REEXAMINATION MATHEMATICAL TECHNIQUES FOR IMAGE ANALYSIS

Course code: 8D020. Date: Wednesday April 11, 2012. Time: 09h00-12h00. Place: MA 1.46.
Read this first!

e Write your name and student ID on each paper.
e The exam consists of 4 problems. The maximum credit for each item is indicated in the margin.

e Motivate your answers. The use of course notes is allowed. The use of problem companion (“opgaven- en tenta-
menbundel”), calculator, laptop, or any other equipment, is not allowed.

e You may provide your answers in Dutch or English.

e Feel free to ask questions on linguistic matters or if you suspect an erroneous problem formulation.

Good luck!

(30) 1. INNER PRODUCT SPACE

Consider the set

V={f:R=>C| feCR)and f(z) = (k| [)}
in which k, € V is a particular element of V for every x € R and (| ) : C(R) x C(R) — C is a

complex inner product on C(R). We take it for granted that C(R) is a complex inner product
space given the usual definitions of function addition and complex scalar multiplication.
a. Show that the function k, has the following properties:
(25)  al. ku(y) = (kylka);
Since kz € V we have, by definition of V, ky(y) = (ky|ka).

(23) a2. k;(y) = ky(z) (in which Z denotes the complex conjugate of z € C);

Using the definition of V (first and last step) and the definition of a complex inner product (middle step) we find

ka(y) = (kylka) = (kalky) = ky(z).

(23) a3. kz(x) >0 for all x € R.

By virtue of non-degeneracy of an inner product we have, for all z € R, kg (z) = (kz|kz) > 0.

The following diagrams are abstract representations for k;(y) and ky(x):

X y X
® « ®

ky(x) ky(x)

?
Y




(10)

(35)

a4. Explain what it means to say that these diagrams are mutually consistent.

Assuming that the orientation of the graphics should not matter you can interpret the second graph as a 180°-rotated

copy of the first graph, with free labels z and y interchanged, i.e. as k. (y). But according to a2 this is identical to ky(z),

indeed the interpretation given to the second graph.

b. Show that V is a complex vector space.
= HINT: USE THE LINEAR SUBSPACE THEOREM.

It is given that C'(R) is a complex vector space, with V' C C(R). So we need to prove only closure. Let f,g € V and
A\ € C, so in particular f(z) = (kz|f) and g(z) = (kz|g) for all z € R. We have (kz|Af + png) = Mka|f) + pu(kzlg) =
A(x) + pg(z) 2 (Af + ng)(z), so Af + pg € V. Here we have used the linearity property of a complex inner product (%),
the definition of V' (%), and the usual definition of linear function superposition (o).

Below we take (| ) : C(R) x C(R) — C to be the standard complex inner product on C(R).
c. Explain what this means by giving the explicit formula for (f|g).

The standard complex inner product for one-dimensional functions is given by (f|g) = [; f(z) g(z) dx.

d. Explain and prove the following diagrammatic equality:

y X y X
° °

— *—Pp—o—Pp—=o

< HINT: THE UNLABELED CENTRAL DOT ON THE R.H.S. REPRESENTS AN INTEGRATION DUMMY.

The r.h.s. diagram symbolizes ky(z) = / kz(z) ky(2z) dz. To see that this identity is correct, consider the Lh.s. diagram.
R
By definition this diagram equals

k@) 2 (helly) & [ TGk () a2 [ TRaThad (sl d

The integrand on the r.h.s. consists of two factors, which can be diagrammatically represented as two oriented line
elements with a common (dummy) label z, once with an incoming arrow and once with an outgoing arrow. By graphically

“contracting” this dummy into a single inner node one obtains the diagram on the r.h.s.

&

2. ALGEBRA (ExaM MARCH 8, 2005, PROBLEM 1)

In this problem we consider the set G 4f B2 endowed with certain internal and external oper-
ators. We identify an element # € G with its column representation in R?:

g Lt < Zl ) in which 61,60, € R (the “components of §”).
2

To begin with we interpret G as the linear space over R by introducing vector addition and



scalar multiplication, in the usual way. The vector sum of 1,0 € G is written as n + 6, and the
scalar multiple of # € G and A € R as A 6.

a. Explain what is meant by “the usual way” by indicating explicitly how n + 6 and )\ are
defined in terms of their components.

For arbitrary A, € R and 7,6 € G we define

def /\171 +y,91
A 6 = .
i ( Anz + p 62

We furthermore introduce an algebraic operation, which we shall refer to as “multiplication”.
The “product” of 1,0 € G is simply written as 76, for which we agree that, in terms of

components,
def m 91
0= €g
< n1 b2 + 12 61 >

b. Prove that G, endowed with the aforementioned multiplication operation, constitutes an
algebra. Proceed as follows (without proof we take it for granted that G is a linear space, cf.
part a):

bl. Prove that Vn,0,y€ G (n8)y=n(6~).

Expanding in terms of components we get

(no)y =
m 01 Y1) def (m 61)m * m (6171) def (M 0171
1 62 + 12 01 V2 (m O1)y2 + (m 02 +m201)m m (0192 +0271) +n2 (01 711) 72 O1v2 + 02
def
= n(0v).

The triviality marked with x exploits associativity of ordinary multiplication on R.

b2. Prove that Vn,0,y€ G n(0+~) = n0)+ (n7).

_(m 01 +7 Y\ _ n (61 4+ 71) * M1 601 771 _
n(9+7)7(772)(924‘72)7(771(92'5‘72)4‘772(91"!‘71) T\ MmO+ 201 + N y2 +n2m =m0+ 7).

In % distributivity of ordinary multiplication on R has been used to eliminate parentheses in the components and also of

the definition of vector addition to split the column vector into two terms.

b3. Prove that Vn,0,y€ G (n+0)y = (ny) + (07).

You can construct the proof in terms of components analogous to the solution for b2. Alternatively one can make use of
commutativity (x), which will be proven under d below, and of the distributivity property in part b2 (x):

M+0)y=vyn+0)=(yn)+ (v0) = (ny) + (07).

b4. Prove that Vn,0 € G, A€ R A(n0) = (An) 0 =n(\0).



We first prove the first equality:

def n 0 * A(m 61) * (Am) 61 x (Am)1 6 def
Aln6) = A (771 921+;7291) - <>\(711921+:)291)> N ((Am)@erl()\nz)&)) N ((/\77)1 92+()\177)291)) = (mo.

In x we have used the definition of scalar multiplication, in * we have used associativity of multiplication on R to shift
parentheses. In the first and last step the definition of multiplication on G has been used. The second equality can be

proven in a similar fashion, or with the help of commutativity (part d).

c. Show that, moreover, there exists a unit element 1 € G (not to be confused with the number
1 € R), and give its column representation in R2.

Call the components of 1 € G e1 € R respectively ea € R. Let € G be arbitrary, and suppose
€1 1 e1 T def xr1
1 X = = =
(62)(12) (61502+€2€131) (Iz)

for all x1,z2 € R, in which (in the final step) the definition of the identity element has been used, then it follows by
necessity that e; = 1 and ez = 0. Conclusion:
(o)
o)

One still needs to verify whether 1 = z for all z € G. We could do this by componentwise analysis as previously, or by
exploiting once more commutativity, with a modest amount of foresight, cf. part d (x):

zl1Z1lx=x forallzcg.

d. Is multiplication on G commutative? If so, prove, if not, give a counter example.

Suppose z,y € G, then

_ X1 1 _ x1 Y1 _ Y11 _
= (wz) (yz) a (x1y2+x2y1) B (y1z2+y2x1) B

We now consider the subset Gy C G, defined by Gy = {6 € G | #? = 0}. (With 62 we mean 60.)

e. Give an explicit characterization of Gy by indicating what the column representation in R?
of an arbitrary element 8 € Gy looks like.

92 _ 9% def 0
T\ 20102 )  \0) "

In the last step we have used the fact that 6 € Gp. This is equivalent to the condition 61 = 0, i.e. an arbitrary element
0 € Go has the form
0
= (a)

In terms of components we have

with 02 € R arbitrary.

Finally we introduce on G a degenerate, non-negative, symmetric, real valued, bilinear form.
For 7,0 € G this is indicated by (n|0) € R. In terms of the components of n and 6 we define
this as follows:

(n|0) =n101.

Caveat: The adjective “degenerate” indicates that (| ) does not define an inner product.



f. Explain the adjective “degenerate” by explaining why ( | ) does not define an inner product.

For a (non-degenerate) inner product we have the condition that (#|#) = 0 iff # = 0 € G. In the case of the definition
above, however, we have (06) = 0 iff 1 = 0, i.e. irrespective of the value of §2. Thus there are non-trivial elements 6 € G

(viz. all elements with 61 = 0 and 62 # 0) for which (0|0) = 0 (“degeneracy”).
We now consider the subset G; C G, defined by G; = {0 € G | (0|6) = 1}.
g. Prove that G; constitutes a group with respect to multiplication. Proceed as follows:

gl. Show that, if ,0 € G; then n6 € G; (“closure”).

You need to show that the subset G1 C G is closed under multiplication. Suppose 7,6 € Gy, then

0 i N
"ez(meglinel) so (n6ln6) = (n0)T = (m 61)* =i 63 = (nln) (616) = 1.

In * the definition of the bilinear form (n|f) € R has been used, in * that of the (first component of) the algebraic product
n6 € G. In the last step the fact that 1,0 € G1 has been used. Since (n6|n#) =1 it follows that n6 € G;.

g2. Show that Vn,0,y € Gi  (n0)y =n(0) (“associativity”).
Multiplication on G is associative (cf. b1l). Since G1 C G it is also associative within G;.

g3. Show that the unit element of part c satisfies 1 € G.

0 € G iff 6 € G and (6]6) = 1. For the identity element it has already been shown in ¢ that 1 € G. Using the components
of the identity element and the definition of the bilinear form it immediately follows that

apy =1.

Conclusion: 1 € Gj.

g4. Show that, given € Gy, there exists an inverse §~ € G, such that 0~ 1 =010 =1¢€ G,.
Give the column representation of #~! in R? in terms of the components of 6.

Given 6 € G arbitrary. Write 6~ = 5 for notational convenience. We must have 70 = 1 € Gy. (If this holds then 87 = 1
holds automatically by virtue of commutativity, recall part d.) In other words,

(n1921+9;7291) - (é)
(& o) (m)=()-

which can also be written as

Inversion yields
A x
00\ et (m\_ (6 0N /1)_1/61 0 N _ | g |z 0
02 - 72 T\ 0 04 0o/ 0% —0s 01 0o/ _ 2 - —0o :
0%

Note that this is well defined, since 1 # 0 for all 8 € G1. The last step, indicated with a *, exploits the fact that
62 = (0]0) =1 for all 6 € Gy.



(35) 3. FOURIER TRANSFORMATION AND DISTRIBUTION THEORY

(10)

Consider the generalized function f defining a tempered distribution Ty €.’ (R2), given by

f(z,y) = u(w,y) d(y — mx),

in which 6 denotes the one-dimensional Dirac function, v : R> — C is a given function with
well-defined Fourier transform % : R? — C, and m € R is a parameter. That is, for ¢ € . (R?),

77(0) = [, £Go.9) 6(a.9) dady.

Note that the support of f (the part of the (x,y)-domain where f(x,y) may not vanish) is
effectively the line given by ¢ : y = ma. For this reason we define the function u,, : R — C by

U () = u(x, mx) .

In this problem the two-dimensional Fourier transform is defined as

flow) = [[ e a.y) dudy,

a. Show that f(w,v) = G, (w + mv).
Working out the definitions we have

flw,v) = // e~ WY f(p ) dady = // eTWT=WY gy (1 y) §(y—ma) dedy = / e~ wtmT (1) dz = G (W+my) .
R2 R2 R

b1l. Sketch the graph of ¢ in the (z,y)-plane.

The graph of £ in the (z,y)-plane is a straight line through the origin with an inclination angle « relative to the z-axis,

such that m = tana.

b2. Express the angle a by which £ intersects the z-axis in terms of the parameter m.
Recall bl: a = arctanm.

b3. Sketch the family of lines in the (w,)-plane on which f(w,v) assumes constant values.

For constant ¢ € C and generic function f we have f(w,u) = ¢, i.e. Um(w + mv) = ¢, along lines in the (w,v)-plane for

which w + mvr = k for any constant k € R.
b4. Under which angle does the normal vector to this family intersect the w-axis?

The common normal of the family of lines given in b3 is, up to an arbitrary non-zero constant, equal to (1,m), so that it

makes the same angle a = arctan m with the w-axis as the line ¢ does with the z-axis.



Below we consider the case Y
U(.%',y) = Ae_(w ) )

for some amplitude A > 0. In the following problem you may use the following standard
integral, valid for all £, € R:

/OO o€ ge — /7

—00

(10) c. Compute Uy, (w).
Plugging in the definition of the function u,, we obtain
Um (W) = / e T Uy (z) da = A / eiwm e=(14m*)a? gy
R R

The r.h.s. can be rewritten as

_ w2 _ /1+ 2+ iw 2 _ w2 —(&+ iw 2 _ w2
Ae 21+m?) /e (= " 2\/m) do = A e A(1+m?) / e « 21/1+7n2) de = Aym e 4(1+m?2) |
R 1 +m? R V1+m?
In * we have substituted zv/1 +m?2 = £, in x we have applied the given standard integral.
o
(5)  d. Suppose the function u,, is normalized such that / U (x) dz = 1. Determine A.
)

This means that @, (0) = 1, so A =1+ m2/\/x.



