MATHEMATICAL TECHNIQUES FOR IMAGE ANALYSIS HOMEWORK ASSIGNMENT

Course code: 8D020. Teacher: Dr L.M.J. Florack, WH 3.108 (secretariat WH 2.106), E L.M.J.Florack@tue.nl, T 040 2475377, F 040 2472740, W www.bmi2.bmt.tue.nl/image-analysis/people/lflorack

Read this first!

- Make this assignment by yourself or together with *maximally* one fellow student that has also subscribed for this course.
- Write your name(s) and student number(s) on each sheet.
- The deadline for handing in this assignment is *Wednesday November 22 2006*. Assignments arriving after this date will be ignored.
- This assignment will be evaluated with a grade between 0 and 1. This is the bonus that will be added to your (re)examination grade in 2007. (The final grade cannot be higher than 10.)
- Provide clear arguments, and write neatly. Illegible or sloppy formulations will not be corrected. Explain conceptual steps in your proofs.

Problem 1. We define the hyperbolic sine and cosine functions as follows:

$$\cosh x = \frac{e^x + e^{-x}}{2}$$
 and $\sinh x = \frac{e^x - e^{-x}}{2}$ $(x \in \mathbb{R})$

 $\left(\frac{1}{10}\right)$ **a.** Prove the following identities:

$$\cosh(\xi + \eta) - \cosh(\xi - \eta) = 2\sinh\xi\,\sinh\eta\,,\tag{1}$$

$$\operatorname{osh}(\xi + \eta) + \operatorname{cosh}(\xi - \eta) = 2 \operatorname{cosh} \xi \operatorname{cosh} \eta, \qquad (2)$$

 $\sinh(\xi + \eta) - \sinh(\xi - \eta) = 2\cosh\xi \sinh\eta, \qquad (3)$

$$\sinh(\xi + \eta) + \sinh(\xi - \eta) = 2 \sinh \xi \cosh \eta.$$
(4)

These all follow straightforwardly by substitution of the defining identities for cosh and sinh:

$$\begin{aligned} \cosh(\xi+\eta) - \cosh(\xi-\eta) &= \frac{e^{\xi+\eta} + e^{-\xi-\eta}}{2} - \frac{e^{\xi-\eta} + e^{-\xi+\eta}}{2} = 2\left(\frac{e^{\xi} - e^{-\xi}}{2}\right)\left(\frac{e^{\eta} - e^{-\eta}}{2}\right) = 2\sinh\xi\sinh\eta, \\ \cosh(\xi+\eta) + \cosh(\xi-\eta) &= \frac{e^{\xi+\eta} + e^{-\xi-\eta}}{2} + \frac{e^{\xi-\eta} + e^{-\xi+\eta}}{2} = 2\left(\frac{e^{\xi} + e^{-\xi}}{2}\right)\left(\frac{e^{\eta} + e^{-\eta}}{2}\right) = 2\cosh\xi\cosh\eta, \\ \sinh(\xi+\eta) - \sinh(\xi-\eta) &= \frac{e^{\xi+\eta} - e^{-\xi-\eta}}{2} - \frac{e^{\xi-\eta} - e^{-\xi+\eta}}{2} = 2\left(\frac{e^{\xi} + e^{-\xi}}{2}\right)\left(\frac{e^{\eta} - e^{-\eta}}{2}\right) = 2\cosh\xi\sinh\eta, \\ \sinh(\xi+\eta) + \sinh(\xi-\eta) &= \frac{e^{\xi+\eta} - e^{-\xi-\eta}}{2} + \frac{e^{\xi-\eta} - e^{-\xi+\eta}}{2} = 2\left(\frac{e^{\xi} - e^{-\xi}}{2}\right)\left(\frac{e^{\eta} + e^{-\eta}}{2}\right) = 2\sinh\xi\cosh\eta. \end{aligned}$$

We define the set of real-valued 2×2 -matrices

$$G = \left\{ \left(\begin{array}{cc} \cosh \xi & \sinh \xi \\ \sinh \xi & \cosh \xi \end{array} \right) \middle| \xi \in \mathbb{R} \right\},\$$

and endow it with a product operation in the usual way, i.e. standard matrix multiplication.

b. Show that G constitutes a group. To this end, answer the following questions, and provide proofs for your answers:

 $(\frac{1}{10})$ **b1.** Is G closed under matrix multiplication? In other words, does $A, B \in G$ imply $A B \in G$? Let

$$\Xi = \begin{pmatrix} \cosh \xi & \sinh \xi \\ \sinh \xi & \cosh \xi \end{pmatrix} \quad \text{and} \quad H = \begin{pmatrix} \cosh \eta & \sinh \eta \\ \sinh \eta & \cosh \eta \end{pmatrix}$$

Then

$$\Xi H = \begin{pmatrix} \cosh \xi & \sinh \xi \\ \sinh \xi & \cosh \xi \end{pmatrix} \begin{pmatrix} \cosh \eta & \sinh \eta \\ \sinh \eta & \cosh \eta \end{pmatrix} = \begin{pmatrix} \cosh \xi \cosh \eta + \sinh \xi \sinh \eta & \sinh \xi \cosh \eta + \cosh \xi \sinh \eta \\ \cosh \xi \sinh \eta + \sinh \xi \cosh \eta & \sinh \xi \sinh \eta + \cosh \xi \cosh \eta \end{pmatrix}$$

Using a we can rewrite this as

$$\Xi H = \begin{pmatrix} \cosh(\xi + \eta) & \sinh(\xi + \eta) \\ \sinh(\xi + \eta) & \cosh(\xi + \eta) \end{pmatrix},$$

from which it becomes obvious that $\Xi H \in G$.

 $\left(\frac{1}{10}\right)$ **b2.** Show for general $n \times n$ -matrices that matrix multiplication is associative.

Let A, B, C be $n \times n$ -matrices with components A_{ij} , B_{ij} , respectively C_{ij} , i, j = 1, ..., n. Then

$$((AB)C)_{ij} = \sum_{k=1}^{n} (AB)_{ik} C_{kj} = \sum_{k=1}^{n} \sum_{\ell=1}^{n} A_{i\ell} B_{\ell k} C_{kj} = \sum_{\ell=1}^{n} A_{i\ell} (BC)_{\ell j} = (A(BC))_{ij} \quad \text{for all } i, j = 1, \dots, n.$$

Consequently (AB)C = A(BC).

$(\frac{1}{10})$ **b3.** Give the identity element of G.

The identity element for 2×2 -matrix multiplication is

$$I = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} = \begin{pmatrix} \cosh 0 & \sinh 0 \\ \sinh 0 & \cosh 0 \end{pmatrix}.$$

From the last step and the definition of G it follows that $I \in G$.

 $(\frac{1}{10})$ **b4.** Give the inverse element $A^{-1} \in G$ for given $A \in G$.

From b1 and b3 it follows that for arbitrarily chosen $\Xi \in G$, as specified in b1, the inverse Ξ^{-1} is given by

$$\Xi^{-1} = \begin{pmatrix} \cosh(-\xi) & \sinh(-\xi) \\ \sinh(-\xi) & \cosh(-\xi) \end{pmatrix}.$$

Proof: Obviously $\Xi^{-1} \in G$. Furthermore, if we substitute H by Ξ^{-1} in the solution of problem b1, then

$$\Xi\Xi^{-1} = \begin{pmatrix} \cosh\xi & \sinh\xi \\ \sinh\xi & \cosh\xi \end{pmatrix} \begin{pmatrix} \cosh(-\xi) & \sinh(-\xi) \\ \sinh(-\xi) & \cosh(-\xi) \end{pmatrix} \stackrel{\text{b1}}{=} \begin{pmatrix} \cosh 0 & \sinh 0 \\ \sinh 0 & \cosh 0 \end{pmatrix} \stackrel{\text{b3}}{=} I.$$

Likewise,

$$\Xi^{-1}\Xi = \begin{pmatrix} \cosh(-\xi) & \sinh(-\xi) \\ \sinh(-\xi) & \cosh(-\xi) \end{pmatrix} \begin{pmatrix} \cosh\xi & \sinh\xi \\ \sinh\xi & \cosh\xi \end{pmatrix} \stackrel{\text{b1}}{=} \begin{pmatrix} \cosh0 & \sinh0 \\ \sinh0 & \cosh0 \end{pmatrix} \stackrel{\text{b3}}{=} I.$$

Equality of left and right inverse also follows by observing, via b1, that the matrix product in G commutes (cf. also c):

$$\Xi^{-1}\Xi \stackrel{\mathrm{bl}}{=} \Xi\Xi^{-1} \stackrel{*}{=} I \,,$$

once identity * has been established as above.

$\left(\frac{1}{10}\right)$ **c** Is *G* commutative?

Yes, cf. b1. With Ξ and H as before we have, for any $\xi, \eta \in \mathbb{R}$,

$$\Xi H \stackrel{\text{bl}}{=} \begin{pmatrix} \cosh(\xi + \eta) & \sinh(\xi + \eta) \\ \sinh(\xi + \eta) & \cosh(\xi + \eta) \end{pmatrix} = \begin{pmatrix} \cosh(\eta + \xi) & \sinh(\eta + \xi) \\ \sinh(\eta + \xi) & \cosh(\eta + \xi) \end{pmatrix} \stackrel{\text{bl}}{=} H \Xi.$$

Problem 2. In this problem G and H are two given groups. The infix product operator of G is indicated by a \bullet , whereas that of H is denoted by \circ . We construct the set F as follows

$$F = G \times H \stackrel{\text{def}}{=} \{ (g, h) \mid g \in G, h \in H \} ,$$

which is endowed with an infix product operator \star as follows. If $f_1, f_2 \in F$, say $f_1 = (g_1, h_1)$ and $f_2 = (g_2, h_2)$ with $g_1, g_2 \in G$ and $h_1, h_2 \in H$, then

$$f_1 \star f_2 = (g_1 \bullet g_2, h_1 \circ h_2).$$

a. Show that F constitutes a group. To this end, answer the following questions, and provide proofs for your answers:

 $(\frac{1}{10})$ **a1.** Is F closed under \star ?

Yes. Proof: Let $f_1, f_2 \in F$ be arbitrary, say $f_1 = (g_1, h_1)$ and $f_2 = (g_2, h_2)$ for some $g_1, g_2 \in G$ and $h_1, h_2 \in H$. Since G and H constitute groups relative to the operators \bullet , respectively \circ , there exist group elements $g_{12} = g_1 \bullet g_2 \in G$ (since G is closed) and $h_{12} = h_1 \circ h_2 \in H$ (since H is closed), so that

$$f_1 \star f_2 \stackrel{\text{def}}{=} (g_1 \bullet g_2, h_1 \circ h_2) = (g_{12}, h_{12}) \in G \times H = F.$$

 $(\frac{1}{10})$ **a2.** Show that the operator \star satisfies the associativity property.

Let $f_1, f_2, f_3 \in F$ be arbitrary, say $f_1 = (g_1, h_1), f_2 = (g_2, h_2)$ and $f_3 = (g_3, h_3)$ for some $g_1, g_2, g_3 \in G$ and $h_1, h_2, h_3 \in H$. Then

$$\begin{array}{rcl} (f_1 \star f_2) \star f_3 & \stackrel{\text{def}}{=} & (g_1 \bullet g_2, h_1 \circ h_2) \star (g_3, h_3) \stackrel{\text{def}}{=} & ((g_1 \bullet g_2) \bullet g_3, (h_1 \circ h_2) \circ h_3) \stackrel{*}{=} & (g_1 \bullet (g_2 \bullet g_3), h_1 \circ (h_2 \circ h_3)) \\ & \stackrel{\text{def}}{=} & (g_1, h_1) \star (g_2 \bullet g_3, h_2 \circ h_3) \stackrel{\text{def}}{=} & f_1 \star (f_2 \star f_3). \end{array}$$

In this derivation we have repeatedly exploited the definition of \star , and (in \star) the fact that G and H constitute groups, implying that their respective operators • and • are associative.

$\left(\frac{1}{10}\right)$ **a3.** Give the identity element of F.

Since G and H are groups, they each have an identity element, say $e_G \in G$, respectively $e_H \in H$. Claim: $e_F = (e_G, e_H)$ is the identity element of F. Proof: Notice first of all that by construction $e_F \in F$. Now consider $f \in F$ arbitrary, say f = (g, h) with $g \in G$ and $h \in H$. Then

$$e_F \star f \stackrel{\text{def}}{=} (e_G, e_H) \star (g, h) \stackrel{\text{def}}{=} (e_G \bullet g, e_H \circ h) \stackrel{*}{=} (g, h) \stackrel{\text{def}}{=} f.$$

Also

$$f \star e_F = (g,h) \star (e_G, e_H) \stackrel{\text{def}}{=} (g \bullet e_G, h \circ e_H) \stackrel{\star}{=} (g,h) \stackrel{\text{def}}{=} f.$$

In * and \star we have used the fact that e_G and e_H are both left identity elements (*) as well as right identity elements (\star) for G, respectively H. The two identities above thus indeed identify e_F as the identity element of F.

$$(\frac{1}{10})$$
 a4. Give the inverse element $f^{-1} \in F$ for given $f \in F$.

Notation as in the solution of a3, with $f = (g, h) \in F$ chosen arbitrarily. Let $g^{-1} \in G$ and $h^{-1} \in H$ be the inverse elements of $g \in G$, respectively $h \in H$. Claim: $f^{-1} = (g^{-1}, h^{-1})$ is the inverse element of f = (g, h). Proof: Notice first of all that $f^{-1} \in F$, by virtue of the fact that $g^{-1} \in G$ and $h^{-1} \in H$. Furthermore,

$$f^{-1} \star f = (g^{-1}, h^{-1}) \star (g, h) \stackrel{\text{def}}{=} (g^{-1} \bullet g, h^{-1} \circ h) \stackrel{\text{a3}}{=} (e_G, e_H) \stackrel{\text{a3}}{=} e_F$$

Likewise,

$$f \star f^{-1} = (g,h) \star (g^{-1},h^{-1}) \stackrel{\text{def}}{=} (g \bullet g^{-1},h \circ h^{-1}) \stackrel{\text{a3}}{=} (e_G,e_H) \stackrel{\text{a3}}{=} e_F$$

THE END