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EXAMINATION MATHEMATICAL TECHNIQUES FOR IMAGE ANALYSIS

Course code: 8D020. Date: Friday January 24, 2014. Time: 14h00-17h00. Place: PAV SH2 E

Read this first!

e Use a separate sheet of paper for each problem. Write your name and student ID on each paper.

The exam consists of 4 problems. The maximum credit for each item is indicated in the margin.

Motivate your answers. The use of course notes is allowed. The use of problem companion
(“opgaven- en tentamenbundel”), calculator, laptop, or other equipment, is not allowed.

e You may provide your answers in Dutch or English.

GOOD LUCK!
1. VECTOR SPACE

We introduce the set V = R? and furnish it with an addition and scalar multiplication operator,
as follows. For all (z,y) € R?, (u,v) € R? and A € R we define

(z,y) + (u,v) = (z+u,y+v) and X-(z,y) = (\z,0).
a. Show that, given these definitions, V' does not constitute a vector space.

The axiom that fails to hold is the requirement 1-v = v for all v € V. Indeed, taking v = (z,y) € V with y # 0 we obtain
l-v=1-: (x1y) = (1:17,0) = (LE,O) 7£ (x,y) ="v.

Next we consider the set V = C'(R) of continuously differentiable, real-valued functions with
domain R. You may take it for granted that V is a linear space given the usual definitions of
vector addition and scalar multiplication for functions. Let W C V be the subset of functions
defined as follows:

W={feV|f(z)=f(0)}

b. If @ denotes the empty set, show that W # @.

The set W evidently contains the zero function, thus W # @.

c. Show that W is a one-dimensional linear subspace, and provide an explicit basis function.
Note that W # @. Furthemore, if f,g € W, A\, u € R, then we have (Af + png)’'(z) = A\f/(z) + pg’'(z) = Af(0) + pg(0) =
(Af+pg)(0), whence Af 4+ g € W (closure). A basis is obtained by solving the differential equation for f € W. Clearly we
have f(x) = f(0)x + ¢, in which ¢ € R is a constant. By substituting = 0 we see that f(0) = ¢, so that f(z) = c¢(z + 1).

Thus W is spanned by the single function b € W given by b(z) = z + 1, i.e. Z = {b} is a basis.
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(35) 2. LINEAR OPERATOR

We consider the linear space V = C([0,1]) N L([0,1]) of real-valued, continuously differen-
tiable, integrable functions, with the usual vector space structure.

a. Give a precise mathematical definition of “the usual vector space structure”.
Let f,g € V, A\, u € R, then for all z € [0,1] we have (A\f + ug)(z) = Af(z) + pg(x).

Consider the operator A:V — W : f — A(f), with W a suitably defined function space, and

A(f)(x) = /Ox f(t)dt for x €[0,1].

b. Show that W is a subset of V by arguing that, for all f € V, A(f) is continuously
differentiable and ||A(f)|1 < ||f]|1-

We must show that if f € V, then also A(f) € V. Note that A(f) is a primitive (or antiderivative) of f, and thus certainly
A(f) € C*([0,1]). Moreover,

1 1 T 1 T 1 1 1
HA(f)H1:/O \A(f)(xndm:/O \/0 f(t)dtldrS/O /0 If(t)\dtde/O /0 If(t)ldtdw=/0 F@®)]dt = | fl,

whence A(f) € L1([0,1]).

cl. Show that A is a linear operator.
For any f,g € V, A\, u € R we have
x

A + pg) = /0 N+ g) (1) di = /0 N + po(t) de = A /0 ROy /0 g(t)dt = ANA(S) + uA(g).

Thus A € Z(V,W).
c2. Show that W C V is a linear subspace.

We need to show closure of W. Let F,G € W, say F = A(f), G = A(g), with f,g € V, then for any A\, u € R we have
AF + pG = MNA(f) + pA(g) = A(Af + ng) € W. In the final step we have used the previous result, viz. A € Z(V,W).

A function f € V is called a fized point of A if A(f)=f.

d. Show that the only fixed point of A is the zero function.
(Hint: Differentiate the fixed point equation.)

Suppose A(f) = f, then differentiation yields f = f/, whence f(z) = ce®. Moreover, from its definition it follows that
A(f)(0) = 0, whence f(0) = 0. This initial condition implies ¢ = 0 € R, thus f =0 € V. This is indeed a fixed point of A.

We furnish the linear space of linear operators on V', Z(V, V), with an algebraic structure by
defining “multiplication” in terms of operator composition o : Z(V,V) x L(V,V) —» Z(V,V),
ie.if A,B e Z(V,V), then Ao B € Z(V,V) is the linear operator given by

(Ao B)(f) = A(B(f)) forall feV.
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e. Explain what we mean by the operator exponential e4 € Z(V,V) for A € Z(V,V), in
terms of this algebraic structure.
(Hint: Use the algebraic analogy with the familiar expansion e® = chzo %ak € R for numbers a € R.)

For A€ Z(V,V), define AF = Ao...o0A for k € Ny, with exactly k instances of A. Subsequently define e € .Z(V,V) as

(o)
S
k=0

|~

'Ak c LWV, V).

=

f. Show that u(x,t) = (! f)(z) satisfies the following initial value problem for (t,2) € RT x R:

ou
{ N = Au
u(z,0) = f(z).

k
From the previous problem it follows that et = ZEO:O Z—!Ak. Term by term differentiation w.r.t. ¢ yields

d ;0 d&Xth , Xtk XU 2t A
—eth= N AR =N TR AR =Y T AT =AY T AT = At
dt dt = k! prd k! = ! = !

The p.d.e. for u(z,t) follows from this operator identity:

ou(w,t) _ AN @) _ d pan\ 4iapy
pTa p = aet f(zx) = Aetd f(z) = Au(z,t).

The initial condition follows from the fact that e = I, the identity operator, if ¢t = 0, implying u(z,0) = f(z).
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3. DISTRIBUTION THEORY

Let U € &'(R) be a tempered distribution satisfying the following “distributional ordinary
differential equation” (distributional o.d.e.):

U =6
in which 6 € .#’/(R) is the Dirac point distribution given by § : #(R) — R : ¢ — d(¢p) = ¢(0).

a. Argue why this differential equation does not have a solution in C?(R).
If U € C2(R), then U" € CY(R), contradicting the fact that § ¢ CO(R).

We postulate that U = T,, € ./(R) is a regular tempered distribution corresponding to some
function u : R — R. If U = T, satisfies the distributional o.d.e. above, then we shall refer to
both u as well as U as a “distributional solution”.

1
b. Show that u : R - R:z — u(z) = §|x] is a distributional solution.

Substituting U(¢) = Tu(¢) = /Oo u(z)é(x)dx in the distributional o.d.e. yields U (¢) = U(¢") = /00 u(z)d (z)dr =

— 00 — 00

+

0
—o0

oo 1 0 1 oo 1 0
/ |z|¢” (x)dx = —5/ m(ﬁ”(m)dw—l—E/ x¢" (x)dz. Integration by parts yields U” (¢) = — 5:2(;5/(:1:) / ¢’ (z)dz+
—o0 —o0 0 —o00

N | =
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L] L [To@e 2 Lo+ Lew
—z¢'(z)| — = x)dr = —¢(z —¢(z
2 o 2Jo 2P T2

respectively limg_y + 00 ¢(z) = 0. Since this holds for all ¢ € .(R) we have U"” = 4.

oo
Z $(0) = 6(¢). In % and x we have used limg s+ 00 2¢/(z) = 0,
0

c. Show that the solution in problem b is not unique.

1
We may always add to u a “classical” solution h : R — R of the homogeneous o.d.e. Thus up(x) = §|x| + h(z) is a solution
for every C2%(R)-function h with b = 0. Clearly h(z) = ax + b. It is easily verified that h also has a vanishing second
o0 o0
order derivative in distributional sense: T} (¢) = Ty (¢") = / h(z)¢" (z)dx = R (z)¢(z)dz = 0. In the final step
o0 oo

we have used two-fold partial integration.
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4. FOURIER ANALYSIS (Exam JUNE 15, 2009, PROBLEM 4)

For each n € N we define the function f,, : R — R as follows:

def 1

‘,E’I’L

We employ the following Fourier convention:
= 00 ) 1 o .
flw) = / f(z)e™“*dx with, as a result, f(z)= / f(w) e dw.
oo 27 J_

Without proof we state the Fourier transform of the function fi, viz. fi(w) = —i7sgn (w).
Here, sgn (w) = —1 for w < 0, sgn (0) = 0, and sgn (w) = +1 for w > 0.

The convolution product of two functions f and g is defined as

(Feo@ ™ [ " W) gz —y)dy,

provided the integral on the right hand side exists. If this is not the case, but the functions
f and g do permit Fourier transformation, we employ the following implicit definition for the
convolution product (F(u) is here synonymous for «):

F(f=g)=F(f)F(g).

a. Show that the function fn is purely imaginary for odd n € N, and real for even n € N.
(Hint: Use the (anti-)symmetry property f,(z) = (=1)" f,(—z) for all z € R.)

If z = a+ bi € C we write the complex conjugate as z* = a — bi, a,b € R. For w € R arbitrary we have

= ()" fa(w).

Fo) [ pa@yetan " o [ pn e ae = [T g ey 2 1y ( [ e dy)*

In * substitution of variables, * = —y, has been used. In x the fact that f,(y) € R for all y € R has been used, as
well as the fact that [, f*(z)dz = ([ f(z) dz)" for any integration domein Q@ C R. Conclusion: For even n we have
Fn(w) = Ff(w), ie. fu(w) € R. For odd n we have fp(w) = — ¥ (w), i.e. fn(w) € iR, i.e. purely imaginary.

b. Prove the following recursions for the functions f,, respectively ﬁ:
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N[ =

) bl fua(e) =~ fulw), neN.

Straightforward differentiation yields f,(z) «f [xfn]/ =-—ng 1 _p fn+1(z), from which the conjecture follows.
N 1 -
b2. fri1(w) = - fa(w), n e N.

1 1

We have F(fni1)(w) = —— F(f2)(w) = —= iw F(fn)(w). In % problem b1 has been used together with linearity of Fourier
n n

transformation. In * the following property has been used: F(f')(w) = iwF(f)(w).

c. Determine f,(w) for each n € N, given that fi(w) = —imsgn (w).

7 (—iw)™ ! . . . .
— W sgn(w). Proof by induction: For n =1 this result agrees with the
i (n—1)!

w (—iw)™

* sgn(w) = i sgn(w). In * the induction

Claim (induction hypothesis): fn(w) =
7w (—iw)n !
n i (n—1)!

—~ 1 —~
one given. Furthermore, fy41(w) 2w fn(w)
n

hypothesis has been invoked for fn (w).

d. Prove: f, * fi, =27 fr4m for all n,m € N.

It is evident that fn fin = fn4m (%), as for all x € R we have fp(z) fm(z) = 7 "a™™ = g~ (ntm) — frn+m ().
Consequently: fn % frn = F(fn) * F(fm) = 20 F(fn fm) = 20 F(fntm) = 27 fatm. In * we have used the fact that for

two functions uj en uz we have, provided left and right hand sides exist, F(u1 u2) = o F(u1) * F(uz). In x we have used
™

the first observation above.

THE END



