EXAMINATION MATHEMATICAL TECHNIQUES FOR IMAGE ANALYSIS

Course code: 8D020. Date: Monday January 23, 2012. Time: 09h00-12h00. Place: AUD 14.

Read this first!

e Write your name and student ID on each paper.
e The exam consists of 4 problems. The maximum credit for each item is indicated in the margin.

e Motivate your answers. The use of course notes is allowed. The use of problem companion (“opgaven- en tenta-
menbundel”), calculator, laptop, or any other equipment, is not allowed.

e You may provide your answers in Dutch or English.

e Feel free to ask questions on linguistic matters or if you suspect an erroneous problem formulation.

Good luck!

(30) 1. GROUP THEORY
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In this problem we consider sets of real-valued 2 x 2-matrices generated by the following matrix:

def 0 —1
A = .
Nonnegative integer matrix powers are defined as repetitive matrix products:

XX X (keNy=1{0,1,2,...}).

k factors
By convention the empty product yields the 2x2 identity matrix, X 4 . Consider the set
L% {A’“’ keNo} .

L is furnished with an internal operator of type LxL — L, viz. standard matrix multiplication.
al. Show that L is closed under matrix multiplication.

Let a,b € L. By definition there exist k, ¢ € Ng such that a = A*, b = A%, hence ab = A¥A? = A"+ ¢ L since k+¢ € Np.
a2. Show that L contains exactly 4 distinct elements, and compute their matrix representations.
By either definition or straightforward computation we find A = I, Al = A, A2 = —I, A3 = —A. Consequently,
A* =T = A%, and, more generally, A*t* = AF for all k € Ng. This 4-periodicity property implies that the only distinct

elements of L are those A* given by k =0,1,2,3.

a3. Prove that L is a commutative group by providing its 4 x4 group multiplication table.



N[

From the fact that AFA¢ = A(k+£) mod 4 the myltiplication table is evident:

AV T AT T A2 ] A3
AV AV AT A% ] A3
AT AT AZ] A3 AD
A2 A3 AV | AT | A2
A3 T AV [ AT [ A2 | A3

Explicit formulas for the matrix powers in the table are given in a2.

We furthermore define the linear space £ def span L.

a4. Show that dim.Z = 2, in other words, that there are two linearly independent elements
X1, X5 € £ such that every element X € Z can be written as a linear combination of the
form X = A X1 + AoXo for some Ay, Ao € R.

Let X = Zi:o M AF € #. With the explicit forms for A* computed in a2 we observe that X = (Ao — A2)T 4+ (A1 — A3) A4,
so .Z = span{I, A}, and since I and A are linearly independent we conclude that {I, A} is a basis of .Z, i.e. dim .Z = 2.

The exponential function can be applied to square matrices via its formal Taylor series:

o0
def Lk leo  Tos 1 ou
X = X' =T+ X+ X"+ X"+ =X"+...
exp kzo A + X + 5 + 5 + 21 +

Based on this we define the set # = {exp (A) | 6 € R}, and furnish it with standard matrix
multiplication. Without proof we state that

expXexpY =exp(X +Y) if[X,Y]¥ Xy -vX=0.

b. Show that Z is a commutative group by proving the following properties.
bl. Z is closed, i.e. exp (nA)exp (A) € Z. Specify this element for given n,0 € R.

Since [nA, 0A] = nd[A, A] = 0 we may apply the given multiplication formula (see * below). For exp (nA),exp (0A) € #
we have exp (nA) exp (0A) = exp ((n + 0)A) € Z.

b2. Z is associative.

For all o, 5,7 € R we have

(exp (A) exp (BA)) exp (YA) = (exp (o + B)A)) exp (YA) = exp (((r + B) +7) A)

which clearly equals, by associativity of ordinary number multiplication,

exp (a+ (B8 +7)A) = exp (aA) (exp ((B + 7)A)) = exp (aA) (exp (BA) exp (yA)) .

b3. % has a unit element. Specify this element.

The unit element is I = exp (04) € Z.
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b4. Every element of & has an inverse. Specify the inverse of exp (A A) for given 6 € R.
The inverse of exp (0A) € Z is exp (—0A) € %, since exp (0A) exp (—0A) = exp ((0 — 0)A) = exp (0A) = I.
b5. # is commutative.

This follows from commutativity of ordinary number addition: exp (nA)exp (0A) = exp((n+ 6)A) = exp ((0 +n)A) =
exp (0A) exp (nA) for all n,0 € R.

c. Show that Z is actually the group of 2 x 2 rotation matrices, i.e.

= {oy (=0 ~m0 ) | e,

sinf@ cosf

1 HINT: RECALL THE TAYLOR EXPANSIONS OF cosf AND sin6.

From a2 it follows that A%% = (=1)FI and A?k+! = (=1)F A for all k € Ny, therefore split the following sum (in step *)
as follows:

dof N1 X > gk g2k ok o p2k+1 o1 a2 <, (-1 k92k > k92k+1
(0A) = — (6A — A" = A A =
exp ( g (04 g k! 2(214)! +k§0 (2k + 1)! I;J (2k ; Gk
Here we recognize the trigonometric Taylor expansions:
( 1 k62k ) e (_1)k92k+1
cosf = and sinf = -t
St s

so that apparently

exp (AA) = cosOI +sinfA = ( cos  —sinf )

sin 6 cosf

&
2. VECTOR SPACE

We consider the class V' of positive definite functions f: R — R* : 2+ f(z) > 0 for all z € R.
We endow V' with a binary infix operator

@:VxV-=>V:i(f,g)— f®g defined such that (f & g)(x) def f(x)g(x) for all z € R.

We also provide a scalar multiplication operator

@ RxV oV:\f) =A@ f defined such that (A ® f)(z) & f(z)* for all = € R.

Show that V constitutes a vector space, and provide explicit formulas for the neutral element
0 € V as well as for the inverse element (—f) € V for any f € V. Start by proving the
closure properties implied by the above notation, and proceed by verifying all vector space ax-
ioms. It is mandatory to adhere to the symbols @ and ® in your notation wherever appropriate.

@ CAVEAT: O(z) # 0, (—f)(x) # —f(z). NO CONFUSION WILL ARISE IF YOU USE @/® CONSISTENTLY.
Closure: If f,g € V, A\, u € R, then, with henceforth ® taking precedence over &, (A ® f ® n ® g)(z) 4ef flz) g(x)* >0

for all z € R, whence A® f ® u® g € V. Furthermore, let f,g,h € V, A\, u,v € R be given in all that follows, and = € R
arbitrary. We have



def

o (fog) @h)(@) e (f @9 (@)h@) E (f(2)g(@)h(z) = f(z)(g(@)h(x)  f(2)(g @ h)(@) < (f @ (9@ h)(2), ie.

(fog)@h=fD(gdh).

e Let 0 € V be the function given by 0(x) defy > 0, then (0 f)(x) def O(x)f(x) =1f(x) = f(x),ie. 0B f = f.

e Let (—f) € V be the function given by (—f)(z) def f@)~! > 0, or (—f) def (—1) ® f, then ((—f) & f)(x) def
def

(N @) f@) < f@)"1f(2) =1 0(a).

def def

o (fog)(z) = f(2)9(z) = g(z)f(z) = (9@ f)(z),le. fOg=9g® [

e MO (fO)@) Y (fo9e Y (f@)y@) = f@) 9@ ¥ A e N (o9 L e foreg) (), ie.
AQ(f®Y =ARfDPARg.

def def def (

o (Mp)@f)(2) = fl)tH = f@) ()" = A& f)(2)(n@f)(2) = A\fouef)(z),ie. A+p)®f = A\ fOudf.

o (O N@) E f@* =(f@))* E (we NP LA we ), ie M) f=A8 (1o f).

def

e (1®f)(x) = f(@)' = f(x),ie. 1®f=F.

(15) 3. DISTRIBUTION THEORY

In this problem we insist on a notational distinction between the Dirac point distribution and
its formal integral representation involving a corresponding “Dirac function”. We shall write

def
Ts: S(R) = R: o Ts(o) = ¢(0),
for the distribution proper, respectively

d:R—=>R:zw— (),

for the virtual function “under the integral”, so Ts(¢) aof / d(z) p(z) dz.

The goal of this problem will be to prove that § ¢ LP(R) for any p>1, including p=ooc.
One can show that there exist so-called “bump functions” ¢ € .#(R) such that ¢ (z)=0 outside

an arbitrarily chosen support interval. In particular we consider the subfamily %.(R) C .7 (R)
of bump functions defined for given € >0 as follows:

Be(R) = {w € 7 (R) | ¥(x)=0 outside the interval (-5, 5), and max ]1/1(3:)|:1p(0):1} .

(5)  a. Show that Z.(R) C LY(R) for any ¢ > 1, €>0, by proving that ||y, < /e for ¢ € B(R).

611 = S/, (@) 9ds < emax [()|? = e.

(10) b. Use this fact to disprove the hypothesis that § € LP(R) for some p>1 or p=oc.

= HINT: CONSIDER THE HYPOTHESIS AND SUBPROBLEM A IN THE CONTEXT OF HOLDER’S INEQUALITY.
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For fixed p> 1 or p=oo take ¢ > 1 such that it satisfies Holder’s condition (1/p+1/g=1), then 1 = (0) = [0 ()i (z)dx <

[16llpllllq < ¥€||8]lp. This is a contradiction, since the r.h.s. can be made arbitrarily small. (Note that this argument fails

for p=1, i.e. g=00.)

)
4. FOURIER TRANSFORMATION (EXAM MARCH 21, 2007, PROBLEM 3)

In this problem we use the following Fourier convention for f € .7/(R):
oo
flo) ™ [~ fyeierdo.
— o0
As a result we have for the inverse:
1 EalIPN .
f@) =5 [ Fe) e do.

Here we permit ourselves the sloppiness of identifying a regular tempered distribution f with
its Riesz representant (“function under the integral”) with function definition f(z). The Dirac
d-distribution is identified with the “Dirac delta function” with function definition §(z).

~

a. Given f(w) = d(w — a) for some constant a € R. Determine f(x).

Substitution into the definition of the inverse Fourier transform yields

iax
e

f(@) = %/m Flw) e® duw = %Awa(wfa)eiwzdw; -

The last step * exploits the definition of the Dirac delta function.
b. Given g(z) = 2cos? x. (With cos? 2z we mean (cosz)?.) Determine g(w).
= HINT: YOU CAN CHECK YOUR RESULT WITH THE HELP OF SUBPROBLEM A.

Note that g(z) = 2 cos? z = cos(2x) + 1. Therefore

J(w) = /00 g(z) e % dg = /‘0:0 (cos(2z) +1) e~ ™% dx .

) —

Since 0 o
cos(2z) = e ,
2
we have
~ o 1 —i(w—2)x 1 —i(w+2)x —iwx 1 o —i(w—2)x 1 o —i(w+2)x o —iwx
gw) = 56 +5e +e dr = B e dw—i—i e dr + e dx
= 7w0(lw—2)4+7é(w+2)+27(w).
Check, via a:

1 )
— J(w) ™ dw
27 ) — o

1 ° )

2—/ (mé(w —2) + 7o (w+2) + 27 d(w)) T dw

T J o

= 5‘/ §(w72)e““dw+5/ 6(w+2)e“"ldw+/ O(w) e*“* dw

1 5. 1 i
_ 562130 + 56—2“0 +1=cos(2z) +1=g(x).
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In the following part you may use the standard integral

o0
/ e~ @) o = /7 regardless of the value of y € R.
—00

1 ~
c. Given ¢(z) = —= e~"". Determine d(w).

NG

$(w) = /°° d(x) e T dy = L /oo L M 2 /Oo e~ (@t in)? gy 2 o= jw?
NS VT oo

In the last step * we have used the given standard integral.

2 ~
d. Given h(x) = ——= cos? ze . Determine h(w).

Nz

1w HINT: NOTE THAT h = g ¢, RECALL SUBPROBLEMS B AND C.

With the help of the hint we determine

W) = GO = - @D = [ 568w
b % _OO (mé(w' —2) +7é(w +2) +278(w)) g/b\(wfw')dw'

* 1.2

S B = 2) 5 B2+ B) £ e HODT g S d @Dy o he

In * the theorem for the Fourier transform of a product of two functions has been used. In x we have used the definition

of the Dirac delta function.

THE END



