EXAMINATION MATHEMATICAL TECHNIQUES FOR IMAGE ANALYSIS

Course code: 8D020. Date: Friday January 24, 2014. Time: 14h00-17h00. Place: PAV SH2 E

Read this first!

- Use a separate sheet of paper for each problem. Write your name and student ID on each paper.
- The exam consists of 4 problems. The maximum credit for each item is indicated in the margin.
- Motivate your answers. The use of course notes is allowed. The use of problem companion ("opgaven- en tentamenbundel"), calculator, laptop, or other equipment, is not allowed.
- You may provide your answers in Dutch or English.

GOOD LUCK!

(25) 1. Vector Space

We introduce the set $V=\mathbb{R}^{2}$ and furnish it with an addition and scalar multiplication operator, as follows. For all $(x, y) \in \mathbb{R}^{2},(u, v) \in \mathbb{R}^{2}$, and $\lambda \in \mathbb{R}$ we define

$$
(x, y)+(u, v)=(x+u, y+v) \quad \text { and } \quad \lambda \cdot(x, y)=(\lambda x, 0) .
$$

(10) a. Show that, given these definitions, V does not constitute a vector space.

Next we consider the set $V=C^{1}(\mathbb{R})$ of continuously differentiable, real-valued functions with domain \mathbb{R}. You may take it for granted that V is a linear space given the usual definitions of vector addition and scalar multiplication for functions. Let $W \subset V$ be the subset of functions defined as follows:

$$
W=\left\{f \in V \mid f^{\prime}(x)=f(0)\right\}
$$

(5) b. If \varnothing denotes the empty set, show that $W \neq \varnothing$.
(10) c. Show that W is a one-dimensional linear subspace, and provide an explicit basis function.

2. Linear Operator

We consider the linear space $V=C^{1}([0,1]) \cap L^{1}([0,1])$ of real-valued, continuously differentiable, integrable functions, with the usual vector space structure.
(5) a. Give a precise mathematical definition of "the usual vector space structure".

Consider the operator $A: V \rightarrow W: f \mapsto A(f)$, with W a suitably defined function space, and

$$
A(f)(x)=\int_{0}^{x} f(t) d t \quad \text { for } x \in[0,1] .
$$

(5) b. Show that W is a subset of V by arguing that, for all $f \in V, A(f)$ is continuously differentiable and $\|A(f)\|_{1} \leq\|f\|_{1}$.
c1. Show that A is a linear operator.
c2. Show that $W \subset V$ is a linear subspace.
A function $f \in V$ is called a fixed point of A if $A(f)=f$.
(5) d. Show that the only fixed point of A is the zero function.
(Hint: Differentiate the fixed point equation.)
We furnish the linear space of linear operators on $V, \mathscr{L}(V, V)$, with an algebraic structure by defining "multiplication" in terms of operator composition $\circ: \mathscr{L}(V, V) \times \mathscr{L}(V, V) \rightarrow \mathscr{L}(V, V)$, i.e. if $A, B \in \mathscr{L}(V, V)$, then $A \circ B \in \mathscr{L}(V, V)$ is the linear operator given by

$$
(A \circ B)(f)=A(B(f)) \quad \text { for all } f \in V .
$$

(5) e. Explain what we mean by the operator exponential $e^{A} \in \mathscr{L}(V, V)$ for $A \in \mathscr{L}(V, V)$, in terms of this algebraic structure.
(Hint: Use the algebraic analogy with the familiar expansion $e^{a}=\sum_{k=0}^{\infty} \frac{1}{k!} a^{k} \in \mathbb{R}$ for numbers $a \in \mathbb{R}$.)
(5) f. Show that $u(x, t)=\left(e^{t A} f\right)(x)$ satisfies the following initial value problem for $(t, x) \in \mathbb{R}^{+} \times \mathbb{R}$:

$$
\begin{cases}\frac{\partial u}{\partial t} & =A u \\ u(x, 0) & =f(x)\end{cases}
$$

3. Distribution Theory

Let $U \in \mathscr{S}^{\prime}(\mathbb{R})$ be a tempered distribution satisfying the following "distributional ordinary differential equation" (distributional o.d.e.):

$$
U^{\prime \prime}=\delta,
$$

in which $\delta \in \mathscr{S}^{\prime}(\mathbb{R})$ is the Dirac point distribution given by $\delta: \mathscr{S}(\mathbb{R}) \rightarrow \mathbb{R}: \phi \mapsto \delta(\phi)=\phi(0)$.
(5) a. Argue why this differential equation does not have a solution in $C^{2}(\mathbb{R})$.

We postulate that $U=T_{u} \in \mathscr{S}^{\prime}(\mathbb{R})$ is a regular tempered distribution corresponding to some function $u: \mathbb{R} \rightarrow \mathbb{R}$. If $U=T_{u}$ satisfies the distributional o.d.e. above, then we shall refer to both u as well as U as a "distributional solution".
(10) b. Show that $u: \mathbb{R} \rightarrow \mathbb{R}: x \mapsto u(x)=\frac{1}{2}|x|$ is a distributional solution.
(5) c. Show that the solution in problem b is not unique.
(20) 4. Fourier Analysis (Exam June 15, 2009, Problem 4)

For each $n \in \mathbb{N}$ we define the function $f_{n}: \mathbb{R} \rightarrow \mathbb{R}$ as follows:

$$
f_{n}(x) \stackrel{\text { def }}{=} \frac{1}{x^{n}} .
$$

We employ the following Fourier convention:

$$
\widehat{f}(\omega)=\int_{-\infty}^{\infty} f(x) e^{-i \omega x} d x \quad \text { with, as a result, } \quad f(x)=\frac{1}{2 \pi} \int_{-\infty}^{\infty} \widehat{f}(\omega) e^{i \omega x} d \omega
$$

Without proof we state the Fourier transform of the function f_{1}, viz. $\widehat{f}_{1}(\omega)=-i \pi \operatorname{sgn}(\omega)$. Here, $\operatorname{sgn}(\omega)=-1$ for $\omega<0, \operatorname{sgn}(0)=0$, and $\operatorname{sgn}(\omega)=+1$ for $\omega>0$.

The convolution product of two functions f and g is defined as

$$
(f * g)(x) \stackrel{\text { def }}{=} \int_{-\infty}^{\infty} f(y) g(x-y) d y
$$

provided the integral on the right hand side exists. If this is not the case, but the functions f and g do permit Fourier transformation, we employ the following implicit definition for the convolution product $(\mathcal{F}(u)$ is here synonymous for $\widehat{u})$:

$$
\mathcal{F}(f * g)=\mathcal{F}(f) \mathcal{F}(g)
$$

(5) a. Show that the function \widehat{f}_{n} is purely imaginary for odd $n \in \mathbb{N}$, and real for even $n \in \mathbb{N}$. (Hint: Use the (anti-)symmetry property $f_{n}(x)=(-1)^{n} f_{n}(-x)$ for all $x \in \mathbb{R}$.)
b. Prove the following recursions for the functions f_{n}, respectively \widehat{f}_{n} :
b1. $f_{n+1}(x)=-\frac{1}{n} f_{n}^{\prime}(x), n \in \mathbb{N}$.
b2. $\widehat{f}_{n+1}(\omega)=-\frac{1}{n} i \omega \widehat{f}_{n}(\omega), n \in \mathbb{N}$.
c. Determine $\widehat{f}_{n}(\omega)$ for each $n \in \mathbb{N}$, given that $\widehat{f_{1}}(\omega)=-i \pi \operatorname{sgn}(\omega)$.
d. Prove: $\widehat{f}_{n} * \widehat{f}_{m}=2 \pi \widehat{f}_{n+m}$ for all $n, m \in \mathbb{N}$.

THE END

