
REEXAMINATION MATHEMATICAL TECHNIQUES FOR IMAGE ANALYSIS

Course code: 8D020. Date: Wednesday April 11, 2012. Time: 09h00–12h00. Place: MA 1.46.

Read this first!

• Write your name and student ID on each paper.

• The exam consists of 4 problems. The maximum credit for each item is indicated in the margin.

• Motivate your answers. The use of course notes is allowed. The use of problem companion (“opgaven- en tenta-
menbundel”), calculator, laptop, or any other equipment, is not allowed.

• You may provide your answers in Dutch or English.

• Feel free to ask questions on linguistic matters or if you suspect an erroneous problem formulation.

Good luck!

1. Inner Product Space(30)

Consider the set
V = {f : R→ C | f ∈ C(R) and f(x) = 〈kx|f〉}

in which kx ∈ V is a particular element of V for every x ∈ R and 〈 | 〉 : C(R)× C(R)→ C is a
complex inner product on C(R). We take it for granted that C(R) is a complex inner product
space given the usual definitions of function addition and complex scalar multiplication.

a. Show that the function kx has the following properties:

a1. kx(y) = 〈ky|kx〉;(2 1
2

)

Since kx ∈ V we have, by definition of V , kx(y) = 〈ky |kx〉.

a2. kx(y) = ky(x) (in which z denotes the complex conjugate of z ∈ C);(2 1
2

)

Using the definition of V (first and last step) and the definition of a complex inner product (middle step) we find

kx(y) = 〈ky |kx〉 = 〈kx|ky〉 = ky(x).

a3. kx(x) ≥ 0 for all x ∈ R.(2 1
2

)

By virtue of non-degeneracy of an inner product we have, for all x ∈ R, kx(x) = 〈kx|kx〉 ≥ 0.

The following diagrams are abstract representations for kx(y) and ky(x):

y x

ky(x)

y x

ky(x)

1



a4. Explain what it means to say that these diagrams are mutually consistent.(2 1
2

)

Assuming that the orientation of the graphics should not matter you can interpret the second graph as a 180◦-rotated

copy of the first graph, with free labels x and y interchanged, i.e. as kx(y). But according to a2 this is identical to ky(x),

indeed the interpretation given to the second graph.

b. Show that V is a complex vector space.(10)

+Hint: Use the linear subspace theorem.

It is given that C(R) is a complex vector space, with V ⊂ C(R). So we need to prove only closure. Let f, g ∈ V and

λ, µ ∈ C, so in particular f(x) = 〈kx|f〉 and g(x) = 〈kx|g〉 for all x ∈ R. We have 〈kx|λf + µg〉 ∗
= λ〈kx|f〉 + µ〈kx|g〉

?
=

λf(x) + µg(x)
◦
= (λf + µg)(x), so λf + µg ∈ V . Here we have used the linearity property of a complex inner product (∗),

the definition of V (?), and the usual definition of linear function superposition (◦).

Below we take 〈 | 〉 : C(R)× C(R)→ C to be the standard complex inner product on C(R).

c. Explain what this means by giving the explicit formula for 〈f |g〉.(5)

The standard complex inner product for one-dimensional functions is given by 〈f |g〉 =
∫
R f(x) g(x) dx.

d. Explain and prove the following diagrammatic equality:(5)

=

∫
y x

+Hint: The unlabeled central dot on the r.h.s. represents an integration dummy.

The r.h.s. diagram symbolizes ky(x) =

∫
R
kx(z) ky(z) dz. To see that this identity is correct, consider the l.h.s. diagram.

By definition this diagram equals

ky(x)
a1
= 〈kx|ky〉

c
=

∫
kx(z) ky(z) dz

a1
=

∫
〈kz |kx〉 〈kz |ky〉 dz .

The integrand on the r.h.s. consists of two factors, which can be diagrammatically represented as two oriented line

elements with a common (dummy) label z, once with an incoming arrow and once with an outgoing arrow. By graphically

“contracting” this dummy into a single inner node one obtains the diagram on the r.h.s.

♣

2. Algebra (Exam March 8, 2005, Problem 1)(35)

In this problem we consider the set G def
= R2 endowed with certain internal and external oper-

ators. We identify an element θ ∈ G with its column representation in R2:

θ
def
=

(
θ1

θ2

)
in which θ1, θ2 ∈ R (the “components of θ”).

To begin with we interpret G as the linear space over R by introducing vector addition and
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scalar multiplication, in the usual way. The vector sum of η, θ ∈ G is written as η + θ, and the
scalar multiple of θ ∈ G and λ ∈ R as λ θ.

a. Explain what is meant by “the usual way” by indicating explicitly how η + θ and λ θ are(5)

defined in terms of their components.

For arbitrary λ, µ ∈ R and η, θ ∈ G we define

λ η + µ θ
def
=

(
λ η1 + µ θ1
λ η2 + µ θ2

)
.

We furthermore introduce an algebraic operation, which we shall refer to as “multiplication”.
The “product” of η, θ ∈ G is simply written as η θ, for which we agree that, in terms of
components,

η θ
def
=

(
η1 θ1

η1 θ2 + η2 θ1

)
∈ G .

b. Prove that G, endowed with the aforementioned multiplication operation, constitutes an(5)

algebra. Proceed as follows (without proof we take it for granted that G is a linear space, cf.
part a):

b1. Prove that ∀ η, θ, γ ∈ G (η θ) γ = η (θ γ).

Expanding in terms of components we get

(η θ) γ
def
=(
η1 θ1

η1 θ2 + η2 θ1

)(
γ1
γ2

)
def
=

(
(η1 θ1) γ1

(η1 θ1) γ2 + (η1 θ2 + η2 θ1) γ1

)
?
=

(
η1 (θ1 γ1)

η1 (θ1 γ2 + θ2 γ1) + η2 (θ1 γ1)

)
def
=

(
η1
η2

)(
θ1 γ1

θ1 γ2 + θ2 γ1

)
def
= η (θ γ) .

The triviality marked with ? exploits associativity of ordinary multiplication on R.

b2. Prove that ∀ η, θ, γ ∈ G η (θ + γ) = (η θ) + (η γ).

η (θ + γ) =

(
η1
η2

)(
θ1 + γ1
θ2 + γ2

)
=

(
η1 (θ1 + γ1)

η1 (θ2 + γ2) + η2 (θ1 + γ1)

)
?
=

(
η1 θ1

η1 θ2 + η2 θ1

)
+

(
η1 γ1

η1 γ2 + η2 γ1

)
= (η θ) + (η γ) .

In ? distributivity of ordinary multiplication on R has been used to eliminate parentheses in the components and also of

the definition of vector addition to split the column vector into two terms.

b3. Prove that ∀ η, θ, γ ∈ G (η + θ) γ = (η γ) + (θ γ).

You can construct the proof in terms of components analogous to the solution for b2. Alternatively one can make use of
commutativity (?), which will be proven under d below, and of the distributivity property in part b2 (∗):

(η + θ) γ
?
= γ (η + θ)

∗
= (γ η) + (γ θ)

?
= (η γ) + (θ γ) .

b4. Prove that ∀ η, θ ∈ G, λ ∈ R λ(η θ) = (λ η) θ = η (λ θ).
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We first prove the first equality:

λ(η θ)
def
= λ

(
η1 θ1

η1 θ2 + η2 θ1

)
?
=

(
λ (η1 θ1)

λ(η1 θ2 + η2 θ1)

)
∗
=

(
(λ η1) θ1

(λ η1) θ2 + (λ η2) θ1)

)
?
=

(
(λ η)1 θ1

(λ η)1 θ2 + (λ η)2 θ1)

)
def
= (λ η) θ .

In ? we have used the definition of scalar multiplication, in ∗ we have used associativity of multiplication on R to shift

parentheses. In the first and last step the definition of multiplication on G has been used. The second equality can be

proven in a similar fashion, or with the help of commutativity (part d).

c. Show that, moreover, there exists a unit element 1 ∈ G (not to be confused with the number(5)

1 ∈ R), and give its column representation in R2.

Call the components of 1 ∈ G e1 ∈ R respectively e2 ∈ R. Let x ∈ G be arbitrary, and suppose

1x =

(
e1
e2

)(
x1
x2

)
=

(
e1 x1

e1 x2 + e2 x1

)
def
=

(
x1
x2

)
for all x1, x2 ∈ R, in which (in the final step) the definition of the identity element has been used, then it follows by
necessity that e1 = 1 and e2 = 0. Conclusion:

1
def
=

(
1
0

)
.

One still needs to verify whether x 1 = x for all x ∈ G. We could do this by componentwise analysis as previously, or by
exploiting once more commutativity, with a modest amount of foresight, cf. part d (?):

x 1
?
= 1x = x for all x ∈ G .

d. Is multiplication on G commutative? If so, prove, if not, give a counter example.(5)

Suppose x, y ∈ G, then

x y =

(
x1
x2

)(
y1
y2

)
=

(
x1 y1

x1 y2 + x2 y1

)
=

(
y1 x1

y1 x2 + y2 x1

)
= y x .

We now consider the subset G0 ⊂ G, defined by G0 = {θ ∈ G | θ2 = 0}. (With θ2 we mean θ θ.)

e. Give an explicit characterization of G0 by indicating what the column representation in R2(5)

of an arbitrary element θ ∈ G0 looks like.

In terms of components we have

θ2 =

(
θ21

2θ1θ2

)
def
=

(
0
0

)
.

In the last step we have used the fact that θ ∈ G0. This is equivalent to the condition θ1 = 0, i.e. an arbitrary element
θ ∈ G0 has the form

θ =

(
0
θ2

)
with θ2 ∈ R arbitrary.

Finally we introduce on G a degenerate, non-negative, symmetric, real valued, bilinear form.
For η, θ ∈ G this is indicated by 〈η|θ〉 ∈ R. In terms of the components of η and θ we define
this as follows:

〈η|θ〉 = η1 θ1 .

Caveat: The adjective “degenerate” indicates that 〈 | 〉 does not define an inner product.
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f. Explain the adjective “degenerate” by explaining why 〈 | 〉 does not define an inner product.(5)

For a (non-degenerate) inner product we have the condition that 〈θ|θ〉 = 0 iff θ = 0 ∈ G. In the case of the definition

above, however, we have 〈θ|θ〉 = 0 iff θ1 = 0, i.e. irrespective of the value of θ2. Thus there are non-trivial elements θ ∈ G
(viz. all elements with θ1 = 0 and θ2 6= 0) for which 〈θ|θ〉 = 0 (“degeneracy”).

We now consider the subset G1 ⊂ G, defined by G1 = {θ ∈ G | 〈θ|θ〉 = 1}.

g. Prove that G1 constitutes a group with respect to multiplication. Proceed as follows:(5)

g1. Show that, if η, θ ∈ G1 then η θ ∈ G1 (“closure”).

You need to show that the subset G1 ⊂ G is closed under multiplication. Suppose η, θ ∈ G1, then

η θ =

(
η1 θ1

η1 θ2 + η2 θ1

)
so 〈η θ|η θ〉 ∗

= (η θ)21
?
= (η1 θ1)2 = η21 θ

2
1 = 〈η|η〉 〈θ|θ〉 = 1 .

In ∗ the definition of the bilinear form 〈η|θ〉 ∈ R has been used, in ? that of the (first component of) the algebraic product

η θ ∈ G. In the last step the fact that η, θ ∈ G1 has been used. Since 〈η θ|η θ〉 = 1 it follows that η θ ∈ G1.

g2. Show that ∀ η, θ, γ ∈ G1 (η θ) γ = η (θ γ) (“associativity”).

Multiplication on G is associative (cf. b1). Since G1 ⊂ G it is also associative within G1.

g3. Show that the unit element of part c satisfies 1 ∈ G1.

θ ∈ G1 iff θ ∈ G and 〈θ|θ〉 = 1. For the identity element it has already been shown in c that 1 ∈ G. Using the components
of the identity element and the definition of the bilinear form it immediately follows that

〈1|1〉 = 1 .

Conclusion: 1 ∈ G1.

g4. Show that, given θ ∈ G1, there exists an inverse θ−1 ∈ G1, such that θ θ−1 = θ−1 θ = 1 ∈ G1.
Give the column representation of θ−1 in R2 in terms of the components of θ.

Given θ ∈ G1 arbitrary. Write θ−1 = η for notational convenience. We must have η θ = 1 ∈ G1. (If this holds then θ η = 1
holds automatically by virtue of commutativity, recall part d.) In other words,(

η1 θ1
η1 θ2 + η2 θ1

)
=

(
1
0

)
which can also be written as (

θ1 0
θ2 θ1

)(
η1
η2

)
=

(
1
0

)
.

Inversion yields

(
θ1
θ2

)−1
def
=

(
η1
η2

)
=

(
θ1 0
θ2 θ1

)inv (
1
0

)
=

1

θ21

(
θ1 0
−θ2 θ1

)(
1
0

)
=


1

θ1

−
θ2

θ21

 ∗
=

(
θ1
−θ2

)
.

Note that this is well defined, since θ1 6= 0 for all θ ∈ G1. The last step, indicated with a ∗, exploits the fact that

θ21 = 〈θ|θ〉 = 1 for all θ ∈ G1.

♣
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3. Fourier Transformation and Distribution Theory(35)

Consider the generalized function f defining a tempered distribution Tf ∈S ′(R2), given by

f(x, y) = u(x, y) δ(y −mx) ,

in which δ denotes the one-dimensional Dirac function, u : R2 → C is a given function with
well-defined Fourier transform û : R2 → C, and m ∈ R is a parameter. That is, for φ ∈ S (R2),

Tf (φ) =

∫∫
R2

f(x, y)φ(x, y) dxdy .

Note that the support of f (the part of the (x, y)-domain where f(x, y) may not vanish) is
effectively the line given by ` : y = mx. For this reason we define the function um : R→ C by

um(x) = u(x,mx) .

In this problem the two-dimensional Fourier transform is defined as

f̂(ω, ν) =

∫∫
R2

e−iωx−iνy f(x, y) dxdy .

a. Show that f̂(ω, ν) = ûm(ω +mν).(10)

Working out the definitions we have

f̂(ω, ν) =

∫∫
R2
e−iωx−iνy f(x, y) dxdy =

∫∫
R2
e−iωx−iνy u(x, y) δ(y−mx) dxdy =

∫
R
e−i(ω+mν)x um(x) dx = ûm(ω+mν) .

b1. Sketch the graph of ` in the (x, y)-plane.(2 1
2

)

The graph of ` in the (x, y)-plane is a straight line through the origin with an inclination angle α relative to the x-axis,

such that m = tanα.

b2. Express the angle α by which ` intersects the x-axis in terms of the parameter m.(2 1
2

)

Recall b1: α = arctanm.

b3. Sketch the family of lines in the (ω, ν)-plane on which f̂(ω, ν) assumes constant values.(2 1
2

)

For constant c ∈ C and generic function f̂ we have f̂(ω, ν) = c, i.e. ûm(ω + mν) = c, along lines in the (ω, ν)-plane for

which ω +mν = k for any constant k ∈ R.

b4. Under which angle does the normal vector to this family intersect the ω-axis?(2 1
2

)

The common normal of the family of lines given in b3 is, up to an arbitrary non-zero constant, equal to (1,m), so that it

makes the same angle α = arctanm with the ω-axis as the line ` does with the x-axis.
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Below we consider the case
u(x, y) = Ae−(x2+y2) ,

for some amplitude A > 0. In the following problem you may use the following standard
integral, valid for all ξ, η ∈ R: ∫ ∞

−∞
e−(ξ+iη)2dξ =

√
π .

c. Compute ûm(ω).(10)

Plugging in the definition of the function um we obtain

ûm(ω) =

∫
R
e−iωx um(x) dx = A

∫
R
e−iωx e−(1+m2)x2 dx .

The r.h.s. can be rewritten as

Ae
− ω2

4(1+m2)

∫
R
e
−(x
√

1+m2+ iω

2
√

1+m2
)2

dx
∗
=

A
√

1 +m2
e
− ω2

4(1+m2)

∫
R
e
−(ξ+ iω

2
√

1+m2
)2

dξ
?
=

A
√
π

√
1 +m2

e
− ω2

4(1+m2) .

In ∗ we have substituted x
√

1 +m2 = ξ, in ? we have applied the given standard integral.

d. Suppose the function um is normalized such that

∫ ∞
−∞

um(x) dx = 1. Determine A.(5)

This means that ûm(0) = 1, so A =
√

1 +m2/
√
π.

♣
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