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Read this first!

• Make this assignment by yourself or together with maximally one fellow student that has also
subscribed for this course.

• Write your name(s) and student number(s) on each sheet.

• The deadline for handing in this assignment is Wednesday November 22 2006. Assignments
arriving after this date will be ignored.

• This assignment will be evaluated with a grade between 0 and 1. This is the bonus that will be
added to your (re)examination grade in 2007. (The final grade cannot be higher than 10.)

• Provide clear arguments, and write neatly. Illegible or sloppy formulations will not be corrected.
Explain conceptual steps in your proofs.

Problem 1. We define the hyperbolic sine and cosine functions as follows:

coshx =
ex + e−x

2
and sinhx =

ex − e−x

2
(x ∈ IR) .

a. Prove the following identities:( 1
10)

cosh(ξ + η)− cosh(ξ − η) = 2 sinh ξ sinh η , (1)

cosh(ξ + η) + cosh(ξ − η) = 2 cosh ξ cosh η , (2)

sinh(ξ + η)− sinh(ξ − η) = 2 cosh ξ sinh η , (3)

sinh(ξ + η) + sinh(ξ − η) = 2 sinh ξ cosh η . (4)

These all follow straightforwardly by substitution of the defining identities for cosh and sinh:

cosh(ξ + η)− cosh(ξ − η) =
eξ+η + e−ξ−η

2
−
eξ−η + e−ξ+η

2
= 2

(
eξ − e−ξ

2

)(
eη − e−η

2

)
= 2 sinh ξ sinh η ,

cosh(ξ + η) + cosh(ξ − η) =
eξ+η + e−ξ−η

2
+
eξ−η + e−ξ+η

2
= 2

(
eξ + e−ξ

2

)(
eη + e−η

2

)
= 2 cosh ξ cosh η ,

sinh(ξ + η)− sinh(ξ − η) =
eξ+η − e−ξ−η

2
−
eξ−η − e−ξ+η

2
= 2

(
eξ + e−ξ

2

)(
eη − e−η

2

)
= 2 cosh ξ sinh η ,

sinh(ξ + η) + sinh(ξ − η) =
eξ+η − e−ξ−η

2
+
eξ−η − e−ξ+η

2
= 2

(
eξ − e−ξ

2

)(
eη + e−η

2

)
= 2 sinh ξ cosh η .

We define the set of real-valued 2×2-matrices

G =

{(
cosh ξ sinh ξ
sinh ξ cosh ξ

) ∣∣∣∣ ξ ∈ IR

}
,

and endow it with a product operation in the usual way, i.e. standard matrix multiplication.
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b. Show that G constitutes a group. To this end, answer the following questions, and provide
proofs for your answers:

b1. Is G closed under matrix multiplication? In other words, does A,B ∈ G imply AB ∈ G?( 1
10)

Let

Ξ =

(
cosh ξ sinh ξ
sinh ξ cosh ξ

)
and H =

(
cosh η sinh η
sinh η cosh η

)
.

Then

ΞH =

(
cosh ξ sinh ξ
sinh ξ cosh ξ

)(
cosh η sinh η
sinh η cosh η

)
=

(
cosh ξ cosh η + sinh ξ sinh η sinh ξ cosh η + cosh ξ sinh η
cosh ξ sinh η + sinh ξ cosh η sinh ξ sinh η + cosh ξ cosh η

)
.

Using a we can rewrite this as

ΞH =

(
cosh(ξ + η) sinh(ξ + η)
sinh(ξ + η) cosh(ξ + η)

)
,

from which it becomes obvious that ΞH ∈ G.

b2. Show for general n×n-matrices that matrix multiplication is associative.( 1
10)

Let A, B, C be n×n-matrices with components Aij , Bij , respectively Cij , i, j=1, . . . , n. Then

((AB)C)ij =

n∑
k=1

(AB)ikCkj =

n∑
k=1

n∑
`=1

Ai`B`kCkj =

n∑
`=1

Ai`(BC)`j = (A(BC))ij for all i, j = 1, . . . , n.

Consequently (AB)C = A(BC).

b3. Give the identity element of G.( 1
10)

The identity element for 2×2-matrix multiplication is

I =

(
1 0
0 1

)
=

(
cosh 0 sinh 0
sinh 0 cosh 0

)
.

From the last step and the definition of G it follows that I ∈ G.

b4. Give the inverse element A−1 ∈ G for given A ∈ G.( 1
10)

From b1 and b3 it follows that for arbitrarily chosen Ξ ∈ G, as specified in b1, the inverse Ξ−1 is given by

Ξ−1 =

(
cosh(−ξ) sinh(−ξ)
sinh(−ξ) cosh(−ξ)

)
.

Proof: Obviously Ξ−1 ∈ G. Furthermore, if we substitute H by Ξ−1 in the solution of problem b1, then

ΞΞ−1 =

(
cosh ξ sinh ξ
sinh ξ cosh ξ

)(
cosh(−ξ) sinh(−ξ)
sinh(−ξ) cosh(−ξ)

)
b1
=

(
cosh 0 sinh 0
sinh 0 cosh 0

)
b3
= I .

Likewise,

Ξ−1Ξ =

(
cosh(−ξ) sinh(−ξ)
sinh(−ξ) cosh(−ξ)

)(
cosh ξ sinh ξ
sinh ξ cosh ξ

)
b1
=

(
cosh 0 sinh 0
sinh 0 cosh 0

)
b3
= I .

Equality of left and right inverse also follows by observing, via b1, that the matrix product in G commutes (cf. also c):

Ξ−1Ξ
b1
= ΞΞ−1 ∗

= I ,

once identity ∗ has been established as above.

c Is G commutative?( 1
10)

Yes, cf. b1. With Ξ and H as before we have, for any ξ, η ∈ IR,

ΞH
b1
=

(
cosh(ξ + η) sinh(ξ + η)
sinh(ξ + η) cosh(ξ + η)

)
=

(
cosh(η + ξ) sinh(η + ξ)
sinh(η + ξ) cosh(η + ξ)

)
b1
= HΞ .

2



Problem 2. In this problem G and H are two given groups. The infix product operator of G
is indicated by a •, whereas that of H is denoted by ◦. We construct the set F as follows

F = G×H def
= {(g, h) | g ∈ G, h ∈ H} ,

which is endowed with an infix product operator ? as follows. If f1, f2 ∈ F , say f1 = (g1, h1)
and f2 = (g2, h2) with g1, g2 ∈ G and h1, h2 ∈ H, then

f1 ? f2 = (g1 • g2, h1 ◦ h2) .

a. Show that F constitutes a group. To this end, answer the following questions, and provide
proofs for your answers:

a1. Is F closed under ??( 1
10)

Yes. Proof: Let f1, f2 ∈ F be arbitrary, say f1 = (g1, h1) and f2 = (g2, h2) for some g1, g2 ∈ G and h1, h2 ∈ H. Since G
and H constitute groups relative to the operators •, respectively ◦, there exist group elements g12 = g1 • g2 ∈ G (since G
is closed) and h12 = h1 ◦ h2 ∈ H (since H is closed), so that

f1 ? f2
def
= (g1 • g2, h1 ◦ h2) = (g12, h12) ∈ G×H = F .

a2. Show that the operator ? satisfies the associativity property.( 1
10)

Let f1, f2, f3 ∈ F be arbitrary, say f1 = (g1, h1), f2 = (g2, h2) and f3 = (g3, h3) for some g1, g2, g3 ∈ G and h1, h2, h3 ∈ H.
Then

(f1 ? f2) ? f3
def
= (g1 • g2, h1 ◦ h2) ? (g3, h3)

def
= ((g1 • g2) • g3, (h1 ◦ h2) ◦ h3)

∗
= (g1 • (g2 • g3), h1 ◦ (h2 ◦ h3))

def
= (g1, h1) ? (g2 • g3, h2 ◦ h3)

def
= f1 ? (f2 ? f3) .

In this derivation we have repeatedly exploited the definition of ?, and (in ∗) the fact that G and H constitute groups,

implying that their respective operators • and ◦ are associative.

a3. Give the identity element of F .( 1
10)

Since G and H are groups, they each have an identity element, say eG ∈ G, respectively eH ∈ H. Claim: eF = (eG, eH)
is the identity element of F . Proof: Notice first of all that by construction eF ∈ F . Now consider f ∈ F arbitrary, say
f = (g, h) with g ∈ G and h ∈ H. Then

eF ? f
def
= (eG, eH) ? (g, h)

def
= (eG • g, eH ◦ h)

∗
= (g, h)

def
= f .

Also

f ? eF = (g, h) ? (eG, eH)
def
= (g • eG, h ◦ eH)

?
= (g, h)

def
= f .

In ∗ and ? we have used the fact that eG and eH are both left identity elements (∗) as well as right identity elements (?)

for G, respectively H. The two identities above thus indeed identify eF as the identity element of F .

a4. Give the inverse element f−1 ∈ F for given f ∈ F .( 1
10)

Notation as in the solution of a3, with f = (g, h) ∈ F chosen arbitrarily. Let g−1 ∈ G and h−1 ∈ H be the inverse
elements of g ∈ G, respectively h ∈ H. Claim: f−1 = (g−1, h−1) is the inverse element of f = (g, h). Proof: Notice first
of all that f−1 ∈ F , by virtue of the fact that g−1 ∈ G and h−1 ∈ H. Furthermore,

f−1 ? f = (g−1, h−1) ? (g, h)
def
= (g−1 • g, h−1 ◦ h)

a3
= (eG, eH)

a3
= eF .

Likewise,

f ? f−1 = (g, h) ? (g−1, h−1)
def
= (g • g−1, h ◦ h−1)

a3
= (eG, eH)

a3
= eF .

THE END
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