EXAMINATION:
 MATHEMATICAL TECHNIQUES FOR IMAGE ANALYSIS

Course code: 8D020.
Date: Monday January $18^{\text {th }}, 2010$.
Time: 9h00-12h00.
Place: paviljoen b1

Read this first!

- Use a separate sheet of paper for each problem. Write your name and student identification number on each paper.
- The exam consists of 3 problems. The maximum credit for each item is indicated in parenthesis.
- Motivate your answers. The use of course notes and calculator is allowed. The use of the problem companion, opgaven- en tentamenbundel, is not allowed.
- You may provide your answers in Dutch or (preferably) in English.

Good Luck!

1 Linear Algebra

Consider the set $\mathcal{C}^{\infty}\left(S^{1}\right)$ of \mathbb{R}-valued, infinitely differentiable functions on the unit circle S^{1}. We equip the function space $\mathcal{C}^{\infty}\left(S^{1}\right)$ with the inner product

$$
\langle f \mid g\rangle:=\int_{0}^{2 \pi} f(\alpha) g(\alpha) d \alpha, \text { for } f, g \in \mathcal{C}^{\infty}\left(S^{1}\right)
$$

The corresponding measure is given by $\|f\|:=\sqrt{\langle f \mid f\rangle}$.
For our calculations we use the following orthogonal basis functions:

$$
b_{0}: \alpha \mapsto 1, \quad b_{\mathrm{s} n}: \alpha \mapsto \sin (n \alpha), \quad b_{\mathrm{c} n}: \alpha \mapsto \cos (n \alpha) \quad \text { with } n \in \mathbb{N} .
$$

(5) a) Proof the trigonometric identity

$$
2 \cos (m \alpha) \cos (n \alpha)=\cos ((m-n) \alpha)+\cos ((m+n) \alpha)
$$

for $n, m \in \mathbb{Z}$ and $\alpha \in \mathbb{R}$.
(6) b) Verify that the basis functions $b_{0}, b_{\mathrm{s} n}$, and $b_{\mathrm{c} n}$ are indeed orthogonal.
(Hint: You may use the trigonometric identities:
$2 \sin (m \alpha) \sin (n \alpha)=\cos ((m-n) \alpha)-\cos ((m+n) \alpha)$,
$2 \cos (m \alpha) \cos (n \alpha)=\cos ((m-n) \alpha)+\cos ((m+n) \alpha)$,
$2 \sin (m \alpha) \cos (n \alpha)=\sin ((m-n) \alpha)+\sin ((m+n) \alpha)$.
(4) c) Normalize the orthogonal basis functions $b_{0}, b_{\mathrm{s} n}$, and $b_{\mathrm{c} n}$.

Call the normalized basis functions $e_{0}, e_{\mathrm{s} n}$, and $e_{\mathrm{c} n}$.
(5) d) Expand the Dirac point distribution δ with the property $\int_{S^{1}} \delta(\alpha) f(\alpha) d \alpha=f(0)$ in the orthonormal basis $e_{0}, e_{\mathrm{s} n}, e_{\mathrm{c} n}$. Thus, determine the coefficient $d_{0}, d_{\mathrm{s} n}$ and $d_{\mathrm{c} n}$ of the Dirac point distribution so that $\delta(\alpha)=d_{0} e_{0}(\alpha)+\sum_{n=1}^{\infty} d_{\mathrm{s} n} e_{\mathrm{s} n}(\alpha)+\sum_{n=1}^{\infty} d_{\mathrm{c} n} e_{\mathrm{c} n}(\alpha)$.
(6) e) Find the matrix representation D of differential operator ∂_{α} with respect to the orthonormal basis

$$
\left(\begin{array}{l}
1 \\
0 \\
0 \\
0 \\
0
\end{array}\right)=e_{0},\left(\begin{array}{l}
0 \\
1 \\
0 \\
0 \\
0
\end{array}\right)=e_{\mathrm{s} 1},\left(\begin{array}{l}
0 \\
0 \\
1 \\
0 \\
0
\end{array}\right)=e_{\mathrm{c} 1},\left(\begin{array}{l}
0 \\
0 \\
0 \\
1 \\
0
\end{array}\right)=e_{\mathrm{s} 2},\left(\begin{array}{l}
0 \\
0 \\
0 \\
0 \\
1
\end{array}\right)=e_{\mathrm{c} 2}
$$

Neglect all basis functions with $n \geq 3$.
(5) f) Find the adjoint operator of the differential operator ∂_{α}. Provide the adjoint matrix representation D^{\dagger} and the adjoint differential operator?
(7) \mathbf{g}) The differential operator $\left(1-\varphi \partial_{\alpha}\right) f(\alpha)$ is equivalent to a minute shift $f(\alpha-\varphi)$ for infinitesimal φ. It is therefore called the infinitesimal generator of translation. Applying the infinitesimal generator of translation infinitely often yields the regular operator of translation \mathcal{T}_{φ}.

$$
\lim _{m \rightarrow \infty}\left(1-\frac{\varphi}{m} \partial_{\alpha}\right)^{m}=e^{-\varphi \partial_{\alpha}}=\mathcal{T}_{\varphi}
$$

Find the matrix representation of the translation operator \mathcal{T}_{φ} in our orthonormal basis for $n \leq 2$. Utilize the definition $\mathcal{T}_{\varphi}=e^{-\varphi \partial_{\alpha}}$ and the Taylor-expansion of the exponential function. The latter defines the exponential of a matrix X .

$$
e^{\mathrm{X}}:=\sum_{k=0}^{\infty} \frac{1}{k!} \mathrm{X}^{k} .
$$

(Hint: knowing the $k^{\text {th }}$ power of matrix representation D is essential. Note that matrix D consists of sub-matrices in the diagonal, which can be dealt with one at a time.)
(5) h) Why is the following definition not an inner product for function space $\mathcal{C}^{\infty}\left(S^{1}\right)$?

$$
\langle f \mid g\rangle:=\int_{0}^{2 \pi} f(\alpha) g(2 \pi-\alpha) d \alpha
$$

2 Fourier Transformation

We adhere to the following definition of a Fourier transformation:

$$
\hat{f}(\omega)=\mathcal{F}[f](\omega):=\int_{-\infty}^{\infty} f(x) e^{-i \omega x} d x
$$

Inverse Fourier transformation:

$$
f(x)=\mathcal{F}^{-1}[\hat{f}](x):=\frac{1}{2 \pi} \int_{-\infty}^{\infty} \hat{f}(\omega) e^{i \omega x} d \omega
$$

(4) a) Show that the Fourier transformation is a linear transformation.
(6) b) Assume that function h is the complex conjugate of function f, thus, $h=f^{*}$. Proof, that $\hat{h}(\omega)=(\hat{f}(-\omega))^{*}$.
(5) c) Show that the Fourier transform of function $q: x \mapsto e^{-x^{4}}$ is \mathbb{R}-valued.
(6) d) Determine the Fourier transform of $f: x \mapsto \sin ^{2}(x)$. (Recall that $\sin ^{2}(x)$ stands for $(\sin (x))^{2}$.)
(7) e) Proof that the Fourier transform of $g(x)=\frac{1}{\sqrt{\pi}} e^{-x^{2}}$ renders $\hat{g}(\omega)=e^{-\omega^{2} / 4}$.

You may use the definite integral

$$
\int_{-\infty}^{\infty} e^{-(x+i y)^{2}} d x=\sqrt{\pi}
$$

(6) f) Derive the Fourier transform of function $p: x \mapsto \frac{1}{\sqrt{\pi}} \sin ^{2}(x) e^{-x^{2}}$.

3 Distribution Theory

The Dirac point distribution, or more loosely speaking the Dirac δ-function, provides a tempered distribution with the following property.

$$
T_{\delta}[\phi(x)]:=\int_{-\infty}^{\infty} \delta(x) \phi(x) d x=\phi(0)
$$

(6) a) Determine the result of the following distribution with $a, b \in \mathbb{R}$ and $a \neq 0$ acting on an arbitrary Schwarz function $\phi \in \mathcal{S}(\mathbb{R})$. Note, that a can be positive or negative.

$$
\int_{-\infty}^{\infty} \delta(a x-b) \phi(x) d x
$$

(5) b) Proof for $\phi \in \mathcal{S}(\mathbb{R})$ and $T_{f} \in \mathcal{S}^{\prime}(\mathbb{R})$ the identity $T_{f}^{\prime \prime}(\phi)=T_{f}\left(\phi^{\prime \prime}\right)$.

We consider the function $f: \mathbb{R} \rightarrow \mathbb{R}$ given by

$$
f(x)= \begin{cases}\sin (x) & x \leq 0 \\ 0 & x>0\end{cases}
$$

and its associated regular tempered distribution $T_{f}: \mathcal{S}(\mathbb{R}) \rightarrow \mathbb{R}: \phi \mapsto T_{f}(\phi)=\int_{-\infty}^{\infty} f(x) \phi(x) d x$.
(5) c) Show that f satisfies the ordinary differential equation $f^{\prime \prime}+f=0$ almost everywhere. Explain what the annotation "almost everywhere" means in this case.
(7) d) Show that, in the distributional sense, T_{f} satisfies the ordinary differential equation

$$
T_{f}^{\prime \prime}+T_{f}=-T_{\delta},
$$

in which the right hand side denotes the Dirac point distribution defined above.

