
EXAMINATION MATHEMATICAL TECHNIQUES FOR IMAGE ANALYSIS

Course code: 8D020. Date: Thursday April 07, 2011. Time: 14h00–17h00. Place:

Read this first!

• Use a separate sheet of paper for each problem. Write your name and student ID on each paper.

• The exam consists of 4 problems. The maximum credit for each item is indicated in the margin.

• Motivate your answers. The use of course notes is allowed. The use of problem companion
(“opgaven- en tentamenbundel”), calculator, laptop, or other equipment, is not allowed.

• You may provide your answers in Dutch or English.

GOOD LUCK!

1. Clifford Algebra(30)

Attention: For each numeric symbol (matrix entry, scalar multiplier, et cetera) that you use in
your arguments below please state explicitly whether it is real or complex.

Let σ be any 2 × 2 matrix with complex entries σij ∈ C in i-th row and j-th column. The
set of all complex 2 × 2 matrices constitutes a vector space over the real numbers (i.e. scalar
multiplication pertains to real scalars), which we indicate here by M2×2. For simplicity of
notation we write the identity matrix as 1 ∈ M2×2. The complex conjugate of a complex
number z = a+ b i, a, b ∈ R, is indicated by z∗ = a− b i.

The trace operator tr : M2×2 → C is defined by trσ = σ11 + σ22.

The hermitian conjugate operator † : M2×2 →M2×2 is defined by
(
σ11 σ12

σ21 σ22

)†
=
(
σ∗11 σ∗21

σ∗12 σ∗22

)
.

a. Show that tr : M2×2 → C : σ 7→ trσ and † : M2×2 →M2×2 : σ 7→ σ† are linear operators.(10)

For λ, µ ∈ R, σ, τ ∈ M2×2, we have tr (λσ + µ τ) = (λσ + µτ)11 + (λσ + µτ)22 = λσ11 + µ τ11 + λσ22 + µ τ22 =

λ (σ11 + σ22) + µ (τ11 + τ22) = λ trσ + µ tr τ . Furthermore, (λσ + µ τ)†ij = (λσ + µ τ)∗ji = λσ∗ji + µ τ∗ji = λσ†ij + µ τ†ij ,

for all i, j = 1, 2, so (λσ + µ τ)† = λσ† + µ τ†.

The three so-called Pauli matrices are defined as follows:

σ1 =
(

0 1
1 0

)
σ2 =

(
0 −i
i 0

)
σ3 =

(
1 0
0 −1

)
Together they define a basis for a 3-dimensional vector space V ⊂M2×2 over the real numbers.

b. What is the general form of an element σ ∈ V ?(5)
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If σ ∈ V then it can be written as a real linear combination of Pauli matrices, so

σ = λ1σ1 + λ2σ2 + λ3σ3 =

(
λ3 λ1 − λ2 i

λ1 + λ2 i −λ3

)
,

for some λ1, λ2, λ3 ∈ R, in other words a traceless hermitian 2× 2 matrix.

c. Show that trσ = 0 and σ† = σ for all σ ∈ V .(5)

By linearity it suffices to show this for the Pauli matrices, for which it is obvious from b.

We subsequently enrich the vector space V with a multiplication operator, viz. standard matrix
multiplication.

d. Compute all nine products of the form σk σ` for k, ` = 1, 2, 3.(5)

Straightforward computation yields:
σ2
1 = σ2

2 = σ2
3 = 1 ,

and

σ1 σ2 = −σ2 σ1 = iσ3

σ3 σ1 = −σ1 σ3 = iσ2

σ2 σ3 = −σ3 σ2 = iσ1 .

This can be condensed as follows:

σk σ` = δk` 1 + i

3∑
m=1

εk`m σm ,

in which δk` = 1 if k = ` and 0 otherwise, and in which the symbol εk`m is defined as +1 if (k, `,m) is an even permutation

of (1, 2, 3), −1 if (k, `,m) is an odd permutation of (1, 2, 3), and 0 otherwise.

We now consider the set A consisting of all real linear combinations of all possible products
(i.e. with an arbitrary number of factors) of Pauli matrices. In this construct we allow for the
“empty” product, and define it to produce the identity matrix 1 ∈M2×2.

e. Interpreted as a vector space over the real numbers, show that A has dimension 8 by(5)
providing an explicit set of 8 basis vectors.
(Hint: dim M2×2 = 8.)

A basis is given by {1, σ1, σ2, σ3, σ1σ2 = iσ3, σ3σ1 = iσ2, σ2σ3 = iσ1, σ1σ2σ3 = i}. (With i we mean i 1, i.e. i times

identity matrix.) Other choices are of course possible. Note that σi and iσi, i = 1, 2, 3, are independent vectors, since they

cannot be related by real valued linear combinations, i.e. there exists no λ, µ ∈ R other than zero such that λσi +µ iσi = 0.

Likewise for the vectors 1 and i (the latter of which is obtained as σ1σ2σ3). In fact, since A ⊂ M2×2 has the same dimension

as M2×2 itself we must have A = M2×2. Clearly other products than those considered in this basis are therefore redundant.

♣

2. Staircase Function(25)

We introduce the staircase function f : R → R : x 7→ f(x) given by f(x) = bxc, i.e. the
so-called entier of x ∈ R, which is defined as the largest integer k ∈ Z such that k ≤ x.

a. Sketch the graph of y = f(x) on the interval [−3, 3], clearly illustrating its discontinuities.(5)
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See Figure 1. Black (part of graph) and red (not part of graph) bullets indicate discontinuities.
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Figure 1: Graph of y = f(x) = bxc.

b. Give the formula for the classical derivative f ′(x), together with its domain of definition.(5)

We have discontinuities at each integer, and constant values in-between:

f ′(x) =

{
0 if x 6∈ Z
undefined if x ∈ Z .

The regular tempered distribution Tg : S (R)→ R associated with a function g : R→ R is the
tempered distribution given by

Tg(φ) =
∫ ∞
−∞

g(x)φ(x) dx ,

for any φ ∈ S (R).

c. Show that, in distributional sense, T ′f 6= Tf ′ for the staircase function f defined above.(5)

The function f ′ is zero almost everywhere, so Tf ′ (φ) =

∫ ∞
−∞

f ′(x)φ(x) dx = 0. However, T ′f (φ) = −T (φ′) =

∫ ∞
−∞

f(x)φ′(x) dx,

which does not vanish in general, depending on the choice of φ ∈ S (R).

For any a ∈ R we furthermore define the (shifted) Dirac distribution δa : S (R)→ R by

δa(φ) = φ(a) ,

for any φ ∈ S (R).
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d. Prove that T ′f =
∑
k∈Z

δk.(10)

For f(x) = bxc we get T ′f (φ) = −Tf (φ′) = −
∫

Rbxcφ(x)dx = −
∑

k∈Z
∫ k+1

k kφ′(x)dx = −
∑

k∈Z k(φ(k + 1) − φ(k)) =∑
k∈Z φ(k) =

∑
k∈Z δk(φ) for any φ ∈ S (R), from which the result follows.

♣
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3. Group Theory(20)

A discrete group Gn with n distinct elements xi ∈ Gn, i = 1, . . . , n, can be represented by
means of a multiplication table. The term multiplication refers to the group operation, which
will be denoted by the infix operator ◦ : G×G → G : (xi, xj) 7→ xi ◦ xj . The element on i-th
row and j-th column in the table specifies the product xi ◦ xj ∈ G:

◦ x1 · · · xj · · · xn
x1 x1 ◦ x1 · · · x1 ◦ xj · · · x1 ◦ xn
...

...
...

...
xi xi ◦ x1 · · · xi ◦ xj · · · xi ◦ xn
...

...
...

...
xn xn ◦ x1 · · · xn ◦ xj · · · xn ◦ xn

Of course, one obtains full knowledge about the group if all entries in this table are provided.
However, due to the specific structure of a group it is not necessary to provide all entries
in order to uniquely specify the group. An incomplete table may be completed or partially
completed with the help of the defining group properties.

a. Prove that elements in any given row are all distinct. Likewise for elements in any given(10)
column.

Fixing the row label i, let us assume that xi ◦ xj = xi ◦ xk, i.e. the j-th and k-th entries on the i-th row coincide.

Applying xinv
i , i.e. the inverse of xi, to this identity by multiplication from the left yields xj = e ◦ xj = (xinv

i ◦ xi) ◦ xj =

xinv
i ◦ (xi ◦ xj) = xinv

i ◦ (xi ◦ xk) = (xinv
i ◦ xi) ◦ xk = e ◦ xk = xk, which is a contradiction unless j = k. Similarly, by

multiplying from the right by xi one obtains the proof of the second claim.

We now consider the specific case ofG4 = {E,A,B,C}. This group has the following properties:

• E is the identity element,

• B equals its own inverse,

• A ◦A = C ◦ C 6= E.

b. Complete the multiplication table for G4, and explain how you obtained your result:(10)

◦ E A B C
E E A B C
A A B C E
B B C E A
C C E A B

Blue entries are given by the first two properties in the list. Suppose A ◦ A = C ◦ C = X for some X ∈ G4, then X 6= A
and X 6= C by virtue of the uniqueness property proven in problem a. Hence either X = E or X = B. But the former
has been explicitly excluded, so X = B. Furthermore, A ◦ B 6= E, for if A ◦ B = E, then A = Binv = B, which is a
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contradiction. So A ◦B = C. The table can now be completed in a unique way by exploiting the uniqueness property
proven in problem a.

◦ E A B C
E E A B C
A A B C E
B B C E A
C C E A B

In fact we may observe that in this case all elements are powers (group autoproducts) of A, viz. E = A0, A = A1,

B = A2 = A ◦A, C = A3 = A ◦A ◦A, under the periodicity assumption that A4 = A ◦A ◦A ◦A = E. You may therefore

visualize A as a planar rotation over ±π/2, and the group product as a concatenation of such rotations.

♣
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4. Fourier Theory1(25)

Consider the following initial value problem for the function u : Rn × R+ → R: ∂u(x, t)
∂t

=
(
∆−m2

)
u(x, t) for (x, t) ∈ Rn × R+

u(x, 0) = f(x) for x ∈ Rn

Here f : Rn → R is a real valued image and m > 0 a positive constant. Boundary and initial
conditions are such that this initial value problem has a unique, sufficiently nice solution.

In this problem the following Fourier convention applies. For (sufficiently nice) u : Rn → C we
define the function û = F(u) : Rn → C as follows:

û(ω) =
∫

Rn

e−iω·x u(x) dx or, equivalently, u(x) =
1

(2π)n

∫
Rn

eiω·x û(ω) dω ,

in which ω · x denotes ω1 x1 + . . . + ωn xn. For the sake of brevity we furthermore write
‖x‖2 = x · x, respectively ‖ω‖2 = ω · ω.

In the problems below you may use the standard integral∫ ∞
−∞

e−(x+iy)2 dx =
√
π irrespective of the value of y ∈ R .

a. Show that the initial value problem above is equivalent to the following initial value problem(5)
in the Fourier domain:

dû(ω, t)
dt

= −
(
‖ω‖2 +m2

)
û(ω, t) voor (ω, t) ∈ Rn × R+

û(ω, 0) = f̂(ω) for ω ∈ Rn

(Note that we may interpret this as an ordinary differential equation with initial condition,
whence the alternative notation for the t-derivative on the left hand side.)

This follows by using linearity of Fourier transformation and the appropriate formal identity

F(
∂

∂xi
) = iωi for i = 1, . . . , n, so in particular F(∆) = −‖ω‖2 .

Note that no Fourier transform is applied with respect to the t-coordinate.

b. Find the solution û(ω, t).(5)
(Hint: Stipulate a solution of type û(ω, t)=AeBt and determine the (ω-dependent) parameters A,B.)

By subsituting û(ω, t)=AeBt into the differential equation we find B = −(‖ω2‖+m2). By imposing the initial condition

we find A = f̂(ω). The solution is therefore

û(ω, t) = f̂(ω) e−(‖ω2‖+m2) t .

c. Show that for fixed t ∈ R+ the spatial solution is given by the convolution product(5)
1Exam June 14, 2005, problem 3.
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u(x, t) = (φt ∗ f) (x)

for some convolution filter φt : Rn → R.

From b it follows that

û(ω, t) = f̂(ω) φ̂t(ω) waarin φ̂t(ω)
def
= e−(‖ω2‖+m2)t .

A function product Fourier space corresponds to a convolution product in the spatial domain, so

u(x, t) = (f ∗ φt) (x) .

(Caveat: t is considered as a constant parameter and therefore plays no role in the convolution integral.) Here we have

defined φt
def
= F inv(φ̂t), i.e. the spatial convolution filter with Fourier representation φ̂t(ω).

d. Determine the form φt(x) of this convolution filter.(5)

Fourier inversion yields:

φt(x) =
1

(2π)n

∫
Rn

eiω·x φ̂t(ω) dω =
1

(2π)n

∫
Rn

eiω·x−(‖ω2‖+m2)t dω = e−m2t 1

(2π)n

∫
Rn

eiω·x−‖ω2‖t dω .

Now consider the following integral:

1

(2π)n

∫
Rn

eiω·x−‖ω2‖t dω
∗
=

1

(2π)n
e−

‖x‖2
4t

∫
Rn

e
−‖ω
√

t− ix
2
√

t
‖2
dω

?
=

1

(2π)n
e−

‖x‖2
4t

1
√
t

n

∫
Rn

e
−‖ω′− ix

2
√

t
‖2
dω′ .

The equality marked by ∗ exploits the identity iω · x−‖ω2‖t = −‖ω
√
t−

ix

2
√
t
‖2−

‖x‖2

4t
, while ? uses change of variables:

ω
√
t = ω′ ∈ Rn (note the Jacobian!). Finally, using the standard integral given, it follows that

∫
Rn

e
−‖ω′− ix

2
√

t
‖2
dω′ =

∫ ∞
−∞

e
−(ω′1−

ix1
2
√

t
)2

dω′1 . . .

∫ ∞
−∞

e
−(ω′n−

ixn
2
√

t
)2

dω′n =
√
π

n
.

All in all:

φt(x) =
1

√
4πt

n e−
‖x‖2
4t
−m2t .

e. Prove:
∫

Rn

φt(x) dx = e−m
2t.(5)

(Hint: Consider φ̂t(ω).)

Cf. b: φ̂t(ω)
def
= e−(‖ω2‖+m2) t, whence

∫
Rn

φt(x) dx =

∫
Rn

e−iω·xφt(x) dx
ω = 0

= φ̂t(0) = e−m2t.

THE END
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