
EXAMINATION MATHEMATICAL TECHNIQUES FOR IMAGE ANALYSIS

Course code: 8D020. Date: Friday January 24, 2014. Time: 14h00–17h00. Place: PAV SH2 E

Read this first!

• Use a separate sheet of paper for each problem. Write your name and student ID on each paper.

• The exam consists of 4 problems. The maximum credit for each item is indicated in the margin.

• Motivate your answers. The use of course notes is allowed. The use of problem companion
(“opgaven- en tentamenbundel”), calculator, laptop, or other equipment, is not allowed.

• You may provide your answers in Dutch or English.

GOOD LUCK!

1. Vector Space(25)

We introduce the set V = R2 and furnish it with an addition and scalar multiplication operator,
as follows. For all (x, y) ∈ R2, (u, v) ∈ R2, and λ ∈ R we define

(x, y) + (u, v) = (x+ u, y + v) and λ · (x, y) = (λx, 0) .

a. Show that, given these definitions, V does not constitute a vector space.(10)

The axiom that fails to hold is the requirement 1 · v = v for all v ∈ V . Indeed, taking v = (x, y) ∈ V with y 6= 0 we obtain

1 · v = 1 · (x, y) = (1x, 0) = (x, 0) 6= (x, y) = v.

Next we consider the set V = C1(R) of continuously differentiable, real-valued functions with
domain R. You may take it for granted that V is a linear space given the usual definitions of
vector addition and scalar multiplication for functions. Let W ⊂ V be the subset of functions
defined as follows:

W =
{
f ∈ V | f ′(x) = f(0)

}
b. If ∅ denotes the empty set, show that W 6= ∅.(5)

The set W evidently contains the zero function, thus W 6= ∅.

c. Show that W is a one-dimensional linear subspace, and provide an explicit basis function.(10)

Note that W 6= ∅. Furthemore, if f, g ∈ W , λ, µ ∈ R, then we have (λf + µg)′(x) = λf ′(x) + µg′(x) = λf(0) + µg(0) =

(λf+µg)(0), whence λf+µg ∈W (closure). A basis is obtained by solving the differential equation for f ∈W . Clearly we

have f(x) = f(0)x+ c, in which c ∈ R is a constant. By substituting x = 0 we see that f(0) = c, so that f(x) = c(x+ 1).

Thus W is spanned by the single function b ∈W given by b(x) = x+ 1, i.e. B = {b} is a basis.

♣
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2. Linear Operator(35)

We consider the linear space V = C1([0, 1]) ∩ L1([0, 1]) of real-valued, continuously differen-
tiable, integrable functions, with the usual vector space structure.

a. Give a precise mathematical definition of “the usual vector space structure”.(5)

Let f, g ∈ V , λ, µ ∈ R, then for all x ∈ [0, 1] we have (λf + µg)(x) = λf(x) + µg(x).

Consider the operator A : V →W : f 7→ A(f), with W a suitably defined function space, and

A(f)(x) =

∫ x

0
f(t) dt for x ∈ [0, 1].

b. Show that W is a subset of V by arguing that, for all f ∈ V , A(f) is continuously(5)
differentiable and ‖A(f)‖1 ≤ ‖f‖1.

We must show that if f ∈ V , then also A(f) ∈ V . Note that A(f) is a primitive (or antiderivative) of f , and thus certainly
A(f) ∈ C1([0, 1]). Moreover,

‖A(f)‖1 =

∫ 1

0
|A(f)(x)| dx =

∫ 1

0
|
∫ x

0
f(t) dt| dx ≤

∫ 1

0

∫ x

0
|f(t)| dt dx ≤

∫ 1

0

∫ 1

0
|f(t)| dt dx =

∫ 1

0
|f(t)| dt = ‖f‖1 ,

whence A(f) ∈ L1([0, 1]).

c1. Show that A is a linear operator.(5)

For any f, g ∈ V , λ, µ ∈ R we have

A(λf + µg) =

∫ x

0
(λf + µg)(t) dt =

∫ x

0
λf(t) + µg(t) dt = λ

∫ x

0
f(t) dt+ µ

∫ x

0
g(t) dt = λA(f) + µA(g) .

Thus A ∈ L (V,W ).

c2. Show that W ⊂ V is a linear subspace.(5)

We need to show closure of W . Let F,G ∈ W , say F = A(f), G = A(g), with f, g ∈ V , then for any λ, µ ∈ R we have

λF + µG = λA(f) + µA(g) = A(λf + µg) ∈W . In the final step we have used the previous result, viz. A ∈ L (V,W ).

A function f ∈ V is called a fixed point of A if A(f) = f .

d. Show that the only fixed point of A is the zero function.(5)
(Hint: Differentiate the fixed point equation.)

Suppose A(f) = f , then differentiation yields f = f ′, whence f(x) = cex. Moreover, from its definition it follows that

A(f)(0) = 0, whence f(0) = 0. This initial condition implies c = 0 ∈ R, thus f = 0 ∈ V . This is indeed a fixed point of A.

We furnish the linear space of linear operators on V , L (V, V ), with an algebraic structure by
defining “multiplication” in terms of operator composition ◦ : L (V, V )×L (V, V )→ L (V, V ),
i.e. if A,B ∈ L (V, V ), then A ◦B ∈ L (V, V ) is the linear operator given by

(A ◦B)(f) = A(B(f)) for all f ∈ V .
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e. Explain what we mean by the operator exponential eA ∈ L (V, V ) for A ∈ L (V, V ), in(5)
terms of this algebraic structure.
(Hint: Use the algebraic analogy with the familiar expansion ea =

∑∞
k=0

1
k!a

k ∈ R for numbers a ∈ R.)

For A ∈ L (V, V ), define Ak = A ◦ . . . ◦A for k ∈ N0, with exactly k instances of A. Subsequently define eA ∈ L (V, V ) as

eA =

∞∑
k=0

1

k!
Ak ∈ L (V, V ) .

f. Show that u(x, t) = (etAf)(x) satisfies the following initial value problem for (t, x) ∈ R+×R:(5) {
∂u

∂t
= Au

u(x, 0) = f(x) .

From the previous problem it follows that etA =
∑∞

k=0
tk

k!
Ak. Term by term differentiation w.r.t. t yields

d

dt
etA =

d

dt

∞∑
k=0

tk

k!
Ak =

∞∑
k=0

k
tk−1

k!
Ak =

∞∑
j=0

tj

j!
Aj+1 = A

∞∑
j=0

tj

j!
Aj = AetA .

The p.d.e. for u(x, t) follows from this operator identity:

∂u(x, t)

∂t
=
∂(etAf)(x)

∂t
=

d

dt
etAf(x) = AetAf(x) = Au(x, t) .

The initial condition follows from the fact that etA = I, the identity operator, if t = 0, implying u(x, 0) = f(x).

♣

3. Distribution Theory(20)

Let U ∈ S ′(R) be a tempered distribution satisfying the following “distributional ordinary
differential equation” (distributional o.d.e.):

U ′′ = δ ,

in which δ ∈ S ′(R) is the Dirac point distribution given by δ : S (R)→ R : φ 7→ δ(φ) = φ(0).

a. Argue why this differential equation does not have a solution in C2(R).(5)

If U ∈ C2(R), then U ′′ ∈ C0(R), contradicting the fact that δ 6∈ C0(R).

We postulate that U = Tu ∈ S ′(R) is a regular tempered distribution corresponding to some
function u : R → R. If U = Tu satisfies the distributional o.d.e. above, then we shall refer to
both u as well as U as a “distributional solution”.

b. Show that u : R→ R : x 7→ u(x) =
1

2
|x| is a distributional solution.(10)

Substituting U(φ) = Tu(φ) =

∫ ∞
−∞

u(x)φ(x)dx in the distributional o.d.e. yields U ′′(φ) = U(φ′′) =

∫ ∞
−∞

u(x)φ′′(x)dx =∫ ∞
−∞
|x|φ′′(x)dx = −

1

2

∫ 0

−∞
xφ′′(x)dx+

1

2

∫ ∞
0

xφ′′(x)dx. Integration by parts yields U ′′(φ) = −
1

2
xφ′(x)

∣∣∣∣0
−∞

+
1

2

∫ 0

−∞
φ′(x)dx+
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1

2
xφ′(x)

∣∣∣∣∞
0

−
1

2

∫ ∞
0

φ′(x)dx
∗
=

1

2
φ(x)

∣∣∣∣0
−∞

+
1

2
φ(x)

∣∣∣∣∞
0

?
= φ(0) = δ(φ). In ∗ and ? we have used limx→±∞ xφ′(x) = 0,

respectively limx→±∞ φ(x) = 0. Since this holds for all φ ∈ S (R) we have U ′′ = δ.

c. Show that the solution in problem b is not unique.(5)

We may always add to u a “classical” solution h : R→ R of the homogeneous o.d.e. Thus uh(x) =
1

2
|x|+h(x) is a solution

for every C2(R)-function h with h′′ = 0. Clearly h(x) = ax + b. It is easily verified that h also has a vanishing second

order derivative in distributional sense: T ′′h (φ) = Th(φ′′) =

∫ ∞
−∞

h(x)φ′′(x)dx =

∫ ∞
−∞

h′′(x)φ(x)dx = 0. In the final step

we have used two-fold partial integration.

♣

4. Fourier Analysis (Exam June 15, 2009, Problem 4)(20)

For each n ∈ N we define the function fn : R→ R as follows:

fn(x)
def
=

1

xn
.

We employ the following Fourier convention:

f̂(ω) =

∫ ∞
−∞

f(x) e−iωx dx with, as a result, f(x) =
1

2π

∫ ∞
−∞

f̂(ω) eiωx dω .

Without proof we state the Fourier transform of the function f1, viz. f̂1(ω) = −i π sgn (ω).
Here, sgn (ω) = −1 for ω < 0, sgn (0) = 0, and sgn (ω) = +1 for ω > 0.

The convolution product of two functions f and g is defined as

(f ∗ g)(x)
def
=

∫ ∞
−∞

f(y) g(x− y) dy ,

provided the integral on the right hand side exists. If this is not the case, but the functions
f and g do permit Fourier transformation, we employ the following implicit definition for the
convolution product (F(u) is here synonymous for û):

F(f ∗ g) = F(f)F(g) .

a. Show that the function f̂n is purely imaginary for odd n ∈ N, and real for even n ∈ N.(5)
(Hint: Use the (anti-)symmetry property fn(x) = (−1)n fn(−x) for all x ∈ R.)

If z = a+ bi ∈ C we write the complex conjugate as z∗ = a− bi, a, b ∈ R. For ω ∈ R arbitrary we have

f̂n(ω)
def
=

∫ ∞
−∞

fn(x) e−iωx dx
hint
= (−1)n

∫ ∞
−∞

fn(−x) e−iωx dx
∗
= (−1)n

∫ ∞
−∞

fn(y) eiωy dy
?
= (−1)n

(∫ ∞
−∞

fn(y) e−iωy dy

)∗
= (−1)n f̂∗n(ω) .

In ∗ substitution of variables, x = −y, has been used. In ? the fact that fn(y) ∈ R for all y ∈ R has been used, as

well as the fact that
∫
Ω f
∗(x) dx =

(∫
Ω f(x) dx

)∗
for any integration domein Ω ⊂ R. Conclusion: For even n we have

f̂n(ω) = f̂∗n(ω), i.e. f̂n(ω) ∈ R. For odd n we have f̂n(ω) = −f̂∗n(ω), i.e. f̂n(ω) ∈ iR, i.e. purely imaginary.

b. Prove the following recursions for the functions fn, respectively f̂n:
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b1. fn+1(x) = − 1

n
f ′n(x), n ∈ N.(21

2)

Straightforward differentiation yields f ′n(x)
def
=
[
x−n

]′
= −nx−n−1 def

= −n fn+1(x), from which the conjecture follows.

b2. f̂n+1(ω) = − 1

n
iω f̂n(ω), n ∈ N.(21

2)

We have F(fn+1)(ω)
∗
= −

1

n
F(f ′n)(ω)

?
= −

1

n
iωF(fn)(ω). In ∗ problem b1 has been used together with linearity of Fourier

transformation. In ? the following property has been used: F(f ′)(ω) = iωF(f)(ω).

c. Determine f̂n(ω) for each n ∈ N, given that f̂1(ω) = −i π sgn (ω).(5)

Claim (induction hypothesis): f̂n(ω) =
π

i

(−iω)n−1

(n− 1)!
sgn(ω). Proof by induction: For n= 1 this result agrees with the

one given. Furthermore, f̂n+1(ω)
b2
= −

1

n
iω f̂n(ω)

∗
= −

1

n
iω
π

i

(−iω)n−1

(n− 1)!
sgn(ω) =

π

i

(−iω)n

n!
sgn(ω). In ∗ the induction

hypothesis has been invoked for f̂n(ω).

d. Prove: f̂n ∗ f̂m = 2π f̂n+m for all n,m ∈ N.(5)

It is evident that fn fm = fn+m (?), as for all x ∈ R we have fn(x) fm(x) = x−n x−m = x−(n+m) = fn+m(x).

Consequently: f̂n ∗ f̂m = F(fn) ∗ F(fm)
∗
= 2πF(fn fm)

?
= 2πF(fn+m) = 2π f̂n+m. In ∗ we have used the fact that for

two functions u1 en u2 we have, provided left and right hand sides exist, F(u1 u2) =
1

2π
F(u1) ∗F(u2). In ? we have used

the first observation above.

THE END
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