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EXAMINATION MATHEMATICAL TECHNIQUES FOR IMAGE ANALYSIS

Course code: 8D020. Date: Wednesday August 25, 2010. Time: 14h00-17h00. Place:

Read this first!

e Use a separate sheet of paper for each problem. Write your name and student ID on each paper.

The exam consists of 4 problems. The maximum credit for each item is indicated in the margin.

Motivate your answers. The use of course notes and calculator is allowed. The use of the problem
companion, “opgaven- en tentamenbundel”, is not allowed.

e You may provide your answers in Dutch or English.

GOOD LUCK!
1. NOrRMS AND INNER PRODUCTS

The figure below shows a (real-valued) greyvalue image f consisting of 9 pixels, of which the
numerical values are indicated.

2 0 0
4 -6 3
0 4 0

a. We define the p-norm of an M x N image g as
M N P
lgllp = { DD lgli 1P

i=1 j=1

for p > 1. Compute the following norms for the above 3 x 3-image f:

al. [|f-

a2. [|f]2-

b. We define furthermore the “co-norm” of an M x N image g as ||¢|co = limy 00 |||l -

bl. Argue that ||g|lcc = maxj=1, mj=1,..~ [gli, j||- )
1 1
(Hint: Consider the asymptotic behaviour of (mP+MP)» = M ((4)P+1)* for 0Sm<M as p — oc.)
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b2. Compute || f||oo for the given 3 x 3-image f.

We define for an arbitrary M x N image g the normalized image

g

9p = T
" lglly

c. Determine for the given 3x3 image f respectively (you may use the appendiz)
cl. fi,
Cz‘ f27

c3. foo-

For arbitrary M x N images g and h we introduce the (real) standard inner product, as follows:

M N
(lhy =SS gli, ] Al ]

i=1 j=1

(g|h)
d. Prove that (gp|hq> = W
p q

In the case of discrete M x N images g en h Holder’s inequality reads as follows:

lghlls < ligllp lIllq

1 1
for each parameter pair (p,q) for which 1 <p,qg <ooand — 4 - = 1.

p q

e. Prove that for arbitrary M x N images g and h we have (g,|hy) < 1. In this inequality the
pair (p, q) satisfies the conditions of Holder’s inequality.

[ )

2. LINEAR SPACES AND PROJECTIONS

C2([0, 1]) is the class of twice continuously differentiable, real functions of the type f : [0,1] — R,
for which f(0) = f(1) = f/(0) = f/(1) = 0. (P.S. With f’(0) en f’(1) we mean right, respec-
tively left derivative at the corresponding point.) Without proof we conjecture that C*°([0, 1]),
the class of real-valued functions on the closed interval [0,1] that are infinitely differentiable,
constitutes a linear space. (P.S. Again the boundary derivatives £ (0) and f(")(1) are defined
in terms of single-sided limits.)

a. Prove that C3([0,1]) is a linear space.
(Hint: C3([0,1]) © C>(0,1]).
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We endow the linear space C2([0, 1]) with a real inner product according to one of the definitions
below. The subscript identifies the definition, therefore do not omit it in your notation.

Definition 1: For f,g € C3([0,1]),

1 1
(flg)y =/O f(x)g(x) d:r+/0 f(x) g (x)da .

Definition 2: For f,g € C3([0,1]),

1 1 1
oy = [ @ gte) iz =5 [ 1@ o@)de = [ f@)g" @)

b. Show that Definition 1 is a good definition, i.e. that it indeed defines an inner product.

c. Prove that both definitions are equivalent.
(Hint: Partial integration.)

By virtue of equivalence you may omit the subscript henceforth: (f|g) = (f|g); = (flg),. With
the help of this inner product we introduce, for arbitrary fixed h € C2([0,1]), the following
linear mapping P, : C3([0,1]) — C3([0,1]):

Definition: P, (f) = (rlf) h .

(h|h)
d. Show that Py, o P, = P,. The infix operator o denotes composition.

e. Show that P,I = Py, i.e. (g|Pnf) = (Png|f) for all f,g € C3([0,1]).

Consider the following two functions (notice that f(z) = f(1 — z) and g(x) = g(1 — x)):
—4x® 4 32 0<z<i)
flz)=2"=22"+2* (0<z<1) and g¢g(z) {—4(1—x)3+3(1—x)2 (%Smgl)

f. Show that f,g € C3([0,1]).

)

3. PARTIAL DIFFERENTIAL EQUATIONS AND FOURIER TRANSFORMATION

Consider the following partial differential equation (p.d.e.):
ou | o
otz Oz

Here u : R x RT — R : (z,t) — u(x,t) is a real valued spatial filter for each constant value of
the parameter t € R,

=0 2€R t>0.
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a. Consider, for fixed ¢, the Fourier decomposition

1 e} . co .
u(x,t) = 271'/ u(w, t) e dw and thus u(w,t) = / u(z,t) e “*dx.

—00 —00

Show that with this definition the above p.d.e. for u(z,t) can be reduced to the following
ordinary differential equation for @(w,t), in which w € R can be interpreted as an arbitrary

parameter:
d*u N
W—UJQUZO OJER,t>O

b. Show that the general solution for u(w,t) is given by
U(w,t) = Ae 4 Betlel

Here, A and B are two integration constants yet to be determined.
(Hint: Stipulate a solution of type @(t) = e and determine the possible values of A € C in terms of w.)

c. Determine the constants A en B based on the following assumptions:

cl. lim u(w,t) =0 for all w # 0.
t—o00

o0
c2. / u(z,t)dr =1 for all t > 0.

—00
(Hint: What does this normalization mean for u(w,t)?)

d. Take (A, B) = (1,0), so @(w,t) = e "%l Determine u(z, ).
&

4. DISTRIBUTION THEORY

We consider the function f : R — R : x — f(x) given by

0 x<0

ro={ % 5

and its associated regular tempered distribution 7y : #(R) = R : ¢ — Ty(¢) = / f(z) ¢p(x) dx.

a. Show that f satisfies the o.d.e. (ordinary differential equation) u'+u = 0 almost everywhere,
and explain what the annotation “almost everywhere” means in this case.

b. Show that, in distributional sense, T satisfies the o.d.e. v’ +u = §, in which the right hand

side denotes the Dirac point distribution.
(Hint: What does it mean for u’ + u — § to be a distribution rather than a regular function?)

THE END



