
EXAMINATION MATHEMATICAL TECHNIQUES FOR IMAGE ANALYSIS

Course code: 8D020. Date: Wednesday August 25, 2010. Time: 14h00–17h00. Place:

Read this first!

• Use a separate sheet of paper for each problem. Write your name and student ID on each paper.

• The exam consists of 4 problems. The maximum credit for each item is indicated in the margin.

• Motivate your answers. The use of course notes and calculator is allowed. The use of the problem
companion, “opgaven- en tentamenbundel”, is not allowed.

• You may provide your answers in Dutch or English.

GOOD LUCK!

1. Norms and Inner Products(25)

The figure below shows a (real-valued) greyvalue image f consisting of 9 pixels, of which the
numerical values are indicated.
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a. We define the p-norm of an M×N image g as

‖g‖p =

 M∑
i=1

N∑
j=1

|g[i, j]|p
 1

p

for p ≥ 1. Compute the following norms for the above 3×3-image f :

a1. ‖f‖1.(21
2)

a2. ‖f‖2.(21
2)

b. We define furthermore the “∞-norm” of an M×N image g as ‖g‖∞ = limp→∞ ‖g‖p .

b1. Argue that ‖g‖∞ = maxi=1,...,M,j=1,...,N |g[i, j||.(21
2)

(Hint: Consider the asymptotic behaviour of (mp+Mp)
1
p = M

(
(mM )p+1

) 1
p for 0≤m≤M as p→∞.)
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b2. Compute ‖f‖∞ for the given 3×3-image f .(21
2)

We define for an arbitrary M×N image g the normalized image

gp =
g

‖g‖p
.

c. Determine for the given 3×3 image f respectively (you may use the appendix )

c1. f1,(21
2)

c2. f2,(21
2)

c3. f∞.(21
2)

For arbitrary M×N images g and h we introduce the (real) standard inner product, as follows:

〈g|h〉 =
M∑
i=1

N∑
j=1

g[i, j]h[i, j] .

d. Prove that 〈gp|hq〉 =
〈g|h〉
‖g‖p‖h‖q

.(21
2)

In the case of discrete M×N images g en h Hölder’s inequality reads as follows:

‖gh‖1 ≤ ‖g‖p ‖h‖q ,

for each parameter pair (p, q) for which 1 ≤ p, q ≤ ∞ and
1
p

+
1
q

= 1.

e. Prove that for arbitrary M×N images g and h we have 〈gp|hq〉 ≤ 1. In this inequality the(5)
pair (p, q) satisfies the conditions of Hölder’s inequality.

♣

2. Linear Spaces and Projections(35)

C2
0 ([0, 1]) is the class of twice continuously differentiable, real functions of the type f : [0, 1]→ R,

for which f(0) = f(1) = f ′(0) = f ′(1) = 0. (P.S. With f ′(0) en f ′(1) we mean right, respec-
tively left derivative at the corresponding point.) Without proof we conjecture that C∞([0, 1]),
the class of real-valued functions on the closed interval [0, 1] that are infinitely differentiable,
constitutes a linear space. (P.S. Again the boundary derivatives f (n)(0) and f (n)(1) are defined
in terms of single-sided limits.)

a. Prove that C2
0 ([0, 1]) is a linear space.(71

2)
(Hint: C2

0 ([0, 1]) ⊂ C∞([0, 1]).)
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We endow the linear space C2
0 ([0, 1]) with a real inner product according to one of the definitions

below. The subscript identifies the definition, therefore do not omit it in your notation.

Definition 1: For f, g ∈ C2
0 ([0, 1]),

〈f |g〉1 =
∫ 1

0
f(x) g(x) dx+

∫ 1

0
f ′(x) g′(x) dx .

Definition 2: For f, g ∈ C2
0 ([0, 1]),

〈f |g〉2 =
∫ 1

0
f(x) g(x) dx− 1

2

∫ 1

0
f ′′(x) g(x) dx− 1

2

∫ 1

0
f(x) g′′(x) dx .

b. Show that Definition 1 is a good definition, i.e. that it indeed defines an inner product.(5)

c. Prove that both definitions are equivalent.(5)
(Hint: Partial integration.)

By virtue of equivalence you may omit the subscript henceforth: 〈f |g〉 = 〈f |g〉1 = 〈f |g〉2. With
the help of this inner product we introduce, for arbitrary fixed h ∈ C2

0 ([0, 1]), the following
linear mapping Ph : C2

0 ([0, 1])→ C2
0 ([0, 1]):

Definition: Ph(f) =
〈h|f〉
〈h|h〉

h .

d. Show that Ph ◦ Ph = Ph. The infix operator ◦ denotes composition.(5)

e. Show that P †h = Ph, i.e. 〈g|Phf〉 = 〈Phg|f〉 for all f, g ∈ C2
0 ([0, 1]).(5)

Consider the following two functions (notice that f(x) = f(1− x) and g(x) = g(1− x)):

f(x) = x4 − 2x3 + x2 (0 ≤ x ≤ 1) and g(x) =
{
−4x3 + 3x2 (0 ≤ x ≤ 1

2)
−4(1− x)3 + 3(1− x)2 (1

2 ≤ x ≤ 1)

f. Show that f, g ∈ C2
0 ([0, 1]).(71

2)

♣

3. Partial Differential Equations and Fourier Transformation(20)

Consider the following partial differential equation (p.d.e.):

∂2u

∂t2
+
∂2u

∂x2
= 0 x ∈ R, t > 0 .

Here u : R×R+ −→ R : (x, t) 7→ u(x, t) is a real valued spatial filter for each constant value of
the parameter t ∈ R+.
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a. Consider, for fixed t, the Fourier decomposition(5)

u(x, t) =
1

2π

∫ ∞
−∞

û(ω, t) eiωx dω and thus û(ω, t) =
∫ ∞
−∞

u(x, t) e−iωx dx .

Show that with this definition the above p.d.e. for u(x, t) can be reduced to the following
ordinary differential equation for û(ω, t), in which ω ∈ R can be interpreted as an arbitrary
parameter:

d2û

dt2
− ω2 û = 0 ω ∈ R, t > 0 .

b. Show that the general solution for û(ω, t) is given by(5)

û(ω, t) = Ae−t|ω| +B et|ω| .

Here, A and B are two integration constants yet to be determined.
(Hint: Stipulate a solution of type û(t) = eλt and determine the possible values of λ ∈ C in terms of ω.)

c. Determine the constants A en B based on the following assumptions:

c1. lim
t→∞

û(ω, t) = 0 for all ω 6= 0.(21
2)

c2.
∫ ∞
−∞

u(x, t) dx = 1 for all t > 0.(21
2)

(Hint: What does this normalization mean for û(ω, t)?)

d. Take (A,B) = (1, 0), so û(ω, t) = e−t|ω|. Determine u(x, t).(5)

♣

4. Distribution Theory(20)

We consider the function f : R→ R : x 7→ f(x) given by

f(x) =
{

0 x < 0
e−x x ≥ 0

and its associated regular tempered distribution Tf : S (R)→ R : φ 7→ Tf (φ) =
∫ ∞
−∞

f(x)φ(x) dx.

a. Show that f satisfies the o.d.e. (ordinary differential equation) u′+u = 0 almost everywhere,(10)
and explain what the annotation “almost everywhere” means in this case.

b. Show that, in distributional sense, Tf satisfies the o.d.e. u′+u = δ, in which the right hand(10)
side denotes the Dirac point distribution.
(Hint: What does it mean for u′ + u− δ to be a distribution rather than a regular function?)

THE END
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