vector addition. If A\, x € K and A, B € £ (M,,, M,,), then

(A® A) & (1 ® B)) (X) = AA(X) + uB(X) for all X € M,,.



N[

N[

N[

N[ =

N[ =

N[ =

N[

Again we write AA instead of A\® A and A+ B instead of A@B for A € Kand A, B € £ (M,,, M,,).
With X as above, the transposed matrix X T and the conjugate matrix X' are defined as

Xll oo an Xikl “ e ;.21
XT = : : respectively X1 = : :

Here, * denotes complex conjugation, i.e. if z = x 4+ iy for z,y € R, then z* = x — iy.

Furthermore, the operators Py : M,, — M,, and Q4 : M,, — M, are defined by

1 1
(X £XT)  respectively Qu(X)= 3 (X + XT> .

PL(X) = 5

cl. Show that matriz transposition, T : Ml,, — M, : X — T(X) f x T is a linear operator.

def def

For all \,u € K and X,Y € M,, we have T(AX + puY) E (AX + puY)T = AXT + uYT Z AT(X) + pT(Y).

c2. Show that matriz conjugation, C : M, — M, : X — C(X) def X', is not a linear operator.

For all A, € K and X,Y € M, we have COX + uY) & OX + u¥)t = M XT + vt € xox) + pro(y) #
AC(X) 4+ pC(Y). (If K= R then C =T, so then it does define a linear operator.)

c3. Show that P4 : M,, — M, are linear operators.

def def

Forall A\, p € Kand X,Y € M wehave P+ AX+pY) = 2 AX +pY 2 AX + )T = A G X 2 X))+ (v 2YT)) =
APL(X) + pPx(Y).

c4. Show that Q. : M,, — M, are not linear operators.

Forall A, o € Kand X,Y € M, we have Q (AX+uY) %' 1 TOX Y £ (AX +p)t) = LOXEN XD+ L (uy £pYT) #

( (X £ XT))Jr,u( (Y £Y1)) def AQ4 (X)+uQo(Y). (If]K R then Q1 = P4, so then they do define linear operators.)
The null matrix in M, is indicated by €, i.e. €;; = 0 for all 7,5 = 1,...,n. The identity
matrix in M, is indicated by I, i.e. I;; = 1if ¢ = j = 1,...,n, otherwise I;; = 0. The null
operator N : M, — M, is defined by N(X) = Q € M, for all X € M,,. The identity operator
id : M, — M, is defined by id(X) = X for all X € M,,. Operator composition (i.e. successive
application of operators in right-to-left order) is indicated by the infix operator o.

dl. Show that PL +P_ =id.

def def 1 (

We have (P1+P_)(X) € PL(X)+P_(X) = 1 (X +XT)+1 (X - XT) = X =id(X) for all X € M, so P4 +P_ =id.

d2. Show that P, —P_ =
def

We have (P4 —P_)(X) < P (X)—P_(X) &' 1 (X + XT) -1 (X = XT) = XT = T(X) for all X € My, so P4 +P_ =T.

d3. Show that P, oP_ =P_oP, = N.
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We have (P4 o P_)(X) ' PL(P_(X) € L (P_(X)+P_(X)T) = 1 (3 (X = XT) + 3 (XT = X)) =0 for all X € My,

so P4 o P_ = N. By interchanging all + and — signs in the above argument, it follows that P_ o P4 = N.

d4. Show that P1 o P41 = P4.

def def
We have (P+ o P1)(X) € P1(Pr(X)) = L (P2(X) P+ (X)) =1 L (x£XT)+ 1 (XT1X)) =
P4+ (X) for all X € M,,, so P+ oP+ =P4.

(X + XT> def

Consider the following binary operator: ( | ) : M, xM,, - K: (X,Y) — (X|Y) o trace(XTY).

Here, trace : M,, — K is the (linear) trace operator, defined as summation of diagonal elements:

n
traceX = ZXZ-Z- .
i=1

el. Show that if K =R then (| ) : M, x M, — R defines a real inner product.

We may exploit the fact that both trace as well as transposition T are linear operators. Let X,Y,Z € M,, and \,p € K
be arbitrary. Then we have

def def
o (X|Y) = trace(XTY) = 0 (XTY )i = 30 30y XYy = 20, (VX )i = (V]X).

def

o (AX +uY|Z) def trace((AX+uY)T Z) = trace((AXT4uY T) Z) = Mrace(X T Z)+utrace(YTZ) = MX|Z)+u(Y|Z).

o (X|X) def trace(X T X) def S (XTX) =30, 271 XijXij > 0, and clearly the sum of squares equals zero

iff X =, the zero matrix.

e2. Show that if K = C then ( | ) : M, x M, — C does not define a complex inner product.

def

Take A € C\R, and X,Y € M,, then (AX|Y) ef trace((AX)TY) = trace(AXTY) = Atrace(XTY) = MX|Y) # M (X|Y).

f. How would you modify the definition of (| ) : M, x M, — C in the complex case, K = C,
such that it does define a complex inner product? You may state your definition without proof.

We must use conjugation instead of transposition: (| ) : My x M, - C: (X,Y) — (X]Y) def trace(XTY).

In the remainder of this problem we restrict ourselves to K = R. In particular, we consider the
case of the real inner product, recall el.

Operator transposition, T : £ (M,,,M,,) — Z(M,,,M,), is implicitly defined by the identity

(AT(X)|Y) ¥ (X]A(Y)) for all A € Z(M,,M,) and X,Y € M,,.

g. Show that P} = Py. (Together with d4 this shows that Py are orthogonal projections.)
Let X,Y € M,,. Using the properties of the inner product and previous definitions we find (X |P4(Y")) def (X] % (Y+£YT)) =
LX) +£ J(xX|yT) £ Lx|y) £ LXT)y) = (X +£XD)y) € (PL(X)[Y). In % we have used the fact that
(XIYT) = trace(XTYT) = trace((YX)T) = trace(Y X) = trace(XY) = (X T|Y), which in turn follows from the properties
trace(X) = trace(XT), trace(XY) = trace(Y X), and XTT = X.
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Au=0 1nwhlchA:@+a—y2.

Our aim is to find a first order partial differential equation, such that its solutions also satisfy
the Laplace equation. To this end we introduce a real linear space V', the dimension n > 2 of
which is yet to be determined, and furnish it with an additional operator henceforth referred
to as “multiplication”. The product of v, w € V is then simply written as vw € V. In this way
V is turned into a so-called algebra, for which we stipulate the following algebraic axioms, viz.
for all u,v,w €V and A\, u € R:

o (wv)w = u(vw),

o u(v+w)=uv+ uw,

o (u+v)w = uw + vw,

o \Nuv) = (Au)v = u(Iv),
(Multiplication takes precedence over vector addition unless parentheses indicate otherwise.)
We now attempt to decompose the Laplacian operator as follows:

0 0 0 0
A=|a—+b— —+b— .
<a8x + 6y> <aax + 8y)

Here a,b € V are two fixed, independent elements (vectors). For consistency we assume that
u(z,y) € V (instead of our original assumption u(zx,y) € R).

a. Show that V' is mot commutative, and that it must possess an identity element 1 € V that
has to be formally identified with the scalar number 1 € R, by showing that

al. ab+ ba = 0,

a2. a2 =0p>=1.

Expanding

e} 1o} 0 0 9?2 9?2 0% et 02 0?2
— b — b | =a’— b+ b e
(aax + 8y> (aBz + 8y> * or2 + (ab+ba) Ox0y + Oy? Ox2 + oy?

shows that we must set ab + ba = 0 and a? = b2 = 1. Notice that we may not assume that ab = ba.
b. Show that the (unordered) pair (a,b) satisfying the conditions of al and a2 is not unique.
(Hint: Suppose a’ = aja + azb, b’ = bia + beb for some a1, as, by, by € R.)

Following the hint we subject the transformed pair (a’,b’) to the required conditions of al—a2. This leads to the following
system of equations for the coefficients a1, a2, b1,b2 € R:

a§ + a2§
by + b3

a1b1 + a2b2

([T
—
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In other words, apart from the choice (a1, a2) = (1,0), (b1,b2) = (0, 1) corresponding to the solution under al—a2 we may
take any pair of mutually perpendicular unit vectors (a1, az), (b1,b2) € R2. (This ambiguity is not surprising, since the

Laplacian is invariant under orthogonal transformations of (z, y)-coordinates.)

c. Suppose v,w € spanf{a,b} C V are such that, say, v = via + v2b and w = wia + wyb for
some w1, v9, w1, w2 € R. Compute

cl. vw + wv,

c2. v2.

We find vw + wv = (via + v2b)(wia + wab) = 2viwia? + (viwz + vawr)(ab + ba) + 2uawab? alza2 2(viwi + vawz), from

which it follows, by setting v; = w1 and vp = wa, that v? = v% + v%.

d. Show that dimV' > 2.
(Hint: Alternatively, show that span{a,b} C V is not closed under multiplication.)

Take v = via+wv2b € V, with v1,v2 € R arbitrary. Suppose 1 € span{a, b}, i.e. there exist e1, e2 € R, at least one of which
is nonzero, such that 1 = eja + e2b, then, again using al—a2 and the definition of the unit element 1 € V,

via 4+ veb =0 def 1lv = ejv1 + eav2 + (e1v2 — egvi)ab  for all v1,ve € R.
However, a,b,ab ¢ R, whereas ejv; + eava € R, so that we conclude that ejv; + eavg = 0 for all vi,v2 € R, implying
e1 = ez = 0, which is a contradiction. (To see that a,b,ab ¢ R, consider al—a2, from which it is immediately obvious

that a,b ¢ R. That ab & R follows e.g. by taking its square: (ab)? = abab = —ab%a = —a? = —1.)

We add two more independent elements to the set {a, b}, viz. the unit element 1 and the element
ab, and define V' = span{l,a,b,ab}. Instead of A1+ pa+vb+ pab (A, u,v,p € R) we write
A+ pa+vb+ pab for an arbitrary element of V.

e. Show that V is closed under multiplication, i.e. show that if v = vy + via + vob + v3ab € V,
w = wo + wia + web + wsab € V, then also vw € V.

The easiest answer is as follows. Multiplication of v and w, expanded as given, will generate 4 X 4 = 16 terms, each of
which is a multiple of any of the following product forms: 1, a, b, ab, a?,b?, ba, a®b, ab?, aba, bab, (ab)?. With the properties
al—a2 of a and b these can all be reduced to multiples involving only 1, a, b, ab (for we have a2 =1, b2 =1, ba = —ab,
a?b = b, ab> = a, aba = —a?b = —b, bab = —b%a = —a, and finally (ab)? = —ab%a = —a? = —1). The more
cumbersome answer is to write out the product explicitly, and to apply the above simplification rules, yielding vw =
(vo +v1a+vab+vzab)(wo +wia+wab+wzab) = vowog + viwi + vowz — v3ws + (Vow1 +viwe — vaws + v3wz)a + (vowz +

viws 4+ vawo — v3w1 )b + (vows + viwa — vawy + v3wp)ab € V.

We now try to realize elements of V in terms of real-valued 2 x 2-matrices. To this end we

hypothesize that
VCM2:{<aH a12> aijG]R}.
az1 a2

f. Construct explicit matrices A, B € M corresponding to a,b € V in the sense that

e AB+BA=0,
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e A2=PB2=1.

Here Q2 € M is the null matrix, corresponding to the null element 0 € V, and I € My is the
identity matrix, corresponding to the identity element 1 € V.
(Hint: As an ansatz, stipulate a diagonal matrix A, and show that B must then be anti-diagonal.)

Some examples of a ~ A and b ~ B, and ab ~ AB, and the element 1 ~ I:

=0 V) a=(o %) e=(V o) am=( "% o)

Many other choices are possible, recall b. Examples such as the above are found by trial and error. Following the hint
(a12 = a21 = 0), setting A = diag {a11, a2}, and taking B arbitrary, one finds by writing out the conditions A2 = I and
AB+ BA = Q that a11 = %1, a2z = F1, and that B must have zeros on its diagonal, and writing out B2 = I reveals that

its remaining elements must equal bj2 = ba; = +£1.

g. Given A and B as determined under f, what is the matrix form vg+v1A4+voB+v3AB € My
corresponding to a general element vy + via + vob + vzab € V7

From f it follows by superposition X = vol + v1 A + v2 B + v3 AB that

X = vo +v1 w2+ 3
vy —v3 v — U1 :

Note that any matrix Y € My can be realized in this way, viz. by setting

1 1 1 1
vo =g (Y11 +Y22) w1 = 5 (Y11 —Ya2) w2 = 5 (Y12 +Y21) w3 = 5 (Y12 — Y21) .

h. Show that if u : R? — V satisfies the first order partial differential equation

ou ou
I S
“ox + oy 0,

then it is also a solution of Au = 0.

Recall al—a2. By construction we now have

P2u O%u o o] ou ou ou ou
Au=2212" _ (0 S b2 ) (022 4024 ) =0 si 42t =o.
T a2 + Oy? (a Ox + 8y> (aaw + 8y> smee (a + )

[ )

3. Consider a strictly monotonic, continuously differentiable function f: R — R : z — f(x),
with f/(z) > 0 for all z € R, and f(+o0) = oo. The inverse function theorem states that
such a function has an inverse, f~! : R — R : y — f~!(y), such that (f~!o f)(z) = x for all
r€R,and (fo f~1)(y) =y for all y € R.

a. Argue why the equation f(x) = 0 has precisely one solution for x € R (z = a, say).
(Hint: Sketch the graph of such a function f.)
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Suppose there are two distinct solutions, f(a) = f(b) = 0, with a < b, say. According to the mean value theorem there
exists a ¢ in-between a and b, such that f/(c) = (f(b) — f(a))/(b—a) = 0 (average slope on (a,b)). This is a contradiction.
Rephrased in terms of the graph of f, the argument is as follows. Since f is continuous, the graph of f is uninterrupted.
Since f’ > 0, the graph is monotonically increasing, so it can intersect the z-axis at most once. It actually does intersect
the z-axis exactly once, since f is continuous and f assumes both negative and positive values, whence it must assume all
intermediate values, in particular f(a) = 0 for some unique a € R.
d(x—a) . . . . . .
b. Show that §(f(x)) = “Fla) in which a € R is the unique point for which f(a) = 0.

(Hint: Evaluate the distribution corresponding to the Dirac function on the left hand side on an arbitrary
test function ¢ € #(R), i.e. [~ 8(f(2)) ¢(z)dx, and apply substitution of variables.)

Consider

= — ¢(x)dx.

dy x 6(f7H0) o d(a) » [ 6z —a)
) fa) Jow f'(a)

[eS) N oo 4
| U= [~ s et o) s = S

In * substitution y = f(z) has been carried out, which implies dy = f/(z)dz and, by the inverse function theorem,
x = f~1(y). Boundary values remain unchanged because f(+00) = Zoco. In * the definition of the Dirac-§ “function”
has been used. In o the identity a = f~1(0) (the equivalent of f(a) = 0, cf. a) has been invoked. Since this holds for all

¢ € Z(R) we conclude that §(f(z)) = %.

L )

(27 %) 4. In this problem we consider a synthetic signal f : R — R, defined as follows:

0 ifxz<O
fl@)y=14 3 ifz=0
1 ifz>0

Furthermore, we define the so-called Poisson filter ¢, : R — R for ¢ > 0 as

1 o
T2+ 02’

bo(T) =

In this problem you may use the following standard formulas (cf. the graph shown below):

1 T
—— 5 dr = arctanz + ¢ resp. lim arctanx = +—.
1+ x—=Fo00 2

y-axis
p
3
P y = arctaniL
4
X-axi
-10 -5 5 0
/4
p
3
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Throughout this problem we employ the following Fourier convention:

U(w) = Flu)(w) = /Oo e”“Ty(z)dr whence wu(x)=F '(a)(x) = L /OO e U(w) dw .

—00 —00

a. Show that [*°_ ¢q(x)dz = 1 regardless of the value of o.

. Hierin is de volgende

3=
—
VB
+
[NIE]
N
Il
—

1 1 1 1 —+
[P bo@)de = £ [%, i de = 2[5 e dy = 7 larctany]j5T0 =

substitutie van variabelen toegepast: y = z/o.

bl. Prove that for any, sufficiently smooth, integrable filter ¢ we have:

(f * 6)(2) =/x o(6) de

(fx¢) (@) = [T f) e —y)dy = [T dx—y)dy = [F_ ¢(€)dE. In de laatste stap is substitutie van variabelen,
£ = x — y, toegepast.

b2. Show by explicit computation that the convolution product f * ¢, is given by

(f*gzba)(x):l—l—larctanz.
2 7 o

(F* 0) (@) = [, W) bo(@ —y)dy = £ [5° mphrom dy = [*L7 e de = L [arctan¢];57/7, = L(arctan £ + 5) =

% + %arctan % Hierin is de volgende substitutie van variabelen toegepast: £ = (x — y)/o. Gebruik van onderdeel bl

leidt uiteraard tot hetzelfde resultaat.

c. Show that the Fourier transform ]/"\: F(f) of f is given by

Flr = .

w

(Hint: From part bl it follows that -L (f x ¢) (z) = ¢(x). Subject this to Fourier transformation.)

Uit % (f * ¢o) () = ¢po(x) volgt dat F <%(f * d)c,)) (w) = F(¢o) (w). Met behulp van Result 6 op blz. 97 en Theorem 17
op blz. 104 volgt dat dit equivalent is met iwF (f) (w)F (¢o) (w) = F (¢po) (w). Ervan uitgaand dat F (¢s) (w) 7# 0 voor
(bijna) alle w concluderen we dat F (f) (w) = =

Tw’

d. Without proof we state the Fourier transform (ﬁ, = F(¢s) of ¢5:

~

to(w) = el

d1l. Explain the behaviour of gga(w) for w — 0 in terms of properties of the corresponding
spatial filter ¢, ().
(Hint: Cf. problem a.)

~

d2. Explain the behaviour of f(w) for w — 0 in terms of properties of the corresponding spatial
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signal f(z).

Zie de definitie van %(w): Indien %(0) bestaat dan moet hiervoor kennelijk gelden %(0) = [*°_ wu(z)dz. Dit verklaart
zowel het gedrag van ¢, (w) als van f(w) voor w — 0: ¢y (0) = I22, po(x) de =1 (zie a), terwijl f(0) niet bestaat omdat
S22 f(@)dx = [;° dz niet convergeert.

9]

e. Determine the function F(f * ¢y ).

Noteren we gemakshalve fo = f*¢, dan geldt hiervoor in de gehanteerde Fourierconventie fg =F(fxdo) = F(f) F(Pps) =

F b0, dus fo(w) = L e=olwl,

f. Show that lin%) f * ¢, = f. Hint: Take the “Fourier route”.
o—

Schrijf wederom f, = f * ¢o. Uit e blijkt dat in het Fourierdomein geldt lim,_;q ]?J(w) = limy_0 % eolwl = i = A(w),
dus volgt lims—y0 fo(z) = f().
g. Prove the claim under d: ¢, (w) = e~ 71,
(Hmt: Apply the inverse Fourier transform.)
Following the hint we get
. 0 . oo
L [T e olwl g, — L (/O elotiz)w dw+/°° G dw) _ L[ el elzotio
27 J — oo 2 o 0 2w o+ iz —0o +ix 0

- wlratos) Trmia T e@.

o+ix o —ix T x2 + o2

THE END
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