EXAMINATION MATHEMATICAL TECHNIQUES FOR IMAGE ANALYSIS

Course code: 8D020. Date: Wednesday April 10, 2013. Time: 09h00-12h00. Place: MA 1.44

Read this first!

e Write your name and student ID on each paper.
e The exam consists of 4 problems. Maximum credits are indicated in the margin.

e Motivate your answers. The use of course notes is allowed. The use of any additional material or equipment,
including the problem companion (“opgaven- en tentamenbundel”), is not allowed.

e You may provide your answers in Dutch or English.

e Do not hesitate to ask questions on linguistic matters or if you suspect an erroneous problem formulation.

Good luck!
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A real sequence s is an infinitely long array of the form s = (s1, s2,s3,...), with s; € R for all
i € N. It is not difficult to show that the set S of all real sequences constitutes a real vector
space under entry-wise addition and scalar multiplication. (You may take this for granted.)

al. Explain by formulas the meaning of “entry-wise addition and scalar multiplication” on S.

Let s = (s1,82,83,...) € S, t = (t1,t2,t3,...) €S, X € R, then we define s + ¢ = (s1 + t1,82 + t2,83 + t3,...) € S and
As = (As1, As2, As3, .. .).

a2. What is the neutral element of S?7 What is the inverse element of s = (s1, s2,83,...) € S?

The neutral element is n = (0,0,0,...) € S. The inverse of s = (s1, s2,$3,...) € Sis (—s) def (—s1,—82,—83,...) €8S.

An arithmetic sequence a is a sequence of the form a = (a1, a2, as,...) such that subsequent
terms have a common difference, i.e. for each such a sequence a there exists a constant ¢ € R
such that for all z € N

Ai+1 = a; +c.

By A we denote the set of all real-valued arithmetic sequences.
b. Prove that A C S is a vector space.

Since S is a vector space we only need to prove closure. Suppose a = (a1,a2,a3,...) € A, b = (b1,b2,b3,...) € A, and
A, 1 € R. By definition there exist constants ¢,d € R such that a;41 = a; +cand b;41 = b; +d. Let s def Aa+ pb € A
be an arbitrary superposition, i.e. s; = Aa; + ub;, then it follows that s;4+1 = Aai+1 + pbit1 = Aai +¢) + p(by +d) =
Aa; + pb; + Ac+ pud = s; + e for all ¢ € N, in which e 4 \e + pd € R, so that we may conclude that, by definition, s € A.

In * we have likewise used the definition of A.
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An n-dimensional basis of A is a set {ej,...,e,} of n linearly independent sequences ¢; € A,
i=1,...,n, such that every element a € A can be written as a linear superposition of the form
a = Aey+ ...+ A\ e, for certain coefficients Ay,..., A, € R.

cl. State in terms of an explicit formula what “linear independence” of the basis elements in
{e1,...,e,} means.

)\161+...+/\n6n:n=(0,0,0,...)GAiff/\l=...=)\n=0.

c2. Show that, if such a basis exists, then, for any given a € A, the coefficients ); in the linear
superposition a = Aje; + ... + A\ e, are unique.

= HINT: SUPPOSE a = A\je; + ...+ A\pe, AND a = p1€1 + ... + fip€y,, CONSIDER THE DIFFERENCE.
We have (0,0,0,...)=n=a—a= (A1 —p1)er +...+ (An — ptn)en. By cl this is equivalent to A1 = p1,...,Ap = pn.

d. Show that A does indeed have a finite-dimensional basis, and provide one explicitly. What
is the dimension?

Note that an arbitrary arithmetic sequence a € A can be written as a = (a1, a1 +¢,a1 +2¢,a1 + 3¢, . ..) for some aj,c € R.
This can be written as a = aie1 + cez, with e; = (1,1,1,...), e2 = (0,1,2,...). Thus the linear space of arithmetic

sequences is 2-dimensional.

A geometric sequence g is a sequence of the form g = (g1, g2, g3, - . .) such that subsequent terms
have a common ratio, i.e. for each such a sequence g there exists a nonzero constant r € R\{0}
such that for all - € N

gi+1 =TG-

By G we denote the set of all real-valued geometric sequences.
e. Prove that G C S is not a vector space.

G fails to be closed. For suppose g € G, h € G, such that, for any ¢ € N, g;11 = rg; and h;41 = sh; for some constants
r,s € R\{0}. Then we observe that g;+1 + hi+1 = rg; + sh;. In general the right hand side cannot be written as t(g; + h;)
for some constant t € R\{0}.

We restrict ourselves henceforth to the set of all positive geometric sequences, defined as
Gt ={9=(91,92,93,-.-) € G| gi>0foralli=1,2,3,...}. On this set we introduce an
alternative definition for addition and scalar multiplication, according to the following rules. If
g=1(91,92,93,--.) € GT, h = (h1,ha,h3,...) € GT, X € R, then

g®h = (g1h1,goho,g3hs,...) and A®g=(97,9%,9%,...)-

f. Show that GT is closed under the actions of @ and ®, and subsequently show that it is a
vector space.

For closure we must show that g@h and A®g as defined above are geometric sequences. We have (9B h)it1 def git+1hit1 def

rgish; = rsgih; def (rs)(g @ h); for some common ratios r, s # 0 (whence the effective common ratio equals rs # 0) and

all i € N. Similarly, A ® g)i41 % g}, % (rgi)> = rrg} &

k3

r (A ® g);. Note that the effective common ratio r* # 0 if
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r # 0. Now we cannot use the subspace theorem, since GT ¢ G in the sense of a vector space inclusion, for the spaces

GT and G have different vector operations.

2. GROUP THEORY

In this problem we consider a finite group G consisting of 2 elements, to which we will refer as
a,b € G. Without loss of generality we may identify a = id, i.e. the identity element of G.

a. Show that either a = b =1id, or, if a # b, that b = b~1.

The option a = b = id produces the trivial 1-element group G = {id}. Suppose a # b, then, since a serves as the identity
element, we have ba = ab = b # a, from which it follows that a cannot be the inverse of b. By closure there is no other

option than that b equals its own inverse: b=1 = b, i.e. b*> = a.

We henceforth assume that a # b.

b. Provide the 2 x 2 group multiplication table of GG, cf. the template below. With 1 =a,zs =5,
the (i, j)-th element in this table indicates z; o x;.

Inspection of the result in a readily provides the full multiplication table:

Let T : R%\{(0,0)} — R*\{(0,0)} : (z,y) — T(z,y) be given by T(z,y) = <$2 f_ 2 72 i y2>-

For k € N we indicate k-fold concatenation of T by T* . kfold — ... 0T, Moreover,

ket (Tinv)k , in which 7™ is the inverse function of 7. The identity element is identified

with 70 : R2\{(0,0)} — R2\{(0,0)} : (z,y) + id(z,y) = (z,v).

c. Show that 7™ =T,
w HINT: SET (2/,y') = T(x,y), AND CONSIDER THE IDENTITY T™ (' y/) = (z,7).

Solving the following system for (z,y) in terms of (z’,y’)

! — x
y o~
A En
yields
ZZJ/
v @2+)?
Y = oty
@+

3



so TV (z! y') = T(a’,y’), i.e. T has the same functional form as T (suppress irrelevant primes attached to arguments).
Consider the set © = { 7 : R2\{(0,0)} — R*\{(0,0)} ‘ kez}.

We say that two groups, G and H say, are isomorphic, notation G ~ H, if there is a one-to-one
correspondence ¢ : G — H : g — h = ¢(g) between their respective elements that preserves
the group structure, i.e. ¢(g1) o ¢(92) = ¢(g1 oG g2), in which og and oy are the infix group
operators on G, respectively H.

d. Show that the set ©, furnished with the concatenation operator o, constitutes a group
isomorphic to the 2-element group G of problem b.

Obviously T # T° = id. Since T™™¥ = T according to c it follows from the definition of T that TF = T if k is odd,
and T% = T° = id if k is even, ie. © = {TO,T} is a 2-element group. We have seen in problems a and b that any
such 2-parameter group must have a multiplication table as given in b, with in the case at hand the formal substitutions
a— T% =id and b = T. In other words, © ~ G (as defined in a and b).

Next, consider the class of symmetric smooth functions of rapid decay,

Fym(R) € {p € S(R) | d(x) = ¢(—2)} -

We take it for granted that .”(R) is closed under Fourier transformation, defined in this problem
with the following convention:

F(¢)(w) = \/ﬂ/ d(z)e ™% dr whence F™(y)(z \/ﬂ/ b(w) €9 de

e. Show that .Z4ym(R) is closed under Fourier transformation. = HINT: Zym(R) C .7 (R).

Since Fsym(R) C Z(R), Fourier transform of ¢ € Fsym(R) is well defined. We need to show that if ¢(x) = ¢(—x) for all
z €R, ie. ¢ € Fym(R), then also F(¢)(w) = F(¢)(—w), i.e. F(P) € Fsym(R). Indeed we have

ar e ZWI 1 & ZOJ ° 74(4) _g\ —w
F(B)w) = \/%/ () e da —m/_wm— v dy \/ﬂ/ Yy = F($)(—w),

in which we have made use of a change of variables, y = —z, in %, and of the symmetry property ¢(y) = ¢(—y) in *.
We now consider the set & = {ﬁk : Loym(R) = Fiym(R) ) ke Z}.

f. Show that this set, furnished with the concatenation operator o, constitutes a group that is
likewise isomorphic to the 2-element group G of problem b, but that this is not the case if we
replace Zym(R) by 7 (R) in the definition of .

From the solution of problem e we may conclude that Z(¢) = F™(¢) for all ¢ € Fsym(R) by virtue of step x and the
particular definition of the Fourier transform in the case at hand. In other words, .# = .Z'™V as elements of ®. Furthermore
we have

PO = o= [ oo [T swe e san= o [T [T et O dupioe -
% /_ " anb(a + O)d(x)dz = (—€) = B(E)



for all ¢ € Faym(R) and ¢ € R. In other words, #2 = Z#0 = id as elements of ®. By the same token as in problem d we

may conclude that ® ~ G, for the 2-element group G of problem a and b.

Finally, we consider the 2-element matrix group under matrix multiplication

def 1 0 def 01
= {r (5 1) (Vo))

and use it to construct the 2-dimensional linear space Vi = {a I+ A |a,f € R}
g. Show that Vjs is a semigroup, but not a group under matrix multiplication.

Closure is obvious, since any product of matrices in Vj; will be a linear superposition of I and A as a result of the group
structure of M (and the definition of matrix superposition on Vjs). Associativity likewise holds trivially, since it is a general
property of the matrix product. The group identity element of V}; is clearly I, since I (a [+8A) = (aI+BA) [ =al+B A
for any a, 8 € R. That V) is not a group follows, e.g., from the fact that the vector neutral element, the null matrix,
does not have an inverse. Another example which fails to have an inverse is I + A, for suppose «a, 8 € R are such that
I=T+A)(al+BA)=(a+B8)I+ (a+pB)A, then a+ =1 and a+ S =0, which is a contradiction.

[ )



(15) 3. FOURIER TRANSFORMATION

In this problem we consider a general parametrization of the various one-dimensional Fourier
definitions one encounters in the literature:

[e o]

Flap) (u)(w) = b/ u(z) e " dr  whence 9(12‘3)(71)(30)

—00

_ o[ [

T 2mb )

i(w) €% dw .

The parameter space is P dof {(a, b) € R?|a#0, b> 0}. Consider the following reparametrization:

/

a = —a
T:P—>P: (a, b) — (alv b/) = T(CL, b) with bl — M
21 b
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) al. Show that this is a good definition, in the sense that P is indeed closed under T as
stipulated by the prototype “T : P — P” i.e. (d/,b') € P if (a,b) € P.

If a # 0 then @’ = —a # 0 and if b > 0 then b’ = |a|/(27b) > 0, so (a’,b’) € P.

a2. Show that T is invertible, and that TV = T.

& HINT: SOLVE (a,b) = T (d/, V).
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We have T2(a,b) = T(—a, |a|/(27b)) = (a,b), from which it follows that T2 = idp, i.e. TIV = T.

Without proof we state that the normed space L?(R) of square-integrable, complex-valued
functions with domain R, is closed under Fourier transformation. The norm of a function
u € L?(R) will be denoted by ||u||. Recall that

Jul? = / " (@) (2) da.

, 2
In the problems below you may, moreover, use the following lemma: / etz dy = ﬁ d(y).
a
—00

Let Q CP be the set of parameters for which [|.Z 4 p) (w) (w) [|* = [|ul|? for all u€ L*(R) (unitarity).

(10) b. Determine Q, and show that the convention that was used in problem 1 provides an example
of a unitary Fourier transform, i.e. show that (a,b) = (1,1/v27) € Q.

Insert

oo oo

_ al
27h J_ o

_ lal

_ a (w/) e—iaw'm dw’
27h J_ o

W(w) e *? dw and u*(z)

u(z)

into

lul]? = /_ (@) v () da.

The result is

la] 12 fo° [ . / la] 1% fo° [ 2m
{—} / / a(w) a* (W) / e W= 4o dw dw’ = [—} / / W(w) (W) 8w — W) dw dw'’
27db —oo J —oo —o00 27db —oo J —oo ‘(Z|

_ | - _ la|
= 53 7oou (w) 4" (w) dw = 52

llull®

llall? -



Unitarity requires |a| = 27b%. Thus Q def (a,b) € P|la|l = 27rb2}. In particular we observe that (a,b) = (1,1/v27) € Q.

&

(15) 4. DiSTRIBUTION THEORY (ExaM JUNE 14, 2005, PROBLEM 4)

Consider the function f: R — R : z — f(x), in which m > 0 is a constant, defined as

0 als x <0
fl@)=4 mz asO<z<i
1 alst%

(5)  a. Determine the (classical) derivative f’ of f. Clearly indicate the domain of definition of f’.

= HINT: SKETCH THE GRAPH OF f.
Het domein van f’ is Dom f' = R\{0, %} Het functievoorschrift is:
0 alsz<0
()= m als0<x<%
0 alsxz> i

De functie is niet gedefinieerd in de aansluitpunten =0 en = = %

By Ty € S'(R) we denote the regular tempered distribution corresponding to the function f:
def [
Tp:S(R) — R: ¢ Ty[p] = f(z) é(z)dx.
—0o0

Derivatives of regular tempered distributions are defined as usual: T;k) [#] &t (—1)k T [o™).
The superscript k£ € N indicates order of differentiation.

1
(5)  b. Show that Tt[¢] = m /m ¢(x) dz, i.e. that T¢ = Ty, with g : R — R 2 — g(z) given by
0

g(a) =mxp 1) (z).
Here, x; is the indicator function on the set I CR, i.e. xr(z)=1if xe€l, x(x)=0if z&1.

Er geldt

te) < 1) - [ @@ [T e @ [ @

= ooy +m [ ole) e~ p@)T 2 m [ o) de [ @) o) s S 10,

waarin g (respectievelijk Ty) de functie (respectievelijk reguliere getemperde distributie) is zoals hierboven gedefinieerd.
Bij * is gebruik gemaakt van parti€le integratie, bij x zijn de randvoorwaarden gebruikt, met i.h.b. de eigenschap dat
EILH;O ¢(x) = 0 voor elke testfunctie ¢ € S(R). Aangezien dit resultaat geldt voor alle ¢ € S(R) volgt dat de distributies
in linker- en rechterlid gelijk zijn: T} = Ty.

(5) e Prove: lim T =4, in which § is the Dirac distribution, 6 : S(R) — R : ¢ — [¢] L 5(0)

7



w HINT: SUBSTITUTE § = mx IN THE INTEGRAL EXPRESSION FOR T4[¢] BEFORE TAKING THE LIMIT.

Volg de hint en gebruik het resultaat bij onderdeel b:

def

g b # Y Vogex [T _ e
Jim Tyl tim o [T o@de 2 tim [a(Eyae 2 [ a0)ae = 60) = ola).

Bij % is de genoemde substitutie van variabelen uitgevoerd, bij * zijn limiet- en integraaloperaties omgewisseld en in de
laatste stap is de definitie van de Dirac distributie gebruikt. Aangezien dit resultaat geldt voor alle ¢ € S(R) volgt dat de

distributies in linker- en rechterlid gelijk zijn: lim,, oo TJ’c =4.

THE END



