
EXAMINATION MATHEMATICAL TECHNIQUES FOR IMAGE ANALYSIS

Course code: 8D020. Date: Wednesday August 25, 2010. Time: 14h00–17h00. Place:

Read this first!

• Use a separate sheet of paper for each problem. Write your name and student ID on each paper.

• The exam consists of 4 problems. The maximum credit for each item is indicated in the margin.

• Motivate your answers. The use of course notes and calculator is allowed. The use of the problem
companion, “opgaven- en tentamenbundel”, is not allowed.

• You may provide your answers in Dutch or English.

GOOD LUCK!

1. Norms and Inner Products(25)

The figure below shows a (real-valued) greyvalue image f consisting of 9 pixels, of which the
numerical values are indicated.
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a. We define the p-norm of an M×N image g as

‖g‖p =

 M∑
i=1

N∑
j=1

|g[i, j]|p
 1

p

for p ≥ 1. Compute the following norms for the above 3×3-image f :

a1. ‖f‖1.(21
2)

‖f‖1 = 2 + 0 + 0 + 4 + 6 + 3 + 0 + 4 + 0 = 19.

a2. ‖f‖2.(21
2)

‖f‖2 = (22 + 02 + 02 + 42 + 62 + 32 + 02 + 42 + 02)
1
2 = 9.

1



b. We define furthermore the “∞-norm” of an M×N image g as ‖g‖∞ = limp→∞ ‖g‖p .

b1. Argue that ‖g‖∞ = maxi=1,...,M,j=1,...,N |g[i, j||.(21
2)

(Hint: Consider the asymptotic behaviour of (mp+Mp)
1
p = M

(
(mM )p+1

) 1
p for 0≤m≤M as p→∞.)

Suppose (i∗, j∗) is a grid point for which g[i∗, j∗] ≥ g[i, j] for all i = 1, . . . ,M, j = 1, . . . , N . For ease of notation, let us
write Sp = |g[i∗, j∗]|p and sp =

∑
(i,j)6=(i∗,j∗) |g[i, j]|p, so

‖g‖p = (sp + Sp)
1
p = S

1
p
p

(
sp

Sp
+1

) 1
p

.

We now determine strict upper and lower bounds for this expression. From S
1
p
p = |g[i∗, j∗]| and 0 ≤ sp =

∑
(i,j)6=(i∗,j∗) |g[i, j]|p ≤∑

(i,j)6=(i∗,j∗) |g[i∗, j∗]|p = (MN−1)Sp it follows that 1 ≤ sp

Sp
+1 ≤MN , so that

|g[i∗, j∗]| ≤ ‖g‖p ≤ |g[i∗, j∗]|(MN)
1
p .

As p→∞ we have (MN)
1
p → 1 and so ‖g‖p → |g[i∗, j∗]| = maxi=1,...,M,j=1,...,N |g[i, j||.

b2. Compute ‖f‖∞ for the given 3×3-image f .(21
2)

‖f‖∞ = 6.

We define for an arbitrary M×N image g the normalized image

gp =
g

‖g‖p
.

c. Determine for the given 3×3 image f respectively (you may use the appendix )

c1. f1,(21
2)

c2. f2,(21
2)

c3. f∞.(21
2)
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(c) f∞

For arbitrary M×N images g and h we introduce the (real) standard inner product, as follows:

〈g|h〉 =
M∑
i=1

N∑
j=1

g[i, j]h[i, j] .
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d. Prove that 〈gp|hq〉 =
〈g|h〉
‖g‖p‖h‖q

.(21
2)

Due to bilinearity we may extract scalar factors:

〈gp|hq〉 = 〈 g
‖g‖p
| h
‖h‖q

〉 =
〈g|h〉
‖g‖p‖h‖q

.

In the case of discrete M×N images g en h Hölder’s inequality reads as follows:

‖gh‖1 ≤ ‖g‖p ‖h‖q ,

for each parameter pair (p, q) for which 1 ≤ p, q ≤ ∞ and
1
p

+
1
q

= 1.

e. Prove that for arbitrary M×N images g and h we have 〈gp|hq〉 ≤ 1. In this inequality the(5)
pair (p, q) satisfies the conditions of Hölder’s inequality.

Using the previous part and (in the final step below) Hölder’s inequality we can make the following estimation:

〈gp|hq〉
d
=

〈g|h〉
‖g‖p‖h‖q

≤
|〈g|h〉|
‖g‖p‖h‖q

≤
‖gh‖1
‖g‖p‖h‖q

≤ 1 .

P.S. The last step uses Hölder’s inequality. The second last step follows from the fact that the absolute value of a sum of
terms is always smaller than or equal to the sum of absolute values of those terms:

|〈g|h〉| =

∣∣∣∣∣∣
M∑
i=1

N∑
j=1

g[i, j]h[i, j]

∣∣∣∣∣∣ ≤
M∑
i=1

N∑
j=1

|g[i, j]h[i, j]| = ‖gh‖1 .

♣

2. Linear Spaces and Projections(35)

C2
0 ([0, 1]) is the class of twice continuously differentiable, real functions of the type f : [0, 1]→ R,

for which f(0) = f(1) = f ′(0) = f ′(1) = 0. (P.S. With f ′(0) en f ′(1) we mean right, respec-
tively left derivative at the corresponding point.) Without proof we conjecture that C∞([0, 1]),
the class of real-valued functions on the closed interval [0, 1] that are infinitely differentiable,
constitutes a linear space. (P.S. Again the boundary derivatives f (n)(0) and f (n)(1) are defined
in terms of single-sided limits.)

a. Prove that C2
0 ([0, 1]) is a linear space.(71

2)
(Hint: C2

0 ([0, 1]) ⊂ C∞([0, 1]).)

Since C2
0 ([0, 1]) ⊂ C∞([0, 1]), in which C∞([0, 1]) is a linear space, it suffices to prove that C2

0 ([0, 1]) is closed w.r.t. vector

addition and scalar multiplication. Suppose f, g ∈ C2
0 ([0, 1]) and λ, µ ∈ R are arbitrary, then λ f + µ g is again twice

continuously differentiable (since, by definition, (λ f + µ g)′ = λ f ′ + µ g′, etc.). In particular we have (λ f + µ g)(r) =

λ f(r) + µ g(r) = 0 and (λ f + µ g)′(r) = λ f ′(r) + µ g′(r) = 0 for boundary points r ∈ {0, 1}, so λ f + µ g also satisfies the

boundary conditions, therefore λ f + µ g ∈ C2
0 ([0, 1]).
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We endow the linear space C2
0 ([0, 1]) with a real inner product according to one of the definitions

below. The subscript identifies the definition, therefore do not omit it in your notation.

Definition 1: For f, g ∈ C2
0 ([0, 1]),

〈f |g〉1 =
∫ 1

0
f(x) g(x) dx+

∫ 1

0
f ′(x) g′(x) dx .

Definition 2: For f, g ∈ C2
0 ([0, 1]),

〈f |g〉2 =
∫ 1

0
f(x) g(x) dx− 1

2

∫ 1

0
f ′′(x) g(x) dx− 1

2

∫ 1

0
f(x) g′′(x) dx .

b. Show that Definition 1 is a good definition, i.e. that it indeed defines an inner product.(5)

Suppose f, g, h ∈ C2
0 ([0, 1]) and λ, µ ∈ R. Then both

∫ 1
0 f(x) g(x) dx and

∫ 1
0 f
′(x) g′(x) dx are well defined, so 〈f |g〉1 ∈ R.

Moreover:

〈λ f + µ g|h〉1 =

∫ 1

0
(λ f + µ g)(x)h(x) dx+

∫ 1

0
(λ f + µ g)′(x)h′(x) dx

=

∫ 1

0
(λ f(x) + µ g(x))h(x) dx+

∫ 1

0
(λ f ′(x) + µ g′(x))h′(x) dx

= λ

(∫ 1

0
f(x)h(x) dx+

∫ 1

0
f ′(x)h′(x) dx

)
+ µ

(∫ 1

0
g(x)h(x) dx+

∫ 1

0
g′(x)h′(x) dx

)
= λ 〈f |h〉1 + µ 〈g|h〉1 ,

〈f |λ g + µh〉1 =

∫ 1

0
f(x) (λ g + µh)(x) dx+

∫ 1

0
f ′(x) (λ g + µh)′(x) dx

=

∫ 1

0
f(x) (λ g(x) + µh(x)) dx+

∫ 1

0
f ′(x) (λ g′(x) + µh′(x)) dx

= λ

(∫ 1

0
f(x) g(x) dx+

∫ 1

0
f ′(x) g′(x) dx

)
+ µ

(∫ 1

0
f(x)h(x) dx+

∫ 1

0
f ′(x)h′(x) dx

)
= λ 〈f |g〉1 + µ 〈f |h〉1 ,

〈f |g〉1 =

∫ 1

0
f(x) g(x) dx+

∫ 1

0
f ′(x) g′(x) dx

= 〈g|h〉1 commutativity of ordinary multiplication,

〈f |f〉1 =

∫ 1

0
(f(x))2 dx+

∫ 1

0
(f ′(x))2 dx > 0 if f is not the null function.

c. Prove that both definitions are equivalent.(5)
(Hint: Partial integration.)

Using partial integration it follows that

∫ 1

0
f ′′(x) g(x) dx =

[
f ′(x) g(x)

]1
0
−
∫ 1

0
f ′(x) g′(x) dx = −

∫ 1

0
f ′(x) g′(x) dx as well as∫ 1

0
f(x) g′′(x) dx =

[
f(x) g′(x)

]1
0
−
∫ 1

0
f ′(x) g′(x) dx = −

∫ 1

0
f ′(x) g′(x) dx .

The boundary terms cancel as a result of the boundary conditions satisfied by f, g ∈ C2
0 ([0, 1]). By substituting these

equalities into Definition 2 it follows that 〈f |g〉2 = 〈f |g〉1.
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By virtue of equivalence you may omit the subscript henceforth: 〈f |g〉 = 〈f |g〉1 = 〈f |g〉2. With
the help of this inner product we introduce, for arbitrary fixed h ∈ C2

0 ([0, 1]), the following
linear mapping Ph : C2

0 ([0, 1])→ C2
0 ([0, 1]):

Definition: Ph(f) =
〈h|f〉
〈h|h〉

h .

d. Show that Ph ◦ Ph = Ph. The infix operator ◦ denotes composition.(5)

Let f ∈ C2
0 ([0, 1]) be arbitrary. Then

(Ph ◦ Ph) (f) = Ph (Ph(f)) =
〈h|Ph(f)〉
〈h|h〉

h =
〈h| 〈h|f〉〈h|h〉 h〉

〈h|h〉
h =

〈h|f〉
〈h|h〉

〈h|h〉
〈h|h〉

h =
〈h|f〉
〈h|h〉

h = Ph(f) .

The third equality uses linearity of the inner product w.r.t. the second argument, the rest follows from the definition of

the composition operator ◦, resp. of Ph. Since this holds for all f ∈ C2
0 ([0, 1]) it follows that Ph ◦Ph = Ph (idempotency).

e. Show that P †h = Ph, i.e. 〈g|Phf〉 = 〈Phg|f〉 for all f, g ∈ C2
0 ([0, 1]).(5)

Using bilinearity of the real inner product, the definition of Ph, and some elementary rewritings, we obtain

〈g|Phf〉 = 〈g| 〈h|f〉〈h|h〉 h〉 =
〈h|f〉
〈h|h〉

〈g|h〉 =
〈h|g〉
〈h|h〉

〈h|f〉 = 〈 〈h|g〉〈h|h〉 h|f〉 = 〈Phg|f〉 .

General properties of the real inner product have been used in steps 2 (linearity w.r.t. second argument), 3 (symmetry),

and 4 (linearity w.r.t. first argument).

Consider the following two functions (notice that f(x) = f(1− x) and g(x) = g(1− x)):

f(x) = x4 − 2x3 + x2 (0 ≤ x ≤ 1) and g(x) =
{
−4x3 + 3x2 (0 ≤ x ≤ 1

2)
−4(1− x)3 + 3(1− x)2 (1

2 ≤ x ≤ 1)

f. Show that f, g ∈ C2
0 ([0, 1]).(71

2)

Polynomials are infinitely differentiable, so in particular it follows that f is twice differentiable. For g we have to inspect
the “suspicious” point x = 1

2
more closely.:

lim
x↑ 1

2

g(x) =
1

4

lim
x↓ 1

2

g(x) =
1

4
.

The function g is therefore continuous (in x = 1
2

and thus everywhere). Furthermore:

lim
x↑ 1

2

g′(x) = lim
x↑ 1

2

(−12x2 + 6x) = 0

lim
x↓ 1

2

g′(x) = lim
x↓ 1

2

(12(1− x)2 − 6(1− x)) = 0 .

The function g is therefore continuously differentiable in x = 1
2

with g′( 1
2

) = 0. Moreover:

lim
x↑ 1

2

g′′(x) = lim
x↑ 1

2

(−24x+ 6) = −6

lim
x↓ 1

2

g′′(x) = lim
x↓ 1

2

(−24(1− x) + 6) = −6 .

5



The function g′ is therefore also continuously differentiable in x = 1
2

with g′′( 1
2

) = −6. All in all it follows that g is twice

continuously differentiable in x = 1
2

and thus everywhere. Finally we have to check the boundary conditions: We have

f ′(x) = 4x3 − 6x2 + 2x for all 0 ≤ x ≤ 1, and g′(x) = −12x2 + 6x for x < 1
2

and g′(x) = −g′(1 − x) for x > 1
2

, so
f(0) = f(1) = f ′(0) = f ′(1) = 0 and likewise for g, with boundary derivatives defined as follows:

f ′(0)
def
= lim

x↓0
f ′(x)

f ′(1)
def
= lim

x↑1
f ′(x) .

♣

3. Partial Differential Equations and Fourier Transformation(20)

Consider the following partial differential equation (p.d.e.):

∂2u

∂t2
+
∂2u

∂x2
= 0 x ∈ R, t > 0 .

Here u : R×R+ −→ R : (x, t) 7→ u(x, t) is a real valued spatial filter for each constant value of
the parameter t ∈ R+.

a. Consider, for fixed t, the Fourier decomposition(5)

u(x, t) =
1

2π

∫ ∞
−∞

û(ω, t) eiωx dω and thus û(ω, t) =
∫ ∞
−∞

u(x, t) e−iωx dx .

Show that with this definition the above p.d.e. for u(x, t) can be reduced to the following
ordinary differential equation for û(ω, t), in which ω ∈ R can be interpreted as an arbitrary
parameter:

d2û

dt2
− ω2 û = 0 ω ∈ R, t > 0 .

Substitution of u(x, t) = 1
2π

∫∞
−∞ û(ω, t) eiωx dω into the p.d.e. yields, after interchanging differential and integral operators,

1

2π

∫ ∞
−∞

[
d2û

dt2
(ω, t)− ω2 û(ω, t)

]
eiωx dω = 0 ω ∈ R, t > 0 .

The part between square brackets on the left hand side is thus the Fourier transform of the null function (right hand

side), so it is itself the null function. P.S.: Instead of “d” you may write “∂”. Note that the variable ω is considered as

a constant parameter here (there is no differentiation w.r.t. ω), so that we are actually dealing with an ordinary second

order differential equation.

b. Show that the general solution for û(ω, t) is given by(5)

û(ω, t) = Ae−t|ω| +B et|ω| .

Here, A and B are two integration constants yet to be determined.
(Hint: Stipulate a solution of type û(t) = eλt and determine the possible values of λ ∈ C in terms of ω.)

6



Stipulate a solution of the type û(t) = eλt (the parameter ω has been omitted for ease of notation). Substitution yields

λ = ±ω, so that the general solution is a linear combination of the form û(ω, t) = a e−tω + b etω . Subtlety: There are

no absolute value signs! For the following reason we may however introduce those signs: The integration constants a, b

in general depend on the parameter ω. To arrive at the given expression we reparametrize these constants as follows: If

ω ≥ 0 we set (A,B) = (a, b), and if ω < 0 we take (A,B) = (b, a). This produces the expression given.

c. Determine the constants A en B based on the following assumptions:

c1. lim
t→∞

û(ω, t) = 0 for all ω 6= 0.(21
2)

c2.
∫ ∞
−∞

u(x, t) dx = 1 for all t > 0.(21
2)

(Hint: What does this normalization mean for û(ω, t)?)

The limit limt→∞ û(ω, t) “explodes” for ω 6= 0 unless B = 0. If B = 0 you obtain the desired limiting value, since

limt→∞ Ae−t|ω| = 0. Moreover, 1 =
∫∞
−∞ u(x, t) dx = û(0, t) = A+B = A. Therefore (A,B) = (1, 0), regardless of ω.

d. Take (A,B) = (1, 0), so û(ω, t) = e−t|ω|. Determine u(x, t).(5)

Inverse Fourier transformation of û(ω, t) = e−t|ω| yields u(x, t) = 1
2π

∫∞
−∞ eiωx e−t|ω| dω = 1

2π

∫ 0
−∞ e(t+ix)ω dω +∫∞

0 e(−t+ix)ω dω = 1
2π

{[
1

t+ix
e(t+ix)ω

]ω=0

ω→−∞
+
[

1
−t+ix e

(−t+ix)ω
]ω→∞
ω=0

}
= 1

2π

{
1

t+ix
− 1
−t+ix

}
= t

π
1

x2+t2
.

♣

4. Distribution Theory(20)

We consider the function f : R→ R : x 7→ f(x) given by

f(x) =
{

0 x < 0
e−x x ≥ 0

and its associated regular tempered distribution Tf : S (R)→ R : φ 7→ Tf (φ) =
∫ ∞
−∞

f(x)φ(x) dx.

a. Show that f satisfies the o.d.e. (ordinary differential equation) u′+u = 0 almost everywhere,(10)
and explain what the annotation “almost everywhere” means in this case.

For x < 0 it is clear that f is differentiable (with f(x) = f ′(x) = 0) and trivially satisfies the o.d.e. For x > 0 f is

likewise differentiable, and we have f ′(x) = −e−x = −f(x), which shows that also on this subdomain f satisfies the o.d.e.

u′ + u = 0. However, at x = 0 f is not differentiable, so this point needs to be excluded. This explains what is meant by

the statement that f satisfies the o.d.e. “almost everywhere”.

b. Show that, in distributional sense, Tf satisfies the o.d.e. u′+u = δ, in which the right hand(10)
side denotes the Dirac point distribution.
(Hint: What does it mean for u′ + u− δ to be a distribution rather than a regular function?)
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We have, respectively,

Tf (φ) =

∫ ∞
−∞

f(x)φ(x) dx =

∫ ∞
0

e−x φ(x) dx ,

and

T ′f (φ)
∗
= −Tf (φ′) = −

∫ ∞
−∞

f(x)φ′(x) dx = −
∫ ∞
0

e−x φ′(x) dx
?
= −e−x φ(x)

∣∣∞
0
−
∫ ∞
0

e−x φ(x) dx = φ(0)− Tf (φ) .

The equality marked by ∗ holds by definition of distributional differentiation, the one marked by ? follows by partial
integration. Using the definition of the Dirac point distribution, δ(φ) = φ(0), we may rewrite the result as

T ′f (φ) = δ(φ)− Tf (φ) ,

which shows that Tf satisfies the inhomogeneous o.d.e. u′ + u = δ in distributional sense. Notice that no restrictions on

the domain of definition need to be imposed, and that the result is consistent with the “classical” result under a, since

δ(x) = 0 for x 6= 0.

THE END
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