EXAMINATION MATHEMATICAL TECHNIQUES FOR IMAGE ANALYSIS

Course code: 8D020. Date: Friday January 25, 2013. Time: 14h00-17h00. Place: MF lecture room 07

Read this first!

- Write your name and student ID on each paper.
- The exam consists of 3 problems. Maximum credits are indicated in the margin.
- Motivate your answers. The use of course notes is allowed. The use of any additional material or equipment, including the problem companion ("opgaven- en tentamenbundel"), is not allowed.
- You may provide your answers in Dutch or English.
- Do not hesitate to ask questions on linguistic matters or if you suspect an erroneous problem formulation.

Good luck!

1. Group Theory

In this problem we consider the set of 2-parameter transformations on $\mathbb{L}_{2}(\mathbb{R})$ defined by

$$
G=\left\{T_{a, b}: \mathbb{L}_{2}(\mathbb{R}) \rightarrow \mathbb{L}_{2}(\mathbb{R}): f \mapsto T_{a, b}(f) \mid T_{a, b}(f)(x)=b f(x+a), a \in \mathbb{R}, b \in \mathbb{R}^{+}\right\} .
$$

By $T_{a, b}(f)(x)$ we mean $\left(T_{a, b}(f)\right)(x)$. We furnish the set G with the usual composition operator, indicated by the infix symbol \circ :

$$
\circ: G \times G \rightarrow G:\left(T_{a, b}, T_{c, d}\right) \mapsto T_{a, b} \circ T_{c, d},
$$

i.e. $\left(T_{a, b} \circ T_{c, d}\right)(f)=T_{a, b}\left(T_{c, d}(f)\right)$.
a. Show that this is a good definition by proving the following claims for $a, c \in \mathbb{R}, b, d \in \mathbb{R}^{+}$:
a1. If $f \in \mathbb{L}_{2}(\mathbb{R})$, then $T_{a, b}(f) \in \mathbb{L}_{2}(\mathbb{R})$. (Closure of $\mathbb{L}_{2}(\mathbb{R})$ under the mapping $T_{a, b}$.)
Suppose $f \in \mathbb{L}_{2}(\mathbb{R})$, then $\left\|T_{a, b} f\right\|_{2}^{2}=\int_{-\infty}^{\infty}|b f(x+a)|^{2} d x \stackrel{*}{=} b^{2} \int_{-\infty}^{\infty}|f(y)|^{2} d y=b^{2}\|f\|_{2}^{2}<\infty$. In $*$ we have changed variables: $y=x+a$, the other identities rely on definitions.
a2. If $T_{a, b} \in G$, then $T_{a, b} \circ T_{c, d}=T_{a+c, b d}$. (Closure of G under composition ०.)

For arbitrary $f \in \mathbb{L}_{2}(\mathbb{R})$ and $x \in \mathbb{R}$ we have $\left(T_{a, b} \circ T_{c, d}\right)(f)(x)=T_{a, b}\left(T_{c, d}(f)\right)(x)=b T_{c, d}(f)(x+a)=b d f(x+a+c)=$ $T_{a+c, b d}(f)(x)$, so that we may conclude that $T_{a, b} \circ T_{c, d}=T_{a+c, b d}$.
(10) b. Show that $\{G, \circ\}$ constitutes a commutative group, and give explicit expressions for the identity element $e \in G$, and for the inverse element $T_{a, b}^{\mathrm{inv}} \in G$ corresponding to $T_{a, b} \in G$.

Closure has been proven. Let $a, c, e \in \mathbb{R}$ and $b, d, f \in \mathbb{R}^{+}$be arbitrary. Commutativity follows from $T_{a, b} \circ T_{c, d}=$ $T_{a+c, b d}=T_{c+a, d b}=T_{c, d} \circ T_{a, b}$. Associativity follows from the fact that composition is, by construction, associative.

Alternatively, exploit the identity proven under a2: $\left(T_{a, b} \circ T_{c, d}\right) \circ T_{e, f}=T_{a+c, b d} \circ T_{e, f}=T_{(a+c)+e,(b d) f}=T_{a+(c+e), b(d f)}=$ $T_{a, b} \circ\left(T_{c+e, d f}\right)=T_{a, b} \circ\left(T_{c, d} \circ T_{e, f}\right)$. The identity element is $T_{0,1} \in G$, since $T_{a, b} \circ T_{0,1}=T_{0,1} \circ T_{a, b}=T_{0+a, 1 b}=T_{a, b}$. The inverse element $T_{a, b}^{-1}$ of $T_{a, b} \in G$ is given by $T_{a, b}^{-1}=T_{-a, 1 / b} \in G$, since $T_{a, b} \circ T_{-a, 1 / b}=T_{-a, 1 / b} \circ T_{a, b}=T_{-a+a, b / b}=T_{0,1}$.
(10) c. Show that $G_{1}=\left\{T_{a, b} \in G \mid a \in \mathbb{R}, b=1\right\}$ is a subgroup of G.

Hint: Exploit the fact that G is a group and $G_{1} \subset G$.
$T_{a, 1} \circ T_{c, 1}=T_{a+c, 1} \in G_{1}$, so $G_{1} \subset G$ is closed under o. Moreover, $T_{a, 1}^{-1}=T_{-a, 1} \in G$, so $G_{1} \subset G$ is also closed under inversion. Hence $G_{1} \subset G$ is a subgroup.

2. Distribution Theory

Recall the Dirac point distribution,

$$
\delta: \mathscr{S}(\mathbb{R}) \rightarrow \mathbb{R}: \phi \mapsto \delta(\phi)=\phi(0)
$$

and its derivative,

$$
\delta^{\prime}: \mathscr{S}(\mathbb{R}) \rightarrow \mathbb{R}: \phi \mapsto \delta^{\prime}(\phi)=-\phi^{\prime}(0) .
$$

In this problem we consider an approximation of δ^{\prime} in the form of a 1-parameter family of functions, given by

$$
f_{\epsilon}: \mathbb{R} \rightarrow \mathbb{R}: x \mapsto f_{\epsilon}(x)= \begin{cases}0 & \text { if } x \leq-\epsilon \\ 1 / \epsilon^{2} & \text { if }-\epsilon<x<0 \\ 0 & \text { if } x=0 \\ -1 / \epsilon^{2} & \text { if } 0<x<\epsilon \\ 0 & \text { if } x \geq \epsilon\end{cases}
$$

with $\epsilon>0$.
(5) a. Draw the graph of $y=f_{\epsilon}(x)$, indicating relevant values (in terms of ϵ) on each axis.

Consider the regular tempered distribution $T_{f_{\epsilon}}$ associated with the function f_{ϵ}, i.e.

$$
T_{f_{\epsilon}}: \mathscr{S}(\mathbb{R}) \rightarrow \mathbb{R}: \phi \mapsto T_{f_{\epsilon}}(\phi) \stackrel{\text { def }}{=} \int_{-\infty}^{\infty} f_{\epsilon}(x) \phi(x) d x .
$$

(10) b. Show that $T_{f_{\epsilon}}(\phi)=\frac{1}{\epsilon^{2}} \int_{-\epsilon}^{0} \phi(x) d x-\frac{1}{\epsilon^{2}} \int_{0}^{\epsilon} \phi(x) d x$.

We may replace the integration boundaries $\pm \infty$ by the boundaries $\pm \epsilon$ of the compact domain of support of f_{ϵ}. Subsequently we may split the integral $\int_{-\epsilon}^{\epsilon}=\int_{-\epsilon}^{0}+\int_{0}^{\epsilon}$, and substitute the definition of f_{ϵ}.

Let $\phi \in \mathscr{S}(\mathbb{R})$ be an analytical test function, and recall Taylor's theorem:

$$
\phi(x)=\phi(0)+\phi^{\prime}(0) x+\frac{1}{2} \phi^{\prime \prime}(\xi) x^{2},
$$

in which ξ is some number between 0 and x.
(5) c. Using this Taylor expansion, argue (mathematically) why we may replace the Lagrange remainder term $\frac{1}{2} \phi^{\prime \prime}(\xi) x^{2}$ in the expression for $T_{f_{\epsilon}}(\phi)$ by a term of order $\mathcal{O}\left(\epsilon^{2}\right)$ as $\epsilon \downarrow 0$.

Both ξ and x are of order $\mathcal{O}(\epsilon)$ on the effective support interval, so $\phi^{\prime \prime}(\xi)=\mathcal{O}(1)$, whence we have for the Lagrange remainder $\frac{1}{2} \phi^{\prime \prime}(\xi) x^{2}=\mathcal{O}\left(\epsilon^{2}\right)$.
(10) d. Show that, for any analytical test function $\phi \in \mathscr{S}(\mathbb{R}), \lim _{\epsilon \downarrow 0} T_{f_{\epsilon}}(\phi)=\delta^{\prime}(\phi)$.

We have
$\lim _{\epsilon \downarrow 0} T_{f_{\epsilon}}(\phi)=\lim _{\epsilon \downarrow 0}\left[\frac{1}{\epsilon^{2}} \int_{-\epsilon}^{0} \phi(x) d x-\frac{1}{\epsilon^{2}} \int_{0}^{\epsilon} \phi(x) d x\right]=\lim _{\epsilon \downarrow 0}\left[\frac{1}{\epsilon^{2}} \int_{-\epsilon}^{0}\left(\phi(0)+\phi^{\prime}(0) x+\mathcal{O}\left(\epsilon^{2}\right)\right) d x-\frac{1}{\epsilon^{2}} \int_{0}^{\epsilon}\left(\phi(0)+\phi^{\prime}(0) x+\mathcal{O}\left(\epsilon^{2}\right)\right) d x\right]$.
Observe the following:

- The zeroth order terms in both integrals cancel eachother.
- The first order terms in both integrals add up: $\frac{1}{\epsilon^{2}} \int_{-\epsilon}^{0} \phi^{\prime}(0) x d x-\frac{1}{\epsilon^{2}} \int_{0}^{\epsilon} \phi^{\prime}(0) x d x=\left(-\frac{1}{2}-\frac{1}{2}\right) \phi^{\prime}(0)=-\phi^{\prime}(0)$.
- The $\mathcal{O}\left(\epsilon^{2}\right)$ term in each integral yields, after integration, and taking into account the factor $1 / \epsilon^{2}$, an $\mathcal{O}(\epsilon)$ outcome.

Thus

$$
\lim _{\epsilon \downarrow 0} T_{f_{\epsilon}}(\phi)=\lim _{\epsilon \downarrow 0}\left[-\phi^{\prime}(0)+\mathcal{O}(\epsilon)\right]=-\phi^{\prime}(0) \stackrel{\text { def }}{=} \delta^{\prime}(\phi)
$$

(40) 3. Fourier Transformation (Exam January 17, 2007, Problem 3)

In this problem we employ the following Fourier convention:

$$
\widehat{f}(\omega)=\int_{-\infty}^{\infty} f(x) e^{-i \omega x} d x \quad \text { with, consequently, } \quad f(x)=\frac{1}{2 \pi} \int_{-\infty}^{\infty} \widehat{f}(\omega) e^{i \omega x} d \omega
$$

We also define the following complex valued one-dimensional signal $f_{a, b}: \mathbb{R} \rightarrow \mathbb{C}: x \mapsto f(x)$, as follows:

$$
f_{a, b}(x)=e^{(a+b i)|x|} .
$$

In this expression, $a, b \in \mathbb{R}$ are constant parameters and $|x|$ denotes the absolute value of $x \in \mathbb{R}$.
(10) a. Determine $\widehat{f}_{a, b}(\omega)$ and state the necessary conditions that $a, b \in \mathbb{R}$ have to fulfill in order for this function to be well-defined (in a classical, i.e. non-distributional sense).

$$
\begin{aligned}
& \widehat{f}_{a, b}(\omega) \stackrel{\text { def }}{=} \int_{-\infty}^{\infty} e^{-i \omega x} f_{a, b}(x) d x=\int_{-\infty}^{\infty} e^{-i \omega x+(a+b i)|x|} d x=\int_{-\infty}^{0} e^{(-a-(b+\omega) i) x} d x+\int_{0}^{\infty} e^{(a+(b-\omega) i) x} d x= \\
& \frac{-1}{a+(b+\omega) i}\left[e^{-a x} e^{-(b+\omega) i x}\right]_{-\infty}^{0}+\frac{1}{a+(b-\omega) i}\left[e^{a x} e^{(b-\omega) i x}\right]_{0}^{\infty}=\left(-\frac{1}{a+(b+\omega) i}-\frac{1}{a+(b-\omega) i}\right) \stackrel{*}{=}-\frac{2(a+b i)}{(a+b i)^{2}+\omega^{2}},
\end{aligned}
$$

under the necessary condition that $a<0$. The last step $(*)$ and the associated condition follow from the limits

$$
\lim _{x \rightarrow-\infty} e^{-a x} e^{-(b+\omega) i x}=\lim _{x \rightarrow \infty} e^{a x} e^{(b-\omega) i x}=0 \quad \text { iff } a<0 .
$$

Note that the oscillating factors $e^{-(b+\omega) i x}$ and $e^{(b-\omega) i x}$ are irrelevant in these limiting cases, as their absolute values are equal to 1 .

The convolution of two functions $f, g: \mathbb{R} \rightarrow \mathbb{C}$ is given by

$$
(f * g)(x)=\int_{-\infty}^{\infty} f(y) g(x-y) d y .
$$

b. Prove that convolution is associative, i.e. that for all $f, g, h: \mathbb{R} \rightarrow \mathbb{C}$ for which the expressions below are well-defined we have
b1. $f *(g * h)=(f * g) * h$, and
Repetitive use of the theorem $\mathcal{F}(f * g)=\mathcal{F}(f) \mathcal{F}(g)$, or $f * g=\mathcal{F}^{-1}(\mathcal{F}(f) \mathcal{F}(g))$, yields
$f *(g * h)=\mathcal{F}^{-1}(\mathcal{F}(f) \mathcal{F}(g * h))=\mathcal{F}^{-1}(\mathcal{F}(f)(\mathcal{F}(g) \mathcal{F}(h))) \stackrel{*}{=} \mathcal{F}^{-1}((\mathcal{F}(f) \mathcal{F}(g)) \mathcal{F}(h))=\mathcal{F}^{-1}(\mathcal{F}(f * g) \mathcal{F}(h))=(f * g) * h$.
In * associativity of the usual function product has been used.
(5) b2. $f * g=g * f$.

By the same token it follows that

$$
f * g=\mathcal{F}^{-1}(\mathcal{F}(f) \mathcal{F}(g)) \stackrel{*}{=} \mathcal{F}^{-1}(\mathcal{F}(g) \mathcal{F}(f))=g * f
$$

In $*$ commutativity of the usual function product has been used.

By the symbol $*^{n}$ we denote n-fold convolution, i.e.

$$
f *^{n} f \stackrel{\text { def }}{=} f * \ldots * f \quad \text { with } n+1 \text { factors } f
$$

(10) c. Determine the explicit form of the function $\widehat{f}_{a, b} *^{n} \widehat{f}_{a, b}$ for those $a, b \in \mathbb{R}$ for which $\widehat{f}_{a, b}$ is well-defined (recall part a).

Write $\mathcal{F}(f)=\widehat{f}$, then the product of two functions $f, g: \mathbb{R} \rightarrow \mathbb{C}$ satisfies

$$
\mathcal{F}(f g)=\frac{1}{2 \pi}(\mathcal{F}(f) * \mathcal{F}(g)) \quad \text { so that } \quad \widehat{f} * \widehat{g}=2 \pi \mathcal{F}(f g) .
$$

In particular it follows that

$$
\widehat{f}_{a, b} *^{n} \widehat{f}_{a, b}=(2 \pi)^{n} \mathcal{F}\left(f_{a, b}^{n+1}\right) \stackrel{*}{=}(2 \pi)^{n} \mathcal{F}\left(f_{(n+1) a,(n+1) b}\right)=(2 \pi)^{n} \widehat{f}_{(n+1) a,(n+1) b} .
$$

In * the explicit form of $f_{a, b}$ has been used, which shows that $f_{a, b}^{n}(x)=\left(f_{a, b}(x)\right)^{n}=\left(e^{(a+b i)|x|}\right)^{n}=e^{(n a+n b i)|x|}=f_{n a, n b}(x)$ for all $x \in \mathbb{R}$. Conclusion:

$$
\left(\widehat{f}_{a, b} *^{n} \widehat{f}_{a, b}\right)(\omega)=(2 \pi)^{n} \widehat{f}_{(n+1) a,(n+1) b}(\omega) \stackrel{\text { a }}{=}-(2 \pi)^{n} \frac{2(n+1)(a+b i)}{(n+1)^{2}(a+b i)^{2}+\omega^{2}} .
$$

d. Let $g(x)=x e^{-|x|}$. Find $\widehat{g}(\omega)$.

$$
\widehat{g}(\omega)=\int_{-\infty}^{\infty} x e^{-i \omega x-|x|} d x=i \frac{d}{d \omega} \int_{-\infty}^{\infty} e^{-i \omega x-|x|} d x=i \frac{d}{d \omega} \widehat{f}_{a=-1, b=0}(\omega) \stackrel{\text { a }}{=} i \frac{d}{d \omega} \frac{2}{1+\omega^{2}}=\frac{-4 i \omega}{\left(1+\omega^{2}\right)^{2}} .
$$

THE END

