EXAMINATION:
MATHEMATICAL TECHNIQUES
FOR IMAGE ANALYSIS

Course code: 8D020.

Date: Monday January 18", 2010.
Time: 9h00 — 12h00.
Place: paviljoen bl

1 Linear Algebra

Consider the set C>(S') of R-valued, infinitely differentiable functions on the unit circle S*. We
equip the function space C°°(S!) with the inner product

27

(flg) = / f(e) gla) dar . for fg € C(S).

0

The corresponding measure is given by | f] := /(f|f)-

For our calculations we use the following orthogonal basis functions:
bp:ar— 1, by :arsin(na), bey:arcos(na) withn e N,
(5) a) Proof the trigonometric identity
2 cos (ma) cos(na) = cos((m—mn)a) + cos((m+n)a)
for n,m € Z and o € R.
Solution:

2 cos(ma) cos(na) = (e +e Y)Y (MY eI )
_ ei (m+n) a +€i (m—n) « _|_ei (—m+n) a +€i(—m—n)a

_ ei (m+n) « +e—i(m+n)a +ei (m—n) a +e—i(m—n)oz

= cos((m+n)a)cos((m—n)a) .

(6) b) Verify that the basis functions by, bs,, and b, are indeed orthogonal.
(Hint: You may use the trigonometric identities:

2 sin (ma) sin(na) = cos((m —n)a) — cos((m +n) a),

2 cos (ma) cos(na) = cos((m—n)a) 4+ cos((m+n)a),



2 sin(ma) cos(na) = sin((m—n)a) + sin((m+n) a).)

Solution Assuming m # n, m,n > 1, and m,n € N.

3 1-1
(bolbsn) = sin(na)da = _cos(na) = - = 0,
no n
0
2m . 27 0 0
tolben) = [ cos(nayda = ST 020
no n
0
27 27'r1
(bsm|ben) = sin (m «) cos (n ) da / B (sin ((m —n) @) +sin ((m + n) )) da
0 0
__cos((m—n)a) 2”_ cos ((m+n)a) o o 1-1 1-1
B 2(m—n) |, 2(m+n) |,  2(m-n) 2m+n)
2 27r1
(bsm |bsn) = /sin (ma) sin(na)da = /5 (cos((m —n)a) — cos((m+n)a)) da
0 0
_ sin((m—n)a) 2”_ sin ((m + n) a) |*” . 0-0  0-0 _ 0
B 2(m—n) |, 2(m+n) |,  2(m—-n) 2(m+n)
2 271'1
(bemlben) = /cos (ma) cos(na)da = /5 (cos((m —mn)a) + cos((m+n)a)) du
0 0
_sin((m—n)a) [ sin((m+n)a)|*T _0-0  0-0
B 2(m—n) |, 2(m+n) |,  2(m—-n) 2(m+n)
(4) ¢) Normalize the orthogonal basis functions by, bsy,, and be,.
Call the normalized basis functions eg, eg,, and ec,.
Solution:
2 b ( ) 1
«
lbo|®> = /da:27r,so that eg : a — ——’ = ,
/ lbol — v2m
2 1 2 1 9 o
lbsnl® = /Sin (na) sin(na)da = f/(cos (0a)—cos(2na)) da=- |a— mnond
2 2 o )|,
0 0
1 1 1 ben ()  sin(na)
= —(om—0-—+—) = that e, : = ,
2<7r 0 2n+2n) 7, so that e a oo N
2 1 2m 1 9 o
lbenl® = /cos (na) cos(na)da = - / (cos(0a) 4+ cos(2na)) da == (a+ Smen o
2 2 o )|,
0 0
= E 27r70+i7i :ﬂ,sothatecn:bcn(a):COS(na).
2 2n  2n [ber | N3



(5) d) Expand the Dirac point distribution 6 with the property [q, 6(a) f(a)da = f(0) in the
orthonormal basis eq, €s,, €cn. Thus, determine the coefficient dy, dg, and d., of the Dirac point
distribution so that §(a) = dpeo(a) + Do dsnesn(@) + Yoo den een(a).

Solution: The projection of d onto the basis is given by

(S(Oé) = <5‘60 60 Z 6|€§n esn Z 6|ecn ecn

The inner products (d|eg), (0]es,) and (d|ecy,) are easily determined.

2m
1 1
(0leg) = J 5(a)ﬁda = Nirs
_ 7 N sin(n ) 0 - sin(n 0) _
(Olesn) = J 6(cx) NG d NG 0,

Glear) = [ 8(0) =2

Hence, the expansion is

—_

5(a) = Leo(a) + Zﬁem(a)

n

(6) e) Find the matrix representation D of differential operator 9, with respect to the orthonor-
mal basis

1 0 0 0 0
0 1 0 0 0
0 = €0, 0 = €51, 1| =ec, 0] = es2, 0 =ec2
0 0 0 1 0
0 0 0 0 1

Neglect all basis functions with n > 3.

Solution Simply apply J, to the basis functions eq, eg,, and e, and read of the resulting

coefficients. For example, Oy €sn = Oa Sm\}%a) = n<= (Zo‘) = nee,. Likewise, 0, ¢9 = 0 and
O €ecn = —Nes,. Now, one can easily construct matrix D below. See, how each of the basis

vectors are carried over via matrix multiplication into the resulting basis vector time 0, n, or —n.

00 0 0 O
00 -1 0 O
D = 01 0 0 O
00 0 0 -2
00 0 2 0



A more tedious way to construct matrix D is via the inner products D;; = (|04 €;). Example,
Ds2c2 = (52|00 €c2) = (€s2|(—2) es2) = —2 (es2]es2) = —2. Recall, that we operate with an or-
thonormal basis (e;|e;) = d;;.

(5) f) Find the adjoint operator of the differential operator d,. Provide the adjoint matrix rep-
resentation D and the adjoint differential operator?

Solution: According to the script the adjoint partial derivative is —d,. The adjoint matrix DT is
in the case of real-valued matrices the transposed DT, which is —D in our case, thus, confirming
the claim 9, = —0,.

(7) g) The differential operator (1 — ¢ 0,)f(a) is equivalent to a minute shift f(a — ¢) for
infinitesimal . It is therefore called the infinitesimal generator of translation. Applying the
infinitesimal generator of translation infinitely often yields the regular operator of translation
To-

lim (1 — faa)m = ¢ %0 — To-

m— oo m
Find the matrix representation of the translation operator 7, in our orthonormal basis for n < 2.
Utilize the definition 7, = e~#% and the Taylor-expansion of the exponential function. The
latter defines the exponential of a matrix X.

o0
& = E
k=0

(Hint: knowing the k*"" power of matrix representation D is essential. Note, that matrix D con-
sists of sub-matrices in the diagonal, which can be dealt with one at a time.)

| —

k
!X.

o~

Solution: Because of the sub-matrices in the diagonal of D, basis functions/vectors with differ-
ent n do not mix, nor does by mix with any other vector. Hence, span (by) and span (bs, ben)
are invariant subspaces under D and we can treat their sub-matrices one at a time.

First, we consider the sub-matrix in span (by), which is Dy = (0). Hence, (Do)” = (1) and
(Do)* = (0) for any k < 1. Consequently, e = (1) + 352, 4 (0) = (1).

0

Second, we consider the sub-matrices in span (bsy,, ben ), which are D,, = . Even powers

-n
0
2k R (00 2k+1 k 0 —n?h :
of DZF = (—1) 0 n2k and odd powers of D2 = (—1) 21 0 . Comparison

with the Taylor expansion of cos and sin yield e=¥Pr» = ( Z?ﬁgzzi _CZ:(ISZ;) > In total we
get

1 0 0 0 0 0 0

0 cos(p) —sin(yp) 0 0
e ¥P = 0 sin(p)  cos(y) 0 0

0 0 0 cos(2p) —sin(2¢p)

0 0 0 sin(2p)  cos(2¢)

(5) h) Why is the following definition not an inner product for function space C>(S')?
2m

(flg) = / f(a) (27 — a) dor

0



Solution A simple counter example that contradicts the third axiom of inner products ((f|f) =
0, if and only if f: a+ 0) is

Fras 0 0<a<m,
‘ sinfa) 7 <a<?2m.

2 Fourier Transformation

We adhere to the following definition of a Fourier transformation:

o0

/ flz)e ' day .

=
£
I
&,.i
=
B
[

f@) = 7 i@ = o [ Fereeras.

27

(4) a) Show that the Fourier transformation is a linear transformation.
Solution: F[Af + pglw) = [T (A f(2) + pglx)) e *“rde = XN[7_ f(z)e “ dr +
pf o g(@) et de = AF[fl(w) + nF[g)w). qed.

(6) b) Assume that function h is the complex conjugate of function f, thus, h = f*.
Proof, that (w) = ( f(ﬂ.u)) .

Solution:

oo

i) = Flrlw) = [ fla)eierds

_ / (f(z)e'*™)" dz = / (f(;z;) eﬂ'(—m)* dr = (f(—w))* qed.

(5) ¢) Show that the Fourier transform of function ¢ : # — e=*" is R-valued.

Solution: ¢ is an even function ¢(z) = ¢(—z). Hence, the Fourier transform is real-valued.

(6) d) Determine the Fourier transform of f : 2 + sin?(z). (Recall that sin?(z) stands for

(sin ())*)



Solution:
flw) = / i(e_””—e”)2 e T dy
— 00

— / %]‘ (6721':5 72+62ix) efiwxdz

— 00

oo

_ %1 /efi(w+2)mdm72/efiwxdx+/efi(w72)zdl,

— OO — 00 — 00

_ ‘T%(a(wz)—%(w)w(w—?)%

(7) e) Proof that the Fourier transform of g(x) = ﬁe_"2 renders g(w) =e
You may use the definite integral

Solution:
gw) = /ﬁe—;ﬁ_zwxdm
— 00

17 .
_ 7/e—<r+w/2>2—(w/2)2 e
i

(6) f) Derive the Fourier transform of function p : z — ﬁ sin?(z) e=2".



Solution Note, that p = f ¢g. Hence

. [xg
po= 2w
1T 2 2
= = T”(a(y+2)—25(u)+5(u—z)) e~ T dy
—o0
-1/ _(w-2? _w? _(wt2)?
= S\ T —2e T e 1 .

3 Distribution Theory

The Dirac point distribution, or more loosely speaking the Dirac §-function, provides a tempered
distribution with the following property.

o0

Ty [p(z)] = / 5(x) (x) dz = (0) .

(6) a) Determine the result of the following distribution with a,b € R and a # 0 acting on an
arbitrary Schwarz function ¢ € S(R). Note, that a can be positive or negative.

o0

/ d(ax —b) p(x)dx .

Solution: Solve this task via substitution £ = ax — b with dé = adx and = = ST'H’.

75<aw—b)¢<x>dx - {fmoots(&)qb(%)d a0

(5) b) Proof for ¢ € S(R) and Ty € S'(R) the identity 77 (¢) = T¢(¢").

Solution: Here we rely on the differentiation property Tji (¢) = —=T¢(¢') of tempered distribution
and obtain for two concatenated differentiations 7% (¢) = —T}(¢') = —(=T¢((¢)")) = T (¢").



We consider the function f: R — R given by

_ Jsin(z) <0
f(x)_{o &> 0

and its associated regular tempered distribution Ty : S(R) — R: ¢ = Ty(¢) = [~ f(z) ¢(z) da.

(5) ¢) Show that f satisfies the ordinary differential equation f” + f = 0 almost everywhere.
Explain what the annotation ”almost everywhere” means in this case.

—sin(z) <0

Solution f is not differentiable at = 0. For all other € R we obtain f”(z) = {0 S0
x

Hence, f” + f = 0 for all points z € R except for z = 0.

(7) d) Show that, in the distributional sense, T satisfies the ordinary differential equation
TV + Ty = T ,

in which the right hand side denotes the Dirac point distribution defined above.

Solution: Applying partial integration twice to determine T]// [¢] we obtain
0 0
10l =1yle") = [ 1@ () da= [ sin(@)0" (@) de
—0o0 — 0o
0

— sin ()¢ (2)° — / cos (2)¢ () dz

0
= (0¢'(0) — sin(—00)0) — cos (x)¢(ac)|(ioo — / sin (z)¢(x) dzx

(oo}

—H(0)+ 0 — / f(@)(x) dx

= —Ts[o] - Tylgl-

Note above, that the Schwartz function ¢(x) and its derivative ¢/(x) approach 0 for & — +o0.
Hence, Tj/c/ + Tf = —T5.



