EXAMINATION MATHEMATICAL TECHNIQUES FOR IMAGE ANALYSIS

Course code: 8D020. Date: Monday January 23, 2012. Time: 09h00-12h00. Place: AUD 14.

Read this first!

e Write your name and student ID on each paper.
e The exam consists of 4 problems. The maximum credit for each item is indicated in the margin.

e Motivate your answers. The use of course notes is allowed. The use of problem companion (“opgaven- en tenta-
menbundel”), calculator, laptop, or any other equipment, is not allowed.

e You may provide your answers in Dutch or English.

e Feel free to ask questions on linguistic matters or if you suspect an erroneous problem formulation.

Good luck!

(30) 1. GrROUP THEORY
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In this problem we consider sets of real-valued 2 x 2-matrices generated by the following matrix:
def 0 —1
A = .
Nonnegative integer matrix powers are defined as repetitive matrix products:

xXF ¥ x X (keNy=1{0,1,2,...}).

k factors

By convention the empty product yields the 2x 2 identity matrix, X° L 7. Consider the set
LAk ken} .

L is furnished with an internal operator of type LxL — L, viz. standard matrix multiplication.

al. Show that L is closed under matrix multiplication.

a2. Show that L contains exactly 4 distinct elements, and compute their matrix representations.

a3. Prove that L is a commutative group by providing its 4 x4 group multiplication table.

We furthermore define the linear space .£ def span L.

a4. Show that dim.Z = 2, in other words, that there are two linearly independent elements
X1, Xs € £ such that every element X € Z can be written as a linear combination of the
form X = A\ X7 + A2 X5 for some A\, Ao € R.
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The exponential function can be applied to square matrices via its formal Taylor series:

def

1
expX = il

1 1
—XF =T+ X+ 2X?
kzok! tA AT

1
X34+ Xty
+o X+

Based on this we define the set Z = {exp (A) | § € R}, and furnish it with standard matrix
multiplication. Without proof we state that

expXexpY =exp(X +Y) if[X,)Y] ¥ XY -VX=0.

b. Show that & is a commutative group by proving the following properties.

bl. Z is closed, i.e. exp (nA) exp (AA) € #Z. Specify this element for given 7,0 € R.
b2. Z is associative.

b3. Z has a unit element. Specify this element.

b4. Every element of &Z has an inverse. Specify the inverse of exp (AA) for given 6 € R.
b5. Z is commutative.

c. Show that Z is actually the group of 2 x 2 rotation matrices, i.e.

= oy (0 <m0 )| g}

sinf@ cosf

= HINT: RECALL THE TAYLOR EXPANSIONS OF cosf AND sin6.

&
2. VECTOR SPACE

We consider the class V of positive definite functions f : R — R : z +— f(x) > 0 for all x € R.
We endow V' with a binary infix operator

@:VxV-oV:(f,g)— f@®g defined such that (f & g)(x) e f(x)g(x) for all z € R.

We also provide a scalar multiplication operator

R:RxV —=V:\f)—A®f defined such that (A ® f)(z) ¥ f(2)* for all z € R.

Show that V' constitutes a vector space, and provide explicit formulas for the neutral element
0 € V as well as for the inverse element (—f) € V for any f € V. Start by proving the
closure properties implied by the above notation, and proceed by verifying all vector space ax-
ioms. It is mandatory to adhere to the symbols @ and ® in your notation wherever appropriate.

@ CAVEAT: O(z) # 0, (—f)(x) # —f(z). NO CONFUSION WILL ARISE IF YOU USE @/® CONSISTENTLY.

[ )



(15) 3. DISTRIBUTION THEORY

In this problem we insist on a notational distinction between the Dirac point distribution and
its formal integral representation involving a corresponding “Dirac function”. We shall write

def
T5: S(R) = R: ¢ = T5(¢) = ¢(0),
for the distribution proper, respectively

d:R—=>R:z+ (),

for the virtual function “under the integral”, so T5(¢) def / d(z) p(z) de.

The goal of this problem will be to prove that § ¢ LP(R) for any p>1, including p=oc.
One can show that there exist so-called “bump functions” 1 € .#(R) such that ¢ (z)=0 outside

an arbitrarily chosen support interval. In particular we consider the subfamily %.(R) C .(R)
of bump functions defined for given € >0 as follows:

PB(R) = {d) € Z(R) | () =0 outside the interval (-§,5), and meaﬂic |w(m)|:d)(0):l} .

(5) a. Show that #.(R) C LI(R) for any ¢ > 1, €>0, by proving that |||, < € for ¢ € Z(R).

(10) b. Use this fact to disprove the hypothesis that § € LP(R) for some p>1 or p=oc.

5 HINT: CONSIDER THE HYPOTHESIS AND SUBPROBLEM A IN THE CONTEXT OF HOLDER’S INEQUALITY.
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(30) 4. FOURIER TRANSFORMATION (ExXAM MARCH 21, 2007, PROBLEM 3)

In this problem we use the following Fourier convention for f € .%/(R):
oo
for @ [~ fweran,
—0o0
As a result we have for the inverse:
1 BN .
f@) =5 [ Fw)eran.

Here we permit ourselves the sloppiness of identifying a regular tempered distribution f with
its Riesz representant (“function under the integral”) with function definition f(z). The Dirac
d-distribution is identified with the “Dirac delta function” with function definition ().

o~

71) a. Given f(w) = 6(w — a) for some constant a € R. Determine f(z).
2

(73) b. Given g(z) = 2cos?z. (With cos? z we mean (cosz)>.) Determine g(w).

= HINT: YOU CAN CHECK YOUR RESULT WITH THE HELP OF SUBPROBLEM A.



In the following part you may use the standard integral

S .
/ e~ @) o = /7 regardless of the value of y € R.

—00

(73) c. Given ¢(z) = \/17? ~#* Determine H(w).

2 ~
(73) d. Given h(z) = NG cos® z e~ Determine h(w).

1 HINT: NOTE THAT h = g ¢, RECALL SUBPROBLEMS B AND C.

THE END



