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Read this first!

• Make this assignment by yourself or together with maximally one fellow student that has also
subscribed for this course.

• Write your name(s) and student number(s) on each sheet.

• The deadline for handing in this assignment is Wednesday December 13 2006. Assignments ar-
riving after this date will be ignored.

• This assignment will be evaluated with a grade between 0 and 1. This is the bonus that will be
added to your (re)examination grade in 2007. (The final grade cannot be higher than 10.)

• Provide clear arguments, and write neatly. Illegible or sloppy formulations will not be corrected.
Explain conceptual steps in your proofs.

Problem 1. In this problem V is a vector space over IR equipped with a real inner product
〈̄ |̄ 〉 : V ×V → IR. Furthermore, a∈V is a fixed unit vector: 〈a|a〉 = 1.

a. Show that the subset Va ⊂ V generated by a and defined as( 1
10)

Va = {v ∈ V | 〈a|v〉 = 0} ,

constitutes a linear subspace of V .

Choose v, w ∈ Va and λ, µ ∈ IR arbitrarily. Then, using the defining properties of an inner product, 〈a|λv + µw〉 =

λ〈a|v〉+ µ〈a|w〉 = 0. The last equality follows from the definition of Va. Thus λv + µw ∈ Va (closure), whence it follows

that Va is a linear subspace of V .

b. The vector a, moreover, induces a mapping φa : V → V , as follows:

φa(v) = v − 〈a|v〉 a .

b1. Prove that φa is a linear map.( 1
10)

Choose v, w ∈ V and λ, µ ∈ IR arbitrarily. Consider

φa(λv+µw)
def
= λv+µw−〈a|λv + µw〉 a ∗= λv+µw−λ〈a|v〉 a−µ〈a|w〉 a = λ(v−〈a|v〉 a)+µ(w−〈a|w〉 a)

def
= λφa(v)+µφa(w) .

In ∗ linearity of the inner product has been used.

b2. Prove that φa(v) ∈ Va for all v ∈ V .( 1
10)

Consider

〈a|φa(v)〉 def= 〈a|v − 〈a|v〉 a〉 ∗= 〈a|v〉 − 〈a|v〉 〈a|a〉 ?
= 0 .

In ∗ linearity of the inner product has been used, in ? the fact that a is a unit vector.
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b3. Prove that φa(φa(v)) = φa(v) for all v ∈ V .( 1
10)

Substitution yields:

φa(φa(v))
def
= φa(v)− 〈a|φa(v)〉 a = φa(v) .

In the last step we have used the fact that φa(v) ∈ Va according to b2.

b4. Prove that 〈φa(v)|w〉 = 〈v|φa(w)〉 for all v, w ∈ V .( 1
10)

Substitution yields:

〈φa(v)|w〉 def= 〈v − 〈a|v〉 a|w〉 ∗= 〈v|w〉−〈a|v〉 〈a|w〉 ∗= 〈v|w〉−〈〈a|w〉 a|v〉 ?
= 〈v|w〉−〈v|〈a|w〉 a〉 ∗= 〈v|w − 〈a|w〉 a〉 def= 〈v|φa(w)〉 .

In ∗ we have used linearity, in ? symmetry of the (real) inner product.

b5. Suppose w ∈ V is such that 〈φa(v)|w〉 = 0 for all v ∈ V . Show that w = λ a for some( 1
10)

λ ∈ IR and determine the value of λ in terms of a en w.
(Hint: Use the previous part and the defining properties of the inner product.)

From the previous result it follows that for any a, v ∈ V 〈φa(v)|w〉 = 〈v|φa(w)〉. Assume therefore that 〈v|φa(w)〉 = 0 for
some w ∈ V . Since this must hold for all v ∈ V it follows, by virtue of the non-negativity and non-degeneracy of the inner
product, that φa(w) = w − 〈a|w〉 a = 0, in other words, that w = λa with λ = 〈a|w〉. Vice versa, if w = λa for some
λ ∈ IR, then

〈φa(v)|w〉 ◦= 〈φa(v)|λa〉 ∗= λ 〈φa(v)|a〉 def= 〈v − 〈a|v〉 a|a〉 ∗= 〈v|a〉 − 〈a|v〉〈a|a〉 ?
= 0 .

In ◦ we have used the assumption on w ∈ V . In ∗ we have used linearity of the inner product, and in ? we have exploited

symmetry of the inner product, and the fact that a ∈ V is a unit vector.

Problem 2. We define the set of functions C∞0 (IR) as follows:

C∞0 (IR) =
{
f ∈ C∞(IR) | f (n)(0) = 0 voor alle n ∈ IN0 = {0, 1, 2, . . .}

}
.

In this definition f (n)(x) stands for the n-th order derivative of f evaluated at x. The set
C∞(IR) is the collection of all smooth real-valued functions with domain IR, endowed with the
usual definitions of vector addition and scalar multiplication. You may take it for granted that
C∞(IR) constitutes a linear space.

a. Provide (an) unambiguous formula(s) for the “usual definitions” alluded to above.( 1
10)

The “usual definitions” of vector addition and scalar multiplication pertain to the following way to define linear combina-
tions: Let f, g ∈ C∞0 (IR) and λ, µ ∈ IR be arbitrarily chosen, then

(λ f + µ g) (x)
def
= λ f(x) + µ g(x) for all x ∈ IR.

b. Prove that C∞0 (IR) ⊂ C∞(IR) constitutes a linear subspace.( 1
10)

Since C∞(IR) is a linear space it suffices to prove closure of C∞0 (IR) ⊂ C∞(IR) under linear combination. Let f, g ∈ C∞0 (IR)

and λ, µ ∈ IR be arbitrarily chosen, then λ f+µ g is the function defined by (λ f + µ g) (x)
def
= λ f(x)+µ g(x) for all x ∈ IR.

Since differentiation is a linear operation we have

(λ f + µ g)(n) (x) = λ f (n)(x) + µ g(n)(x) ,

for any order n ∈ IN0, so that in particular

(λ f + µ g)(n) (0) = λ f (n)(0) + µ g(n)(0) = 0
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for all f, g ∈ C∞0 (IR). Therefore λ f + µ g ∈ C∞0 (IR).

c. Suppose f ∈ Cω(IR)∩C∞0 (IR), i.e. f is an analytical function within the class C∞0 (IR). Show( 1
10)

that f = 0, i.e. the null function of C∞0 (IR).
(Hint: Analyticity implies that f is equal to its Taylor series.)

Since f ∈ Cω(IR), f(x) equals its convergent Taylor series, i.e.

f(x) =
∞∑

n=0

1

n!
f (n)(0)xn

∗
= 0 for all x ∈ IR.

In ∗ we have used the fact that f ∈ C∞0 (IR). Conclusion: f = 0 ∈ C∞0 (IR).

d. Show by means of an explicit example that C∞0 (IR) contains nontrivial elements f 6= 0.( 1
10)

(Hint: Stipulate a function of type f(x)=eg(x) and deduce what properties the function g should have,

then find a concrete instance.)

Following the hint, let us take g(x) = −x−2, and define f(x)=eg(x) whenever x 6= 0, and f(0) = 0 = limx→0 f(x). Then

f ′(x) = g′(x) eg(x) = 2x−3 e−x−2
for x 6= 0, and f ′(0) = 0 = limx→0 f ′(x). (That is, the derivative is well-defined and

continuous by virtue of identical left and right limits.) In fact, for any order n ∈ IN0 we have

f (n)(x) = pn(
1

x
) f(x) ,

for some polynomial pn (which depends on order n). Proof: The conjecture is apparently true for n = 0 (take p0( 1
x

) = 1).
If the conjecture is true for some n ∈ IN0, then

f (n+1)(x) =
d

dx
f (n)(x) =

d

dx

(
pn(

1

x
) f(x)

)
∗
= −

1

x2
p′n(

1

x
) f(x) + pn(

1

x
)f ′(x) =

(
−

1

x2
p′n(

1

x
) +

2

x3
pn(

1

x
)

)
f(x) ,

which is indeed of the stipulated form f (n+1)(x) = pn+1( 1
x

) f(x) for some polynomial pn+1. This proves the conjecture.
In particular we have that

f (n)(0) = 0 = lim
x→0

f (n)(x) ,

by virtue of the fact that

lim
x→0

x−m e−x−2
= 0 for any m ∈ IN0.

THE END
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