
EXAMINATION MATHEMATICAL TECHNIQUES FOR IMAGE ANALYSIS

Course code: 8D020. Date: Friday January 23 2015. Time: 13:30–16:30. Place: AUD 16.

Read this first!

• Use a separate sheet of paper for each problem. Write your name and student ID on each paper.

• The exam consists of 4 problems. The maximum credit for each item is indicated in the margin. The
U logo marks a somewhat lengthy item; you might want to postpone these until the end.

• Motivate your answers. The use of course notes is allowed. The use of problem companion (“opgaven-
en tentamenbundel”), calculator, laptop, smartphone, or any other equipment, is not allowed.

• You may provide your answers in Dutch or English.

GOOD LUCK!

1. Vector Space(20)

Let V ⊂ C(R) be the subset of real-valued continuous functions on R given as follows:

V = {f ∈ C(R) | f(−1)f(1) = 0} .

You may take it for granted that C(R) is a real vector space under the usual definitions of vector
addition and scalar multiplication.

a. Explain in terms of (a) formula(s) what is meant by “the usual definitions of vector addition and(5)
scalar multiplication” in this particular case. Your formula(s) should also explain what is meant
by the attribute “real” in “real vector space”.

The relevant formula is (λf + µg)(x)
def
= λf(x) + µg(x) for all x ∈ R.

b. Is the subset V itself a real vector space? If so, prove it, otherwise provide a counterexample to(5)
one of the defining axioms.

No. Counterexample: f(x) = x− 1, g(x) = x+ 1, whence (f + g)(x) = 2x, for which we have (f + g)(−1) (f + g)(1) = −4 6= 0.

Thus although f, g ∈ V we find that f + g 6∈ V , i.e. V is not closed under addition.

Now consider W ⊂ C(R) defined as follows: W = {f ∈ C(R) | f(−1) = 0 and f(1) = 0}.

c. Prove that W constitutes a real vector space.(5)

We may take it for granted that C(R) is a real vector space. According to the subspace theorem we therefore only need to

verify closure of W ⊂ C(R) under the vector space operators. Indeed, if f, g ∈ V , so that f(±1) = g(±1) = 0, then for all

λ, µ ∈ R we have (λf + µg)(±1) = λf(±1) + µg(±1) = 0, so λf + µg ∈ V .
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d. Is this still true if we replace the logical conjunction ‘and’ in the definition of W by ‘or’?(5)

No, for this replacement is equivalent to W = V , recall b.

¦

2. Linear Operator (Homework Assignment, December 13, 2006, Problem 1)(25)

In this problem V is a vector space over R equipped with a real inner product 〈̄ |̄ 〉 : V ×V → R.
Furthermore, a∈V is a fixed unit vector: 〈a|a〉 = 1.

a. Show that the subset Va ⊂ V generated by a and defined as(10)

Va = {v ∈ V | 〈a|v〉 = 0} ,

constitutes a linear subspace of V .

Let v, w ∈ Va and λ, µ ∈ R be arbitrary. Using the defining properties of an inner product, 〈a|λv + µw〉 = λ〈a|v〉+ µ〈a|w〉 = 0.

The last equality follows from the definition of Va. Thus λv + µw ∈ Va (closure), whence Va is a linear subspace of V .

b. The vector a, moreover, induces a mapping φa : V → V , as follows:

φa(v) = v − 〈a|v〉 a .

b1. Prove that φa is a linear map.(3)

Take v, w ∈ Va and λ, µ ∈ R arbitrarily. Consider

φa(λv+µw)
def
= λv+µw−〈a|λv + µw〉 a ∗= λv+µw−λ〈a|v〉 a−µ〈a|w〉 a = λ(v−〈a|v〉 a)+µ(w−〈a|w〉 a)

def
= λφa(v)+µφa(w) .

In ∗ linearity of the inner product has been used.

b2. Prove that φa(v) ∈ Va for all v ∈ V .(3)

Consider

〈a|φa(v)〉 def= 〈a|v − 〈a|v〉 a〉 ∗= 〈a|v〉 − 〈a|v〉 〈a|a〉 ?= 0 .

In ∗ linearity of the inner product has been used, in ? the fact that a is a unit vector.

b3. Prove that φa(φa(v)) = φa(v) for all v ∈ V .(3)

Substitution yields:

φa(φa(v))
def
= φa(v)− 〈a|φa(v)〉 a = φa(v) .

In the last step we have used the fact that φa(v) ∈ Va according to b2.

b4. Prove that 〈φa(v)|w〉 = 〈v|φa(w)〉 for all v, w ∈ V .(3)
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Substitution yields:

〈φa(v)|w〉 def= 〈v − 〈a|v〉 a|w〉 ∗= 〈v|w〉 − 〈a|v〉 〈a|w〉 ∗= 〈v|w〉 − 〈〈a|w〉 a|v〉 ?= 〈v|w〉 − 〈v|〈a|w〉 a〉 ∗= 〈v|w − 〈a|w〉 a〉 def= 〈v|φa(w)〉 .

In ∗ we have used linearity, in ? symmetry of the (real) inner product.

b5. Suppose w ∈ V is such that 〈φa(v)|w〉 = 0 for all v ∈ V . Show that w = λ a for some λ ∈ R(3)
and determine the value of λ in terms of a en w.
(Hint: Use the previous part and the defining properties of the inner product.)

From the previous result and the definition of w ∈ V it follows that 〈φa(v)|w〉 = 〈v|φa(w)〉 = 0 for all v ∈ V . It follows, by

virtue of non-degeneracy of the inner product, that 0 = φa(w) = w − 〈a|w〉 a, in other words, that w = λa with λ = 〈a|w〉.

¦

3. Algebra(25)

We introduce the set M of real-valued 2×2-matrices, as follows:

M =

{
A =

(
0 a
b 0

) ∣∣∣∣ a, b ∈ R
}
.

It is tacitly understood that the set M ≡ {M,+, ·} is endowed with a real vector space structure,
enabling matrix addition (+) and scalar multiplication (·) in the usual way.

a. Show that M is closed under matrix addition and scalar multiplication. (For this reason we do(5)
not make a notational distinction between the set M and the vector space M ≡ {M,+, ·}.)

Let λ, µ ∈ R and A =

(
0 a
b 0

)
∈ M, B =

(
0 c
d 0

)
∈ M, then λA+ µB =

(
0 λa+ µc

λb+ µd 0

)
∈ M.

On top of the vector space structure we also account for standard matrix multiplication, defining
a new set M ≡ {M,+, ·, ◦}—in which ◦ indicates the infix matrix product operator—consisting
of all linear combinations and matrix products of elements of M. (You may conform to the usual
habit of omitting explicit scalar and matrix multiplication signs · respectively ◦ in your notation.)

b. Show that M contains all real 2×2 matrices (i.e. M is not closed under ◦).(5)
(Hint: First consider how you can form any diagonal matrix from a product of two matrices in M.)

Take e.g. A =

(
0 c
b 0

)
∈ M ⊂ M , B =

(
0 a
d 0

)
∈ M ⊂ M , C =

(
0 1
1 0

)
∈ M ⊂ M , then A + B ◦ C =

(
a c
b d

)
∈ M .

Clearly in this way we may obtain any real 2×2 matrix by slick choice of parameters a, b, c, d ∈ R.

Let f ∈ Cω(R) be a real, analytical function, with function prototype f : R → R : x 7→ f(x). For
such a function we implement function overloading, by defining a function carrying the same name,
but with a different prototype, viz. f : M → M : A 7→ f(A), as follows. If f(x) =

∑∞
k=0 akx

k is
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the Taylor series of f ∈ Cω(R), then

f(A)
def
=

∞∑
k=0

akA
k .

Here Ak is shorthand for the k-fold matrix autoproduct of A: Ak = A ◦ . . . ◦A︸ ︷︷ ︸
k factors

, with A0 = I.

In the problems below you may use the following standard Taylor series expansions:

exp(x)
def
= ex =

∞∑
k=0

1

k!
xk , cosh(x) =

∞∑
k=0

1

(2k)!
x2k , sinh(x) =

∞∑
k=0

1

(2k + 1)!
x2k+1 .

c1. Compute exp(A) for A =

(
0 a
0 0

)
∈M, a ≥ 0, and for A =

(
0 0
b 0

)
∈M, b ≥ 0.(5)

Using the Taylor series of the exponential function, exp(A) = I + A + . . ., noting that all second and higher order terms, Ak

(k ≥ 2), vanish in these cases, we obtain

exp

[(
0 a
0 0

)]
=

(
1 0
0 1

)
+

(
0 a
0 0

)
=

(
1 a
0 1

)
.

Likewise,

exp

[(
0 0
b 0

)]
=

(
1 0
0 1

)
+

(
0 0
b 0

)
=

(
1 0
b 1

)
.

Note that for a = b = 0 results coincide, as they should, viz.

exp

[(
0 0
0 0

)]
=

(
1 0
0 1

)
+

(
0 0
0 0

)
=

(
1 0
0 1

)
.

c2. Show that ifA =

(
0 a
b 0

)
∈M, with a>0, b>0, then exp(A) =

(
cosh(

√
ab)

√
a
b sinh(

√
ab)√

b
a sinh(

√
ab) cosh(

√
ab)

)
.(5 U)

(Hint: Recall the Taylor expansions of cosh and sinh.)

A computation suggests the lemma (i) A2k = (ab)k I and (ii) A2k+1 = (ab)k A. This can be proven by induction, in which
we make use of A0 = I, A1 = A, A2 = ab I: Clearly A0 = I. Under the hypothesis that A2k = (ab)k I (∗) we find that

A2(k+1) = A2k A2 ∗= (ab)k I A2 = (ab)k+1 I. This proves (i). The proof of hypothesis (ii) follows by multiplication with A.

Consequently, using (ab)k =
√
ab

2k
=
√
ab

2k+1
/
√
ab and the above lemma in ?,

exp(A) =
∞∑
k=0

1

k!
Ak =

∞∑
k=0

1

(2k)!
A2k+

∞∑
k=0

1

(2k + 1)!
A2k+1 ?

=
∞∑
k=0

√
ab

2k

(2k)!
I+

1
√
ab

∞∑
k=0

√
ab

2k+1

(2k + 1)!
A = cosh(

√
ab) I+

1
√
ab

sinh(
√
ab)A .

Writing out I and A explicitly yields the result.

Finally we consider the case of a matrix-valued function F : R→M : t 7→ F (t) given by

F (t) =

(
0 f(t)
g(t) 0

)
,
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in which f, g ∈ Cω(R) are smooth, positive real-valued functions of one variable.

d. Show that the chain rule for scalar-valued functions does not trivially carry over to matrix-valued(5 U)
functions, by showing that

d

dt
exp(F (t)) 6= exp(F (t))

dF (t)

dt
.

(Hint: Use the result in c2, and note that it suffices to show inequality for one corresponding entry of the

matrices on left and hand right hand sides.)

On the one hand we have, using previous results,

d

dt
exp(F (t)) =

d

dt

(
cosh(

√
f(t)g(t)) ∗
∗ ∗

)
=

(
f(t)g′(t)+f ′(t)g(t)

2
√
f(t)g(t)

sinh(
√
f(t)g(t)) ∗

∗ ∗

)
,

in which ∗ stands for certain unevaluated entries that are irrelevant for our purpose. On the other hand we have

exp(F (t))
dF (t)

dt
=

(
cosh(

√
f(t)g(t))

√
f(t)
g(t)

sinh(
√
f(t)g(t))

∗ ∗

)(
0 ∗

g′(t) ∗

)
=

(
g′(t)

√
f(t)
g(t)

sinh(
√
f(t)g(t)) ∗

∗ ∗

)

These matrices are clearly different in general. Note: In a similar fashion one may prove that
d

dt
exp(F (t)) 6=

dF (t)

dt
exp(F (t))

in general. As an aside here is the correct expression for the chain rule in this particular case:

d

dt
exp(F (t)) =

∫ 1

0
exp(αF (t))F ′(t) exp((1−α)F (t)) dα .

¦

4. Fourier Transformation and Distribution Theory(30)

We consider the so-called sign function in one dimension, denoted sgn : R→ C, and given by

sgn(x) =


−1 if x < 0
0 if x = 0
+1 if x > 0

For suitably defined functions u : R→ C : x 7→ u(x) we may use the following Fourier convention:

û(ω) =

∫ ∞
−∞

e−iωxu(x) dx .

a. Argue why sgn is not a “suitably defined function”, in the sense that the Fourier formula above(5)
cannot be used to compute its Fourier transform.
(Hint: Apply the intergral formula, and indicate where exactly “things go wrong”.)
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Naive application of the integral formula would yield

ŝgn(ω) =

∫ ∞
−∞

e−iωxsgn(x) dx = −
∫ 0

−∞
e−iωx dx+

∫ ∞
0

e−iωx dx =
e−iωx

iω

∣∣∣∣x=0

x=−∞
−
e−iωx

iω

∣∣∣∣x=∞
x=0

,

which is problematic at the far boundaries x→ ±∞ (note that |e−iωx| = 1 irrespective of the value of x).

We nevertheless wish to obtain the Fourier transform ŝgn : R→ C : ω 7→ ŝgn(ω) of sgn. To this end
we must generalize the definition of the Fourier transform. One way to achieve this is via a limiting
procedure. Consider the ε-parametrized family of functions sgnε : R→ C, with ε ≥ 0, given by

sgnε(x) =


− exp(εx) if x < 0
0 if x = 0
+ exp(−εx) if x > 0

Note that sgn(x) = sgn0(x) = limε↓0 sgnε(x) for every x ∈ R.

b. Show that sgnε does admit a Fourier transform ŝgnε according to the integral formula as long(5)
as ε > 0, and compute ŝgnε(ω).

We have

ŝgnε(ω) =

∫ ∞
−∞

e−iωxsgnε(x) dx = −
∫ 0

−∞
e(−iω+ε)x dx+

∫ ∞
0

e(−iω−ε)x dx =
e(−iω+ε)x

iω − ε

∣∣∣∣∣
x=0

x=−∞

−
e(−iω−ε)x

iω + ε

∣∣∣∣∣
x=∞

x=0

=
1

iω − ε
+

1

iω + ε
.

Note that the far boundaries no longer pose problems, since limx±→∞ e∓εx = 0 for ε > 0.

Let us define
ŝgn(ω)

def
= lim

ε↓0
ŝgnε(ω) .

c. Show that, according to this definition, ŝgn(ω) =
2

iω
.(5)

Cf. the previous problem. We have ŝgn(ω)
def
= lim

ε↓0
ŝgnε(ω) = lim

ε↓0

1

iω − ε
+

1

iω + ε
=

2

iω
.

Alternatively we may interpret sgn as a tempered distribution. To avoid confusion we shall make
a notational distinction between the regular tempered distribution SGN : S (R)→ C, given by

SGN
def
= Tsgn : S (R)→ C : φ 7→ SGN(φ) =

∫ ∞
−∞

sgn(x)φ(x) dx ,

and its associated “function under the integral” sgn : R→ C.

d. Show that the distributional derivative of SGN is given by the tempered distribution SGN′ = 2δ,(5)
in which δ : S (R)→ C denotes the Dirac point distribution at the origin.

We have

SGN′(φ)
def
= SGN(−φ′) = −

∫ ∞
−∞

sgn(x)φ′(x) dx =

∫ 0

−∞
φ′(x) dx−

∫ ∞
0

φ′(x) dx = 2φ(0) = 2δ(φ) ,
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for all φ ∈ S (R), whence SGN′ = 2δ ∈ S ′(R).

The distributional Fourier transform of a general tempered distribution T ∈ S ′(R) is defined as
follows. Let T : S (R)→ C be a tempered distribution, then

T̂ : S (R)→ C : φ 7→ T̂ (φ)
def
= T (φ̂) .

e. Show with the help of this definition that δ̂ = T1, i.e. the regular tempered distribution associated(5)
with the constant function 1 : R→ C : x 7→ 1.

Following the definition of the distributional Fourier transform we have

δ̂(φ)
def
= δ(φ̂) = φ̂(0) =

∫ ∞
−∞

e−iωx φ(x) dx

∣∣∣∣
ω=0

=

∫ ∞
−∞

1 · φ(x) dx
∗
= T1(φ) ,

for all φ ∈ S (R), where in the last step (marked by ∗) we have used the definition of a regular tempered distribution, i.c. the

one that corresponds to the constant function 1 : R→ C : x 7→ 1.

f. Show that ŜGN′ = 2T1.(5)
(Hint: Use d and e.)

We have

ŜGN′(φ)
def
= SGN′(φ̂)

d
= 2δ(φ̂)

def
= 2δ̂(φ)

e
= 2T1(φ) ,

for all φ ∈ S (R), whence ŜGN′ = 2T1 ∈ S ′(R).

THE END

7


