
Safe registers and Aravind’s BLRU algorithm

for mutual exclusion in mCRL2

Myrthe Spronck

Supervisor: Bas Luttik

Abstract

Many algorithms for ensuring mutual exclusion rely on atomic shared registers, meaning
that when there are concurrent interactions with the register it behaves as if those interactions
were sequential. Because this requirement is not always met, mutual exclusion algorithms
have been designed that do not have this reliance. This report concerns the modeling of the
weakest type of useful shared registers as defined by Lamport, safe registers, in the model
checker mCRL2. Specifically, we model multi-writer multi-reader safe registers as described
in [1] . We use the safe register model to verify that Aravind’s bounded least recently used
algorithm for mutual exclusion works correctly when used with safe registers. We also show
how Peterson’s algorithm for mutual exclusion fails to ensure mutual exclusion when safe
registers are used instead of atomic ones.

1 Introduction

1.1 Background

The mutual exclusion problem, first outlined by Dijkstra [2], describes a scenario where multiple
threads try to access the same shared resource simultaneously but only one of them is allowed
access to it at any one time. We can abstract away from the shared resource using the term
“critical section” to refer to the part of the code that handles accessing the shared resource. A
solution to the mutual exclusion problem is an algorithm that makes sure that threads can never
execute their critical sections simultaneously.

The primary property for a mutual exclusion algorithm is that mutual exclusion is not violated.
However, mutual exclusion algorithms usually give more guarantees, for instance a bound on how
often a thread might be passed over in the competition for access to the critical section before it
is granted access.

There are many mutual exclusion algorithms, the most well-known being Peterson’s algorithm
[3]. However, as Lamport pointed out in [4], many algorithms for mutual exclusion, including
Peterson’s, are dependent on interactions with registers being executed atomically. That is, the
concurrent execution of read and write actions on the registers are assumed to have the same
behavior as executing those actions sequentially. In effect, this means that the registers are
expected to behave as if access to them happens in mutual exclusion.

This assumption that a form of mutual exclusion is already implemented at a lower level is not
always reasonable, so we should be aware of when algorithms depend on it. Lamport proposed
separating registers into three types, dependent on how they handle concurrent actions: safe,
regular, and atomic [5]. Atomic registers are the ones previously discussed, where concurrent
actions have no adverse effects. Safe registers have the weakest assumptions that Lamport suggests
might still have some use: they satisfy the property that any read action that is not concurrent
with a write action returns the most recently written value. We will give a more in-depth definition

1

of the behavior of safe registers in Section 3, including the behavior of multi-writer registers, which
Lamport did not consider. Regular registers fall somewhere in between atomic and safe registers,
but these will not be considered in this report.

There exist mutual exclusion algorithms that can ensure mutual exclusion even when only as-
suming safe registers. Lamport himself suggests the Bakery Algorithm [6], which is proven to
guarantee mutual exclusion with safe registers. A weakness of the Bakery algorithm is that it
requires integer values that can grow unboundedly large, something that cannot be implemented
on a physical computer. Additionally, unboundedly large values make model-checking difficult.
Aravind’s bounded least recently used (BLRU) algorithm [7] is therefore of interest: it is designed
to ensure mutual exclusion using only safe registers with bounded domains.

1.2 This Report

Our aim is to model the behavior of safe registers in the model checker mCRL2 and use this model
to verify two mutual exclusion algorithms. We use a model of Peterson’s algorithm to show how
an algorithm that assumes atomic registers fails to ensure mutual exclusion when used with safe
registers. Additionally, we model and verify Aravind’s algorithm as an example of an algorithm
that only assumes safe registers. Aravind’s was chosen instead of Lamport’s Bakery algorithm
because of the bounded register domains.

In the coming sections, we will first give a more complete explanation of the concepts we will
be modeling. Section 2 goes in-depth on the algorithms we have already mentioned: Peterson’s
algorithm and Aravind’s algorithm are particularly relevant to this report, but an explanation of
Lamport’s Bakery algorithm is also included since it serves as the basis for Aravind’s algorithm.
Section 3 contains a full definition of safe registers, the rules defined there will form the basis of
our model.

From Section 4 onward we will be diving into modeling in mCRL2, starting with a brief intro-
duction the the mCRL2 toolset and language. We also include an explanation of the approach to
design we use for each of the models that are part of this report. Next, in Section 5 we cover the
mCRL2 model of safe registers in detail and show how it corresponds to the definition given in
Section 3. Section 6 shows how Peterson’s fails to ensure mutual exclusion when used with safe
registers, this section both includes the counterexample provided by mCRL2 and an explanation
of why this occurs. Sections 7 and 8 are both about the model of Aravind’s algorithm, covering the
specifics of the model and the results of verification respectively. The modal µ-calculus formulas
for all the properties will be given and explained.

In Section 9 we discuss the quality of the safe register model and possible improvements that could
be made. We also mention other properties that might be verified for Aravind’s BLRU algorithm
and another algorithm that would be interesting to verify using the safe register model. Finally,
Section 10 contains our conclusion.

A note on the language used in this report: we will use the term “thread” to refer to an individual
thread of execution that executes an algorithm, rather than the commonly used term “process”.
Instead, the term “process” will be reserved for mCRL2 processes, which are used to define the
behavior of both registers and threads.

2 Algorithms

In the introduction three algorithms of significance have been mentioned: Peterson’s algorithm for
mutual exclusion, Lamport’s Bakery algorithm and Aravind’s BLRU algorithm for safe, bounded
registers. In this section, these algorithms will be presented in detail. The specific variants of the
algorithms as presented here, including variable names, are taken from Michel Raynal’s book on
concurrent programming [1].

2

First, it is useful to understand the structure of a mutual exclusion algorithm. They often make
use of the concepts of an entry protocol and an exit protocol: the entry protocol is executed when
a thread wants access to the critical section, it handles the competition for which thread gets
access first. The exit protocol is called by a thread when it is done accessing the critical section,
it takes the actions that allow another thread gain access next. If the algorithm works correctly,
no other thread can access the critical section until the one that most recently had access has
completed its exit protocol.

Algorithm 1 shows the code structure for a thread that continuously accesses the critical section.

Algorithm 1: Structure for a thread continuously trying to access the critical section

1 while true do
2 Non-critical Section
3 Entry Protocol
4 Critical Section Access
5 Exit Protocol

We will use the concepts of an entry protocol and an exit protocol in the discussion of the three
algorithms.

2.1 Peterson’s Algorithm

Peterson’s algorithm [3] is a rather elegant solution to the mutual exclusion problem. This algo-
rithm is not designed for dealing with safe registers, but it does serve as a clear example of how a
mutual exclusion algorithm works. It is specifically made for two competing threads, it requires
significant alterations to also serve more than two threads. Here, we only discuss the two-thread
version.

Peterson’s algorithm uses flag variables for both threads, which they use to indicate that they
are competing for the critical section. It also uses a shared variable turn to decide which thread
gains access to the critical section when both are competing.

Algorithm 2: Peterson’s mutual exclusion algorithm for 2 threads, i, j. This is the code for i.

1 operation entry protocol(i):
2 flag[i]← true
3 turn← i
4 wait flag[j] = false ∨ turn 6= i

5 operation exit protocol(i):
6 flag[i]← false

The algorithm can be seen in Algorithm 2. In the entry protocol, the thread raises its flag (sets
flag to true) to signal it is competing. It then sets the turn to its own id. In the wait, a thread
first checks if the other thread is competing at all (if its flag is down, it is not). If it is not
competing then no waiting is needed and the thread can immediately enter its critical section. If
the other thread is also competing, then the value stored in turn will be the id of the thread that
wrote to turn last. That means that of the two competing threads, exactly one will see a value
in turn that is not its own id, and enter the critical section. All of this is assuming that these
registers are atomic, so no incorrect values will be read from the turn register.

In the exit protocol, the thread only needs to signal that it no longer desires access to the critical
section by lowering its flag. At that point, if the other thread was waiting it will be allowed to
continue on to the critical section. Even if the thread that just finished its exit protocol tries to
access the critical section again before the waiting thread has a chance, the turn variable ensures
that the waiting thread gets access first.

3

2.2 Lamport’s Bakery Algorithm

Understanding the Bakery algorithm is useful for understanding Aravind’s algorithm. For this
reason, we include a detailed explanation of the Bakery algorithm here. However, modeling and
verification of this algorithm will not be discussed in the rest of this report.

The idea behind the Bakery algorithm [6] is that of ticket numbers in a bakery, though a more
contemporary comparison might be the numbers used to signal your order is ready at McDonald’s.
When someone makes their order (in this case, wants access to the critical section), they get a
ticket number that is higher than the ticket numbers of those that came before. Then, the person
waits until their number is called. In a bakery or McDonald’s a quick order might be handled
before a more complicated one, but for the comparison with this algorithm every order takes
equally long to process, so whenever someone’s number is called everyone with a lower number
has already been serviced. This is a first-in first-out (FIFO) ordering.

The full algorithm is Algorithm 3.

Algorithm 3: Lamport’s Bakery algorithm for n threads, this is the code for thread i

1 operation entry protocol(i):
2 flag[i]← true
3 my turn[i]← max (my turn[0], ...,my turn[n− 1]) + 1
4 flag[i]← false
5 for j ∈ {0, ..., n− 1}, j 6= i do
6 wait flag[j] = false
7 wait my turn[j] = 0 ∨ 〈my turn[i], i〉 < 〈my turn[j], j〉

8 operation exit protocol(i):
9 my turn[i]← 0

The registers my turn are used in the algorithm to store a thread’s ticket number. When a thread
computes its ticket number, it first checks the highest number that any thread currently has and
then adds one to it, so that is now has the highest number (line 3). Everyone’s number is initialized
to 0, and they set it back to 0 when they exit the critical section (line 9).

The Bakery algorithm also uses flags, just like Peterson’s and Aravind’s. However, the flag
value of a register is not used to signal its interest in accessing the critical section. Instead, a
my turn value greater than 0 indicates an interest. Indeed, while Raynal calls these registers
“flag”, Lamport’s original name for them, “choosing”, was more accurate for what they represent.
They are used to signal to other threads that the thread is currently computing its ticket number.
This is needed because checking the numbers of every other thread to get the maximum value
takes time, during which the other threads might be executing their own actions.

The reason for the two waits in a row, lines 6 and 7, is as follows: thread i wants to compare
its my turn value to that of another thread, thread j. However, it cannot do this while j is still
actively modifying its my turn value, since these are safe registers and having an overlapping read
and write on the same register (my turn[j]) will cause problems. So it first waits on flag[j] being
false (line 6), since that indicated that thread j is not currently modifying its my turn value.

In line 7, the check happens to see if thread j is either not competing for the critical section
at all (my turn[j] = 0) or if it has a ticket number greater than the waiting thread’s ticket
number. If either one of those things is true, thread i wins the competition from thread j and
can continue until it has won against all other threads (the for-loop at line 5), after which it can
enter the critical section. The comparison 〈my turn[i], i〉 < 〈my turn[j], j〉 is a comparison on a
lexicographic ordering, where in the case of two my turn values being equal, the thread id breaks
the tie. The reason this comparison is used is that this algorithm does not ensure that every
thread gets a different my turn value, so a tie-breaker is needed. This comparison results in the

4

FIFO property of this algorithm. Specifically this is FIFO on pairs [1], with the assumption that
if two threads have the same my turn value, they “came in” simultaneously so their ordering in
relation to each other does not matter.

A disadvantage of this algorithm comes from line 3, where the new my turn value is computed.
This line allows the my turn value to grow unboundedly large. While ticket numbers do get reset
to 0, as long as a thread starts computing its my turn value before all other threads have reset to
0, it will still get a larger value than was seen since the last time all my turn values were 0. This
can even happen with just two threads; take this trace as example:

Threads T0 and T1 start with my turn[0] = my turn[1] = 0. Thread T0 raises its flag, computes
my turn[0] = 1 and lowers its flag. It passes all waits (since T1 is not competing yet) and enters
the critical section. Thread T1 then raises its flag and computes my turn[1] = 2. It then starts
waiting on T0. T0 exits the critical section, and resets my turn[0] = 0. Then, it immediately
raises its flag back up and computes my turn[0] = 3. T1 enters the critical section, since its ticket
number is lower than that of T0, and T0 starts waiting for T1 to exit the critical section.

This loop of one thread recomputing its my turn value before the other has a chance to reset
its own to 0 can be repeated indefinitely. This means that the my turn registers should be
unboundedly large.

2.3 Aravind’s BLRU Algorithm

Aravind’s BLRU algorithm [7] is very similar to Lamport’s Bakery algorithm. His aim was to
design an algorithm that retains the benefits of the Bakery algorithm without requiring unbounded
registers. He called this algorithm Bounded Least Recently Used (BLRU) in his paper, because the
unbounded variant of the algorithm satisfies the fairness property that of the competing threads,
the thread that held the critical section least recently has an advantage in getting getting access
first. The bounded variant does not fully satisfy LRU-fairness anymore, but it does approximate
the property.

In his paper, Aravind refers to three arrays storing values for the threads: c, stage and ts. However,
we will stick to Raynal’s names and use flag, stage and date. The flag register for a thread is used
to signal that the thread is competing for access to the critical section, just like it is in Peterson’s.
The domains of the registers are as follows: flag ∈ {true, false}, stage ∈ {0, 1}, date ∈ {0, ..., N}
where N is the defined maximum value. The initial value for all flag registers is false, and the
initial values for all stage registers is 0. For the date registers, thread i starts with date i.

Algorithm 4: Aravind’s bounded LRU algorithm for n threads, this is the code for thread i.

1 operation entry protocol(i):
2 flag[i]← true
3 repeat
4 stage[i]← 0
5 wait ∀j 6=i : (flag[j] = false ∨ date[i] < date[j])
6 stage[i]← 1

7 until ∀j 6=i : stage[j] = 0

8 operation exit protocol(i):
9 date[i]← max(date[0], ..., date[n− 1]) + 1

10 if date[i] ≥ N then
11 ∀j∈[0...n−1] : date[j]← j

12 stage[i]← 0
13 flag[i]← false

The full algorithm is Algorithm 4. The reasoning is as follows: the algorithm requires threads
to proceed through two logical stages to gain access to the critical section, and stage is used to

5

denote in which stage a thread currently is. When the stage value of a thread is 1, it has found
that no other competing thread has a date value lower than it (checked in line 5), hence it believes
it is its turn to enter the critical section. However, due to these registers being only safe, multiple
threads could arrive at this conclusion. Therefore, a thread that is in stage 1 will check whether
there are other threads that are also in stage 1 (checked in line 7). If these are indeed found, it
repeats the repeat-loop: resets to stage 0 and checks the dates of the other competing threads
again. Only when a thread is the only one in stage 1 does it gain access to the critical section.

Just like in Lamport’s Bakery algorithm when a new date value is computed it is the maximum of
all current dates plus 1 (compare line 9 in Aravind’s algorithm to line 3 in the Bakery algorithm).
In lines 12 and 13, it resets its stage and flag to their default values. Resetting the stage allows
other threads to pass the check on line 7, and resetting flag allows other threads to continue if
they were stuck waiting on this thread in line 5.

The variant of the algorithm presented here is the one where the date values are bounded. This
bound is caused by lines 10 and 11, which reset the date of every thread to the initial value as
soon as the date of the current thread becomes larger than or equal to some maximum value. This
maximum value N should be picked so that the size of the domain of the date registers is greater
than or equal to two times the number of threads. In our case, the domain runs from 0 to N , so
we should pick N ≥ (2 · n) − 1 where n is the number of threads. Without lines 10 and 11, the
algorithm still works but has unbounded date-registers instead, so date ∈ N.

Remark 1. Note that in the unbounded version of the algorithm, the only thread that can write
to date[i] is thread i, meaning that these are single-writer registers. In the bounded version line
11 allows any thread to modify the date value of any other thread, so these are now multi-writer
registers. The risks that come with multi-writer registers will be discussed in section 3, but know
that this algorithm avoids the problems caused by concurrent writes to a single register by having
these writes occur in the exit protocol. In order for a thread to be in the exit protocol, it must
have just had access to the critical section. And since it has not completed its exit protocol,
no other thread could have gained access to the critical section yet, so cannot have reached the
exit protocol. As a result, the algorithm ensures that there can be no concurrent writes to the
date-registers.

The resetting of the date-values is what causes the weakening of the LRU-property. In the un-
bounded algorithm, the thread that had access to the critical section the longest ago has the
lowest date-value, since all threads that accessed the critical section after it have set their dates
to a higher value. Since the entry protocol favors the competing thread with the lowest date, the
LRU-property is satisfied. However, the resetting of dates means that we can no longer be sure
that the thread with the lowest date had access to the critical section the least recent. However,
Aravind proves in [7] that while a thread is waiting to gain access to the critical section, there can
be at most one reset of the dates. As a result, a competing thread that had access to the critical
section the least recent can lose the competition to gain access at most once to each other thread.
This would be when the thread with the least recent access has the highest id, so when the reset
happens it ends up with the highest date. As a result, while the LRU-property is no longer fully
satisfied, it is still approximated.

3 Safe Registers

So far, we have only given a very brief introduction to the behavior of single-writer multi-reader
(SWMR) safe registers. Here, we will define the exact behavior of multi-writer multi-reader
(MWMR) safe registers, the kind that we will be modeling.

The only assumption that is made for safe registers is “a read not concurrent with any write
yields the correct value—that is, the most recently written one” [5]. In his book on concurrent
programming, Michel Raynal [1] expands this into a full description of the behavior of MWMR

6

safe registers. His definition is as follows:

1. A read that is not concurrent with a write operation (i.e., their executions do not overlap)
returns the current value of the register.

2. A read that is concurrent with one (or several) write operation(s) (i.e., their executions do
overlap) returns any value that the register can contain.

3. When write operations are not concurrent, an MWMR safe register behaves as SWMR safe
register

4. When write operations are concurrent, the value written into the register is any value of its
domain (not necessarily a value of one of the concurrent writes).

Lamport did not include definitions for MWMR registers in his paper, as a result these rules about
concurrent write operations are not used by everyone. For instance, in [7], Aravind states that
“no two writes on the same memory location overlap, but any other combinations may overlap”,
which seems to imply that he views concurrent writes as not being allowed by the system at
all. However, since this assumption is stronger than the assumption that they can occur (with
undesirable results) and safe registers should be the weakest variant, we will stick to Raynal’s
interpretation.

Both rules 2 and 4 mention that the arbitrarily returned values still belong to the domain of the
register: “any value that the register can contain” and “any value of its domain” respectively. The
assumption is made that even when incorrect values are returned, they are still in the register’s
domain. This is important to our model, since it means that even in case of concurrent operations
there is still a bound on number of possible outcomes.

We need MWMR registers for the date registers in Aravind’s algorithm and the turn register in
Peterson’s algorithm. Therefore we take rules 3 and 4 into account for the model.

4 Modeling Approach

The main focus of this article is modeling, so this section will introduce the model checker we use
as well as some of the design decisions we made for all the models that are part of this report.

4.1 mCRL2

A model checker is a tool in which you define a formal model of a system and properties that you
want to verify for that system. It establishes whether the property holds by exhaustively searching
the entire state-space defined by the model for a counterexample to the property. If it cannot find
one, then the property holds in every situation allowed by the model.

The model checker we use is mCRL2, a toolset developed at the department of Mathematics and
Computer Science of the Technische Universiteit Eindhoven, in collaboration with the University of
Twente. To define models, mCRL2 has its own language based on the Algebra of Communicating
Processes, and modal µ-calculus is used to specify the properties [8].

Some mutual exclusion algorithms have already been modeled and analyzed in mCRL2. Peterson’s
mutual exclusion algorithm for two threads has already been modeled by Jan Friso Groote [9].
That model implements registers in the following way: by modeling them as a process, where the
current state of the process stores what value is in the register, and the register processes can
interact with the processes representing threads to model read and write actions. This model of
registers treats them as atomic, but we built the model of safe registers as an extension of this.

There is also a model of Lamport’s Bakery algorithm [10]. This model does not have registers
as separate processes; rather it treats the values that should be stored in registers as parameters
of the thread processes and has them communicate with each other to share information. As a

7

result of this, when thread 1 wants to read the flag value of thread 2, thread 2 needs to participate
in this read. While this works to show how the algorithm is designed, it leaves the role of the
registers and their capabilities rather implicit. Therefore we choose to not follow this style of
register modeling.

4.2 Design Choices

For the sake of clarity, we set out a standard way of designing models. This also makes it easier
to verify the same property on different models and to integrate the model of safe registers with
models of different algorithms.

Most of this section is dedicated to stylistic choices like the naming of actions, and approach choices
like what parameters the various processes get. However, an important point to make first is that
there is one strong assumption we make in our models: we assume that threads cannot execute
multiple interactions at the same time, i.e. if a thread starts an interaction its next action can
only be ending that interaction. This restriction does not apply to the registers, they can handle
multiple interactions at the same time. After all, we want to observe overlapping interactions on
registers.

As already mentioned in Section 4.1, we stick to the approach of modeling registers as processes,
where the parameters of the process includes at least a variable representing the current value
written into the register. Most registers are associated with a thread (for instance, flag[i] is asso-
ciated with thread i), so for those registers an parameter id is also required. Processes representing
threads also need the id of the thread as a parameter.

As an example of how we might model a thread using mCRL2 processes, we include the relevant
processes from the model of Peterson’s with safe registers (full model in Appendix B):

1 Thread(id: Nat) =

2 set_flag_start_t(id , id , true). set_flag_end_t(id, id)|wish(id).

3 set_turn_start_t(id , id). set_turn_end_t(id).

4 BusyWait(id);

5

6 BusyWait(id: Nat) =

7 get_flag_start_t(id , other(id)). sum flag_other: Bool.

8 get_flag_end_t(id, other(id), flag_other).

9 get_turn_start_t(id). sum turn: Nat. valid_id(turn) ->

10 get_turn_end_t(id, turn).

11 (! flag_other || turn != id) -> Critical(id) <> BusyWait(id);

12

13 Critical(id: Nat) =

14 enter(id). leave(id).

15 set_flag_start_t(id , id , false). set_flag_end_t(id, id).

16 Thread(id);

This is an example of how we use multiple processes to represent one thread. A Thread process
is first started, but eventually it becomes a BusyWait process, which then becomes a Critical
process. Each of these processes are defined by what sequence of actions can be taken when they
are active.

In the example, most actions are of the shape {get, set} {flag, turn, date} {start, end} t. These
actions are used for the interactions between threads and registers. The first part indicates the
type of the interaction, whether it is a read (get) or a write (set). The second part is the type
of the register being accessed. Suffixes start and end refer to whether this action represents the
beginning or end of an interaction. This splitting of the start and end of interactions is not
necessary when atomic registers are modeled, then interactions can be treated as occurring at
a single time instant. But since we want to model safe registers, we need to be able to detect

8

overlapping executions. We allow time to pass between the start and end of an interaction, during
which other threads can take their own actions.

The final part, t, refers to these actions being taken by a thread. This is part of how we model
that interactions need to involve both a thread and a register. Registers have equivalent actions
that end in r instead, we can then define in mCRL2 that the thread and register halves of the
interaction can only occur simultaneously. This allows us to model both sides of the interaction
working together.

Data parameters are also added to the actions. These allow us to indicate which thread is accessing
which register by adding both the thread id and the register id (if it is needed) to the actions.
We can also use parameters to model the passing of data: at the beginning of a write action, the
thread tells the register what value it wants to write, this is included as a parameter. Similarly, at
the end of a read action the register returns a value to the thread. When these values are passed
along, one part of the interaction does not know what value it will be. In the example, the thread
knows what value it passes along to the register when it starts a write, but when it starts a read
it does not know what value will be returned. To deal with this, we use the sum-operation.

Summations over variables are used to concisely define different options. For instance on line 9,
the thread reads the turn value. The turn register contains either a 0 or a 1, we could write
both options out explicitly, but instead we do a summation over a natural number turn (this is
a variable name we picked, it could just as well have been n or x, it does not need to be the
register name). mCRL2 automatically considers the different options and we can simply refer to
the variable turn for the rest of the definition. There can sometimes be issues with the tool trying
all values the defined domain, which in the case of natural numbers is infinite. Usually, mCRL2
will be able to figure out what values to consider by itself, but out of precaution we limit the
domain ourselves by using calling a function that defines which values are in the domain. In this
example, we use valid id since the domain of the turn register is the id’s of the threads. In other
cases, we might use a function in domain to define the size of a domain.

For read-interactions, the sum is placed after the start of the read. The reason for this is that if we
placed it before the start of the read, then it would mean that the thread has already determined
what value it will read before it even started. Not only is this inaccurate, it can also lead to
deadlocks in the model if a read is started that can only end with a specific value, but that value
is not available to be read at that point.

The actions related to the register interactions take up most of the model, but we also have three
extra actions: wish, enter and leave, these represent a thread making its desire to access the
critical section known, entering the critical section, and leaving the critical section respectively.
We want to be able to distinguish which thread is doing these things, so we add the thread id as a
parameter. Since wish is specifically for the register making it known that it wants access, we want
it to occur simultaneously with the flag being raised in both Peterson’s and Aravind’s algorithms.
We can indicate these two things happen simultaneously by making them a multi-action, this can
be seen in line 2 of the example. It is part of the end of the interaction, because that is when the
thread has finished making its desire known.

In this example we use the function other to get the id of the other thread. We will use this
function again in the model of Aravind’s algorithm. Functions like these make it possible to define
the behavior of a general thread, rather than defining the two threads separately.

The only part of the model we have not covered yet is line 11: this line shows an if-then-else
statement. The first part is a Boolean expression, in this case expressing that either the other
thread is not competing or this thread was the first to set the turn value (this is the comparison
on line 4 of Algorithm 2). If the expression evaluates to true, the part after “− >” is executed, in
this case moving on to Critical. If it evaluates to false, the part after “<>” is executed, in this
example the busy wait is repeated again.

9

5 Safe Register Model

With our overall approach defined, we can make the model of safe registers. Our aim is to represent
the four rules given in Section 3 accurately.

Our model of a register is as follows:

1 Register(id: Nat , v:Nat , stat: Status) =

2 sum tid: Nat. valid_id(tid) -> (

3 sum n: Nat. in_domain(n) ->

4 (set_register_start_r(tid , id , n).

5 Register(stat=start_writer(stat , tid , n)))

6 +

7 get_register_start_r(tid , id).

8 Register(stat=start_reader(stat , tid))

9 +

10 (went_wrong(stat , tid) -> (

11 sum n': Nat. in_domain(n') -> (

12 set_register_end_r(tid , id).

13 Register(v=n', stat=end_writer(stat , tid))

14 +

15 get_register_end_r(tid , id , n').
16 Register(stat=end_reader(stat , tid))))

17 <> (

18 set_register_end_r(tid , id).

19 Register(v=stored_value(stat), stat=end_writer(stat , tid))

20 +

21 get_register_end_r(tid , id , v).

22 Register(stat=end_reader(stat , tid))))

23);

This is an example of how we use a process to represent a register, in this case a register over
natural numbers with the values bounded by the in domain function. By altering the type of v,
the in domain function and the types mentioned in the Status object, the domain of the register
can be altered. The full model incorporating this example, including an example thread that
interacts with it and the exact function definitions, can be found in Appendix A.

As mentioned in Section 4.2, the register process has parameters for its id (id) and the currently
stored value (v)1. This would be enough for modeling an atomic register, but we want to be
able to keep track of some more information for a safe register, so we have a third parameter:
the current status (stat). The status keeps track of three different things: the current number
of active writers on the register; for each thread that is interacting with the register whether
there was an overlapping write during its execution (in other words: if the interaction has gone
wrong); and what value should be written into the register, assuming there is a write active and
this write is executing correctly. Whenever the register starts or ends an interaction, the status
object is updated using an update function. These functions are called start reader, start writer,
end reader and end writer, their invocation can be seen on lines 5, 8, 13, 16, 19 and 22.

The exact definition of the status object and its associated update functions can be found in
Appendix A. The only point we’ll discuss in more detail here is how we can keep track of whether
an interaction has gone wrong, since it might not be immediately obvious how to do this. According
to the rules in Section 3, both read and write interactions “go wrong” when there is an overlapping
write interaction. There are two scenarios: either at the time the interaction we want to assess
starts there is already a write active, or a write starts during the execution of this interaction.
(Or both, but there is no difference between an interaction that has one overlapping write and
one that has several, so we do not need to consider that case on its own.) Both of these scenarios

1Or more precisely: the value written by the most recently ended write.

10

are easy to cover with our update functions: when a read or write interaction starts, the update
function checks whether the current number of active writers is greater than 0. If it is, we know
that there is an overlapping write so the interaction goes wrong. If the number of active writers
is 0, we continue under the assumption that the interaction goes right. When a write interaction
starts, we have it set the state of all other interactions to them having gone wrong. Since any
interactions that were active at this time now encounter an overlapping write, we know they go
wrong.

Returning to the model code, line 2 has a summation over all valid id’s of threads, this means
that we can define everything afterwards for an arbitrary thread tid, and mCRL2 will consider it
defined for every thread that is part of our model.

The part of the code that actually defines the interactions between registers and threads is lines
3 to 22. Lines 3, 4 and 5 cover the the starting of a write: we need a sum to say that any value
in the domain of the register could be written into it, then the set register start r action can
be taken, followed by the process updating its status and once again offering every interaction.
Similarly, lines 7 and 8 cover the starting of a read interaction, though in this case no summation
is needed since no values except id’s are passed along at the start of a read.

Ending reads and writes is a bit more complicated, since we need to account for whether there
was a concurrent write action during the execution. We resolve this as follows: on line 10 there
is an if-then-else clause, which asks the status object whether the interaction belonging to this
thread went wrong. If it did not, we continue with lines 18 to 22, which cover ending the write
and updating the stored value v with the intended value (which was saved in the status object)
or ending the read by returning the stored value v. These options correspond to rules 3 and 1
in Section 3 respectively. However, if the interaction did go wrong, we continue with lines 11 to
16. On line 11, there is another sum, since this following can happy for an arbitrary value in
the domain. Then either the write ends and an arbitrary value is written into the register, in
accordance with rule 4, or a read ends and returns an arbitrary value, in accordance with rule 2.

This safe register model represents a MWMR register, we include all 4 of the rules in Section
3. In the models for both Peterson’s and Aravind’s algorithms, we use it for all registers. Some
register could be represented as SWMR registers instead, for instance the flag registers in both
algorithms, which are only written to by a single thread. We do not make a special model for
this, because it does not make a difference whether we use the model of a MWMR register or a
SWMR register in these cases. Because of our assumption that threads cannot carry out multiple
interactions at the same time, a single thread cannot be responsible for two write interactions
that overlap with each other. And since the algorithms only have a single thread writing to these
registers, there will never be overlapping writes on them. As a result, we can use the MWMR
model for SWMR registers without introducing behaviors that would not be there if we made a
special SWMR model.

6 Peterson’s Algorithm with Safe Registers

Before assessing Aravind’s algorithm with safe registers, it is interesting to see an example of an
algorithm that does work with atomic registers but not with safe ones. For this, we use Peterson’s
algorithm.

As mentioned in Section 4.1, a model of Peterson’s for two threads in mCRL2 already exists. This
model has atomic registers, and already shows that Peterson’s indeed ensures mutual exclusion
in this case [9]. We can make a variant of this model that includes safe registers. This requires
a number of alterations: first and foremost replacing the register processes in the original model
with the ones we developed in Section 5. Some slight alterations also have to be made in the
model of the threads, to accommodate splitting read and write actions into start and end points.
For consistency, we also replace the process and action names with the style defined in Section

11

4.2. The altered thread processes were included in that section already, and the full model for
Peterson’s for two threads with safe registers can be found in Appendix B.

Before we do the verification of the mutual exclusion property, we will need to define it in modal
µ-calculus. To re-iterate: mutual exclusion is the property that at any time, at most one thread
is in its critical section.When we translate that to the actions in our model we get: after a process
executes the enter action, no other process can execute the enter action until the first has executed
its leave action. Even more generally, we can say that once a process has executed its enter action,
then until a process executes its leave action, no enter actions can be taken. In µ-calculus, this
gives the property:

Property 1 (Mutual Exclusion).
[true *.(exists id1: Nat. enter(id1)).

(! exists id2 :Nat. leave(id2))*.

(exists id3: Nat. enter(id3))] false

This definition of the mutual exclusion property was taken from [9].

With both the property and the model defined, we can ask mCRL2 to verify the property for
us. As we might expect, the property no longer verifies now that we applied it with safe registers
rather than atomic ones. mCRL2 can generate a counterexample for the property: an example
of a sequence of actions (a trace) that the model can take that shows a violation of the property.
This gives us the picture shown in Figure 1.

Figure 1: mCRL2 generated counterexample to mutual exclusion for Peterson’s algorithm with
safe registers

Interpreting this can be a bit difficult, but by looking at the start and end points of the interactions
we can draw out how the interactions overlap. Figure 2 shows the result of this.

The problem is caused by the turn register: thread 0 starts writing to it while thread 1 is already
doing so, leading to an arbitrary value being written into the register (by rule 4 in Section 3).
Thread 1 stops writing to the register, and eventually starts reading it while thread 0 is still writing
to it. This means that the read can return an arbitrary value (by rule 2), in this case 0. At this
point, thread 1 has seen that the turn value value is not equal to its own id, so it enters the critical

12

Thread 0

Thread 1
Flag 1 write true Turn write 1

Flag 0 write true Turn write 0

Flag 0 read true Turn read 0 Enter

Flag 1 read true Turn read 1 Enter

Figure 2: The trace from figure 1 drawn out for legibility, the interactions that cause the issue
have been highlighted

section. Thread 0 then stops writing to the turn register, since there was an overlapping write an
arbitrary value is written. In this case, we see later that the arbitrary value was a 1. Eventually
thread 0 reads the turn register, this read goes correctly and returns the previously written value,
1. Thread 0 sees that the turn value is not equal to its own id, so it enters the critical section.

This trace is possible because turn is a MWMR safe register and Peteron’s algorithm contains no
safeguards to stop threads accessing it concurrently. We have shown that Peterson’s algorithm no
longer ensures mutual exclusion when we use it with safe registers.

7 Model of Aravind’s Algorithm

This section is dedicated to the model of Aravind’s BLRU algorithm for two threads. Here, we
will discuss the part of the model that defines the processes that represent the actions threads take
while executing the algorithm. The full model, including the register definitions and initialization,
can be found in Appendix C.

For defining the thread processes, the only relevant thing to know about the registers are their
domains. We have three different types of registers: Stage, Flag and Date. The Flag and Stage
registers are both over Boolean values. This is a slight deviation from the algorithm as presented
in Section 2.3, since there the stage registers are over the natural numbers 0 and 1. We simply
use false for 0 and true for 1, this makes keeping track of the domains a bit easier. The Date
registers are over a bounded set of natural numbers, we enforce this bound using the in domain
function, as established in Section 4.2. Since we have 2 threads, the domain of the Date registers
is {0, 1, 2, 3}.

We use multiple processes to model a thread executing the algorithm. This is useful when dealing
with the repeat-loop and busy wait in the algorithm. The loops require us to be able to repeat a
previous part of the algorithm, which we do by referring back to the process representing that part.
In total, the model includes 6 processes that represent parts of the algorithm: P , the moment the
entry protocol is started; R1, R2 and R3 for the repeat-loop in the entry protocol; C for entering
the critical section and starting the exit protocol; and CF for wrapping up the last bit of the exit
protocol before going back to P . Each process only has a parameter for the id of the thread that
it represents, they carry no other information.

We will discuss each of the 6 process definitions in turn, as well as specifically what lines of
Algorithm 4 they correspond to. We first present them all together:

1 P(id: Nat) =

2 set_flag_start_p(id , id , true).

3 set_flag_end_p(id, id)|wish(id). R1(id);

4

5 R1(id: Nat) =

6 set_stage_start_p(id, id, false).

7 set_stage_end_p(id, id) . R2(id);

8

13

9 R2(id: Nat) =

10 get_flag_start_p(id , other(id)).

11 sum flag_other: Bool. get_flag_end_p(id , other(id), flag_other).

12 get_date_start_p(id , id).

13 sum d: Nat. in_domain(d) -> get_date_end_p(id , id , d).

14 get_date_start_p(id , other(id)).

15 sum date_other: Nat. in_domain(date_other) ->

16 get_date_end_p(id, other(id), date_other).

17 ((flag_other == false || d < date_other) -> R3(id) <> R2(id));

18

19 R3(id: Nat) =

20 set_stage_start_p(id, id, true). set_stage_end_p(id, id).

21 get_stage_start_p(id, other(id)).

22 sum stage_other: Bool. get_stage_end_p(id , other(id), stage_other).

23 (stage_other -> R1(id) <> C(id));

24

25 C(id: Nat) =

26 enter(id). leave(id).

27 get_date_start_p(id , id).

28 sum d: Nat. in_domain(d) -> get_date_end_p(id , id , d).

29 get_date_start_p(id , other(id)).

30 sum date_other: Nat. in_domain(date_other) ->

31 get_date_end_p(id, other(id), date_other).

32 set_date_start_p(id , id , max(d, date_other) + 1).

33 set_date_end_p(id, id).

34 get_date_start_p(id , id).

35 sum d_res: Nat. in_domain(d_res) ->

36 get_date_end_p(id, id, d_res).

37 ((d_res >= LAST) -> (

38 set_date_start_p(id , id , id). set_date_end_p(id , id).

39 set_date_start_p(id , other(id), other(id)).

40 set_date_end_p(id, other(id)).

41 CF(id)) <> CF(id));

42

43 CF(id: Nat) =

44 set_stage_start_p(id, id, false). set_stage_end_p(id, id).

45 set_flag_start_p(id , id , false). set_flag_end_p(id, id) . P(id);

Firstly, process P is how a thread is initialized, at which point it immediately starts the entry
protocol. Lines 2 and 3 of the model correspond to line 2 of Algorithm 4: setting flag[id] to true.
In the model, that is a write action, split into a start and an end, before we move on to R1. As
mentioned in Section 4.2, the wish-action is taken simultaneously with the end point of raising
the flag.

R1 corresponds to line 4 in the algorithm: setting the thread’s own stage to 0, or in this case
false. Once again, this is a simple write before moving on to R2. The reason this is in its own
process is that when the when the condition to exit the repeat-loop is not met, the model needs
to be able to return to this point.

R2 handles the wait part of the repeat-loop, line 5 of the algorithm. The first thing it does is read
all the values it needs to be able to test whether it can stop waiting. First the process reads the
flag value of the other thread and stores this in the variable flag other (lines 10 and 11 in the
model). Then it reads its own date value and stores it in d (lines 12 and 13). Finally it reads the
date value of the other thread and stores it in date other (lines 14, 15 and 16). In line 17, the
comparison is done to see if the conditions of the wait in the algorithm are met. If they are, we
can move on to R3, else R2 needs to be repeated.

14

Remark 2. R2 represents a busy wait: if it does not read values that allow it to pass it tries to read
the values again. This means that it is kept busy while not making progress. The introduction of
a busy wait has an unfortunate side-effect: it allows the trace where one thread keeps infinitely
repeating its busy wait while no other thread makes progress. While this is theoretically a scenario
that could occur in real life, it is not realistic. In spite of this side-effect, we will keep this busy
wait in since this is the most straightforward way to model the thread reading and comparing
values. There are tricks in mCRL2 to only allow a process to read in values that would let it move
on (if those values are not available, the process does not execute any actions until they are), but
the way in which we split a read into a start and an end means that approach does not work here.
A process already starts a read and therefore locks itself into waiting for that read to complete.
Even if at that point some other condition occurred that would allow the process to move on, it
still needs to complete that read first. Even if there is a way to remove the busy wait here, the
repeat-loop also introduces infinite loops2 so the problem persists regardless.

R3 is the first part of the model that handles more than one line in the algorithm. On line 20
of the model, it sets the thread’s own stage to true, this corresponds to line 6 of the algorithm.
Then, it checks whether the conditions are met to exit the repeat-loop. For this, it only needs to
read the stage of the other thread, if it is true then the repeat-loop cannot be exited yet. This
matches line 7 in the algorithm. If the loop can be exited, then the thread has gained access to
the critical section, which we model by moving to C. Else, we return to R1 and the repeat-loop
starts again.

C covers the thread entering and exiting the critical section, fittingly by taking the enter and
exit actions (line 26). The rest of C handles the first parts of the exit protocol. First, it needs to
read both date registers to find the maximum value, and then write that value plus 1 to date[id].
This is handled in lines 27 to 33 of the model. Then, it checks whether the value now written into
the register (which it reads again) is greater than or equal to the defined maximum value, LAST ,
which in this case is 3. If it is not then it can immediately move on to CF , but if it is all the date
values will need to be reset before it can move on. The comparison is handled on lines 34 to 37.
Lines 38, 39 and 40 handle resetting the date values. Line 41 has both the move to CF after the
date’s are reset, and the “else” part of the if-statement, which is just going to CF immediately.

Remark 3. There are a couple of reads and writes here that are superfluous. We could first
calculate the result of the maximum of all the date-values, then before writing it into date[id]
check whether it exceeds the maximum. This would avoid the situation where we write a value
and then immediately reset it. We could also remove the part reading back the value we just
wrote and storing it in d res. Instead, we could just do the comparison on max(d, d other) + 1,
which would mean we could skip an entire read. However, our aim is to model the algorithm as
set out by Aravind as closely as possible. In this case, that means making no assumptions about
values being saved to private variables. It should be noted however that we did make the variant
where the reading of d res is skipped, and the resulting model is a bit smaller (about 4-6% fewer
states) while still giving the same verification results. Unsurprising, since we know from Remark
1 that no other thread could be writing to date[id] at this time, so the d res is guaranteed to be
equal to max(d, d other) + 1. Still, we want to keep the model as assumption-free as possible, so
the extra read is kept.

Finally CF handles the last two lines from the exit protocol. This is setting the thread’s own
stage and flag to false. Then it returns to P to start the entry protocol again.

2This occurs if the competing thread with the lowest date keeps repeating because it keeps seeing a different
thread is currently in stage 1. This could happen if that thread managed to get to stage 1 before the thread with
the lowest date started competing and then never gets to set its own stage back to 0. Or if that other thread never
actually got to stage 1, but has started the write on line 4 of the algorithm and never got to complete it. Rule 2
of safe register behavior means that the stage value could be read as 1.

15

8 Verification of Aravind’s Algorithm

By combining the safe register model and the model of Aravind’s BLRU algorithm (as shown in
Appendix C), we have a complete model to verify properties on in mCRL2. In order to make
defining properties easier, we use the hide-operation in mCRL2 to replace all actions except wish,
enter and leave by τ (tau), the invisible action. The definitions of the eventual access and
bounded overtaking properties were based on properties included with the model of Peterson’s in
the mCRL2 distribution [10].

Some properties require adding new actions to the model, the modified model used for those
verifications is shown in Appendix E. Additionally, for properties that do not hold on the model, the
mCRL2-generated counterexample can be found in Appendix F. In order to make these counter-
examples legible, the actions are not hidden. Unless states otherwise, all verification is done on
the model of two threads. A variant of the model that contains three threads exists as well (see
Appendix D), but that model is too large to be suitable for doing much verification.

The first and most important property is mutual exclusion. We already defined this property
in µ-calculus as Property 1 in Section 6. We use the exact same definition here. But where the
property did not hold on Peterson’s algorithm, it does hold on the model of Aravind’s BLRU
algorithm. This is one of the properties we also verified on the variant with three threads, mutual
exclusion is satisfied there as well.

Secondly, we want to have eventual access, the property that when a thread expresses its desire
to gain access to the critical section (represented by wish), it eventually gets it (represented by
enter). In µ-calculus we can use the keyword mu to express that we want the smallest fixed point
of states that satisfy some recursive formula. In this case, after a process has executed its wish
action, we want the recursive formula to hold that either this thread can take the enter action
in this state, or the current state is not a deadlock and this recursive property holds on all next
states. This property only evaluates to true for a state where all possible paths from that state
include this thread being capable of executing its enter action at some point. Our definition is as
follows:

Property 2 (Eventual Access).
[true*] forall id: Nat. [wish(id)] (mu Y.

(<enter(id)>true) || (<true >true && [true]Y))

This property evaluates to false. The reason for this is addressed in Remark 2: the model of
Aravind’s algorithm contains both a busy wait and a repeat-loop. These lead to infinite loops in
our state-space. If a process is infinitely trapped in such a loop, it will never be able to execute
its enter action, and no other thread will be able to either, so this violates eventual access.

While eventual access in its pure form does not hold on the model, we can still verify whether it
holds if we assume these infinite loops do not happen. This assumption is a fairness assumption,
because the infinite loops we encounter occur in the event that one thread infinitely takes actions
while no other thread gets to take any actions. It is “unfair” that while the other threads are
capable of taking actions, they never actually get to on these paths. We define a modified eventual
access property that ignores these infinite loops: eventual access assuming fairness. We can
express this in µ-calculus by extending Property 2 so that instead of needing to eventually reach
〈enter(id)〉true, it needs to eventually reach that or an infinite loop. The most straightforward
way to express an infinite loop on this model in µ-calculus would be to loop for an infinite sequence
of τ actions, since we replaced every action except wish, enter and leave by τ . However, that
would mean we take it for granted that the only infinite loops in the model are the ones we already
know about. With just a slight modification of the model, we can be sure we only exclude infinite
loops caused by the repeat and busy wait. To do this, we introduce a new action Loop, and put
that as a multi-action with every action taken in R1, R2 or R3. Then we can look for an infinite
sequence of Loop actions, rather than one of τ ’s:

16

Property 3 (Eventual Access Assuming Fairness).
[true*] forall id: Nat. [wish(id)] (mu X.

((nu Z. <Loop >Z) || <enter(id)>true) ||

(<true >true && [true]X))

This property does hold for the model. So while eventual access is not guaranteed for every trace
allowed by the model, if does hold if we ignore the unrealistic scenario where one thread infinitely
loops without another thread taking any actions.

Those two properties cover the most important aspects of a mutual exclusion algorithm, but
Aravind proves more properties for his algorithm in [7]. We verify those as well, to the extend
that we can.

One property that Aravind proves his algorithm satisfied is bounded overtaking: the property
that once a thread has made its desire to enter the critical section known, there is a bound on
how many times another thread may gain access to the critical section before this thread does.
Aravind claims that the bound for the BLRU algorithm is in the worst case 2n − 2 where n is
the number of threads. In the case of two threads, that means the bound on overtakes is 2. The
property is defined by keeping track of how many times the other thread enters the critical section
after a thread wishes for access. If this is more than twice in any trace, the property is violated.
This is defined as follows:

Property 4 (Bounded Overtaking (bound = 2)).
[true*] forall id: Nat. [wish(id)]

(nu Y(n: Nat = 0). val(n<=2) &&

[!enter(id)]Y(n) && [enter(other(id))]Y(n+1))

This holds for our model, just as Aravind claims it should. Because the bound varies depending
on the number of threads used, we also verify this property for the variant with three threads.
Here we find that a bound of 2 is not satisfied, but a bound of 4 is. This fits, since 2 · 3− 2 = 4.

A component of Aravind’s proof of bounded overtaking is bounded resets, the property that
while a thread is waiting for access to the critical section, it will experience at most one reset of its
date value. While we have already verified bounded overtaking, this property is also interesting
to verify. To do this, we add an extra action label Reset, which we put as a multi-action with the
end of the write actions that are part of resetting a date value. We can then define a property
very similar to the bounded overtaking property:

Property 5 (Bounded Resets (bound = 1)).
[[true*] forall id: Nat. [wish(id)]

(nu Y(n: Nat = 0). val(n<=1) &&

[!enter(id)]Y(n) && [Reset(id)]Y(n+1))

This evaluates to true. We can also use this property to test whether we really picked the smallest
possible domain for our date registers. According to Aravind, the domain of the date registers
should have size ≥ 2 · n where n is the number of threads. We picked the domain {0, 1, 2, 3} (see
Section 7). But with this property defined, we can see what happens if we reduce the domain
to just {0, 1, 2}. When we do this (by simply changing the value of LAST from 3 to 2). both
Property 4 and Property 5 evaluate to false. This tells us that having a domain smaller than 2 ·n
indeed leads to the values being reset too often.

We also want to verify the LRU property, but as mentioned in Section 2.3 the bounded variant
of this algorithm only satisfies a weaker version of LRU. Still, we can try to verify that the LRU
property in its stronger form holds until the point a reset occurs. In his paper, Aravind states
that the LRU property still holds for the bounded variant “when no timestamp [date] reset is
encountered” [7], which together with Property 5 gives the approximation of LRU for the bounded
variant.

17

In order to do a verification of LRU, we need to define exactly what it means for the algorithm
to favor threads with lower date values. Here, we use the strictest definition of LRU: that when a
thread gains access to the critical section, it has the lowest date value of all competing threads.

With this definition, we can verify LRU until reset. We again need to make some modifications
to the model. For one, we need to be able to refer to whether a thread is competing in the µ-
calculus formula. This information is stored in the flag register, but we should have reliable access
to the value, without the quirks of it being a safe register. To do this, we add an action TrueF lag
and extend the Flag process to always be able to take this action with the corresponding id and
value, we can then refer to which action is possible in the current state to get the real value of
the flag register. We also need to keep track of which thread has the true least recent access.
Since we are verifying the model with two threads, this is much simpler than it would otherwise
be: we add another process that stores which thread had the least recent access (initialized to an
unused id, since at the start neither thread has had access at all) that updates its stored value
whenever either thread takes the enter action by setting it to the id of the other thread. We use
TrueLeastRecentAccess similarly to TrueF lag to get the id of the process that actually had the
access the least recently. Finally, due to needing to update the register that stores the least recent
access, we use SeenEntering(id) instead of enter(id). We can then say that from every state until
we reach a reset, it should not be possible for a thread to enter the critical section if the other
thread is competing and had access least recently:

Property 6 (LRU Until Reset).
[true*] forall id: Nat. val(valid_id(id)) =>

(nu X. <Reset(id)>true || ((

[TrueLeastRecentAccess(other(id))]

[TrueFlag(other(id), true)]

[SeenEntering(id)] false

) && [true]X))

Contrary to what we would assume, this property does not hold. This is actually a quirk of the
algorithm, not the model: say that thread 0 had access the least recent but is not competing for
the critical section. Thread 1 starts the entry protocol and reaches line 5, where it sees thread 0
is not competing. Thread 0 then starts the entry protocol but does not get further than line 5, so
it does not yet set its stage to 1. Then thread 1 can pass the check on line 7 and gain access to
the critical section. LRU is then violated, because thread 0 is competing and has had access the
least recent, but is passed over regardless. This trace does not rely on resets, it does not even rely
on the registers being safe.

Aravind’s proof that the unbounded version of the algorithm satisfies the LRU property does state
that a thread with a lower date value that sets its flag later “may” overtake the other thread
[7], not that it is guaranteed to. Indeed, one wonders if it is even possible to make an algorithm
that satisfies such a strict definition of the LRU property, since no matter how many checks the
algorithm includes it is always possible that a thread that had the critical section less recently
starts competing just a moment before the thread that won the competition enters the critical
section.

Still, we have shown that Aravind’s algorithm does not satisfy the strictest definition of LRU.
The algorithm does give preference to threads with lower date values in the entry protocol, but
we have shown that this preference is not strong enough to always let the thread with least recent
access win the competition. A more nuanced definition of the LRU property will be needed to do
further verification.

18

9 Discussion and Future Work

9.1 Quality of the Safe Register Model

In this section, we look at the quality of the safe register model and possible improvements that
could be made. The primary concern is that the model accurately reflects the behavior of safe
registers. We are confident that it does, the model accurately keeps track of overlapping write-
interactions and we have demonstrated in Section 5 how it uses this information to follow the rules
set out in Section 3.

However, there is a major concern with this model, which is the extreme state-space explosion
upon applying it to more than two threads or to registers with large domains. Take for instance
the model shown in Appendix A, which includes the safe register model and threads that read and
write arbitrary values. When we look at the number of states and transitions in the state-space
upon changing the number of threads and changing the register domain, we get Table 1.

nr. of threads = nr. of registers
1 2 3 4

register 1 3 + 4 57 + 168 1 405 + 6 435 45 345 + 283 216
domain 2 8 + 12 332 + 1 328 18 488 + 120 024 1 367 312 + 12 303 616
size 3 15 + 24 1 017 + 4 896 94 635 + 758 889 11 819 601 + 132 667 632

4 24 + 40 2 352 + 12 864 321 472 + 2 983 104 -
5 35 + 60 4 625 + 27 800 862 625 + 8 922 375 -

Table 1: The number of states + transitions of the labeled transition system generated by the
example model for safe registers. The last two fields became too large to generate.

Of course, these exact numbers depend on the behavior of the threads in this model, as well as
how many registers we include per thread (in this case, one). However, this example still shows
that this model grows much too fast to be suitable for verifying models with many threads and/or
large register domains. As mentioned in Section 8, we could not do much verification on the
model of Aravind’s algorithm with three threads, because it grew too large. It went from needing
5 836 states and 13 240 transitions for two threads to needing 53 101 179 states and 207 813 391
transitions for three. This increase is due to the new thread that is initialized, the three registers
that belong to that thread, and the increase in the date registers domain.

There are multiple factors to this problem. We suspect that part of it is the great number of
possible ways the executions of different threads can interleave. In Remark 3, we pointed out
that removing one read caused a decent reduction in the state-space of our model. Taking steps
to reduce the number of register interactions in the model could therefore help with reducing
the state-space. Another possibility, likely with much greater impact, would be to only treat
write-interactions as taking up time and let read-interactions occur instantaneously. After all, as
Aravind states in [11], “[the read of a safe shared variable] can be treated as atomic because it does
not influence the shared state”; a read being active does not affect the result of overlapping writes
or other reads. Therefore, instead of letting reads take time, we could check if at the moment of
the read, a write is also active to decide the behavior of the read and then immediately end it.

Another source of the problem is the parameters a register needs to keep track of. States in
the model are partially defined by the values in the parameters of the registers, so if there are
unnecessary variables being stored this causes an increase in states without altering the accuracy
of the model. During the development of the safe register model presented in this report, there
was at some point a version that was the exact same, except that instead of storing one value for
the intended write (if successful), it had room to store values for every thread. Of course, if more
than one thread is trying to write simultaneously it does not matter what value was stored for
them, an arbitrary value will be written either way, so this was unnecessary. When the switch
was made to only have one stored value, there was a big improvement in the number of states

19

the model needed. With the safe register example model for two threads and two registers with
a domain of size 2, we went from needing 1 421 states and 6 828 transitions to only needing 332
states and 1 328 transitions. We believe that the current number of variables is the minimum
needed for this model, but it is possible that with a different model fewer parameters are needed.

When looking at more efficient models, we must be careful to not make the model less accurate.
Early on in the development of this model, we designed a version that did not allow read or write
interactions to take time. Rather, it let every interaction happen at just one time instant, and
then used the mCRL2 mutli-actions to model the unreliable behavior of safe registers when reads
or writes occur simultaneously with a write. However, under that model Peterson’s algorithm
satisfied mutual exclusion. The trace that leads to violation of mutual exclusion, as presented in
Section 6, relies on one thread having multiple interactions with a register that go wrong because
they overlap with just one write by another thread. If all interactions occur at just one time instant,
this scenario is not possible. While this model did not suffer from the state-space explosion nearly
as much as the current model, it was inaccurate to what we are modeling.

9.2 Further Verification

There are still properties of Aravind’s algorithm that could be interesting to verify. In our analysis,
we ran into problems verifying both the LRU property and the eventual access property. More
work can be done to find out under what definitions of LRU Aravind’s algorithm does meet the
requirements, and how the bounded and unbounded variants differ in that regard. This will
require giving very precise definitions for at what point exactly a thread starts competing, when
we consider a thread as having won the competition, and what it means for one thread to overtake
another.

Regarding eventual access, we had to make a fairness assumption to let the model satisfy the
property. However, fairness assumptions are quite strong and not always warranted by reality.
Justness assumptions have been proposed as an alternative to allow the verification of liveness
properties without making such strong assumptions about the behavior of a system [12]. In [13],
justness is defined in mCRL2 and used to show that Peterson’s algorithm (with atomic registers)
assures eventual access under justness assumptions. It would be interesting to see if Aravind also
has this property, and if using atomic or safe registers affects the result.

Additionally, if a model can be made that suffers less from the state-space explosion, more ver-
ification could be done of Aravind’s BLRU algorithm for more than two threads. This would
give greater confidence that the algorithm satisfies the properties in general, not merely for two
competing threads.

There is another algorithm that would be interesting to model with safe registers: in [14], Kessels
presents a variant of Peterson’s algorithm that only uses SWMR registers. That paper mentions
that Peterson’s algorithm requires “arbitrartion at a lower level” (meaning: the registers are
atomic), which Kessels’ algorithm does not need. This variant also uses bounded registers. The
paper already contains a written verification that the algorithm works, but it would be interesting
to verify it in mCRL2 as well.

10 Conclusion

The main contribution of this report is presenting the model of MWMR safe registers in mCRL2.
We have shown that the model presented in Section 5 matches the definition of MWMR safe
registers as given in [1]. We used the safe register model to examine the behavior of two different
mutual exclusion algorithms when applied in a context where only safe registers are assured. We
modified an existing model of Peterson’s algorithm and showed that when using safe registers, it
no longer ensures mutual exclusion. We also made a model of Aravind’s BLRU algorithm and
verified that it ensures mutual exclusion even when used with safe registers.

20

Additionally, we verified other properties of Aravind’s algorithm. We showed that it satisfies
eventual access under fairness assumptions, and confirmed Aravind’s claim that the number of
times a thread can be overtaken is at most 2n − 2 where n is the number of threads. We also
confirmed that a thread waiting for access to the critical section will encounter at most one reset
of its date value. We also showed that the algorithm does not satisfy the strictest definition of
LRU access, even before a reset of the date values occurs.

The model of a safe register presented here is rather general, its design is not dependent on the
specific qualities of the algorithms discussed in this report. As a result, it can easily be used in
models of other algorithms to verify their behavior under safe registers. While the model can lead
to a large state-space explosion, we have suggested ways to counteract this that could be applied
in future verifications.

References

[1] M. Raynal, Concurrent Programming: Algorithms, Principles, and Foundations. Springer
Publishing Company, Incorporated, 2012.

[2] E. W. Dijkstra, “Solution of a problem in concurrent programming control,” Commun. ACM,
vol. 8, p. 569, Sept. 1965.

[3] G. Peterson, “Myths about the mutual exclusion problem,” Information Processing Letters,
vol. 12, pp. 115–116, 1981.

[4] L. Lamport, “The mutual exclusion problem: Part i—a theory of interprocess communica-
tion,” J. ACM, vol. 33, p. 313–326, Apr. 1986.

[5] L. Lamport, “On interprocess communication-part i: Basic formalism, part ii: Algorithms,”
Distributed Computing. Also appeared as SRC Research Report 8., pp. 77–101, December
1985.

[6] L. Lamport, “A new solution of Dijkstra’s concurrent programming problem,” Commun.
ACM, vol. 17, p. 453–455, Aug. 1974.

[7] A. A. Aravind, “Yet another simple solution for the concurrent programming control prob-
lem,” IEEE Transactions on Parallel and Distributed Systems, vol. 22, no. 6, pp. 1056–1063,
2011.

[8] J. F. Groote and M. R. Mousavi, Modeling and Analysis of Communicating Systems. MIT
Press Ltd., 2014.

[9] J. F. Groote, J. J. A. Keiren, B. Luttik, E. P. de Vink, and T. A. C. Willemse, “Modelling
and analysing software in mcrl2,” in Formal Aspects of Component Software (F. Arbab and
S.-S. Jongmans, eds.), pp. 25–48, Springer International Publishing, 2020.

[10] Technische Universiteit Eindhoven and University of Twente, “mCRL2 Distribution.” https:

//www.mcrl2.org/web/user_manual/index.html. Accessed: 2021-02-01.

[11] A. Aravind and W. Hesselink, “Nonatomic dual bakery algorithm with bounded tokens,” Acta
informatica, vol. 48, pp. 67–96, Apr. 2011.

[12] R. V. Glabbeek and P. Höfner, “Progress, justness, and fairness,” ACM Computing Surveys,
vol. 52, Aug. 2019.

[13] M. Bouwman, B. Luttik, and T. Willemse, “Off-the-shelf automated analysis of liveness
properties for just paths,” Acta Informatica, vol. 57, pp. 551–590, Oct 2020.

[14] J. L. W. Kessels, “Arbitration without common modifiable variables,” Acta Informatica,
vol. 17, pp. 135–141, Jun 1982.

21

https://www.mcrl2.org/web/user_manual/index.html
https://www.mcrl2.org/web/user_manual/index.html

A Safe Register Model

9 % Defining the boolean array
10 sort
11 ArrayB = Nat -> Bool;
12

13 map
14 all_true: ArrayB;
15 set: ArrayB # Nat # Bool -> ArrayB;
16 get: ArrayB # Nat -> Bool;
17

18 var
19 a: ArrayB;
20 n: Nat;
21 v: Bool;
22

23 eqn
24 all_true(n) = true;
25 set(a, n, v) = a[n -> v];
26 get(a, n) = a(n);
27

28 % The status object
29 sort
30 Status = struct status(ArrayB , Int , Nat);
31

32 map
33 default_status: Status;
34 start_reader: Status # Nat -> Status;
35 start_writer: Status # Nat # Nat -> Status;
36 end_reader: Status # Nat -> Status;
37 end_writer: Status # Nat -> Status;
38 stored_value: Status -> Nat;
39 num_active_writers: Status -> Int;
40 went_wrong: Status # Nat -> Bool;
41

42 var
43 b: ArrayB;
44 w: Int;
45 s, v, id: Nat;
46

47 eqn
48 default_status = status(all_true , 0, 0);
49 start_reader(status(b, w, s), id) = status(set(b, id, w > 0), w, s);
50 w > 0 -> start_writer(status(b, w, s), id, v) =
51 status(all_true , w + 1, 0);
52 w <= 0 -> start_writer(status(b, w, s), id, v) =
53 status(set(all_true , id, false), w + 1, v);
54 end_reader(status(b, w, s), id) = status(set(b, id, true), w, s);
55 end_writer(status(b, w, s), id) = status(set(b, id, true), w - 1, 0);
56 stored_value(status(b, w, s)) = s;
57 num_active_writers(status(b, w, s)) = w;
58 went_wrong(status(b, w, s), id) = get(b, id);
59

60 % Functions for limiting domain and id 's
61 % limit set for id 's should be the number of threads (+ associated register) you are using
62 % limit on domain is arbitrary in this example
63 map
64 in_domain: Nat -> Bool;
65 valid_id: Nat -> Bool;
66 var
67 n: Nat;
68 eqn
69 in_domain(n) = n < 3;
70 valid_id(n) = n < 2;
71

72 % Action 's used
73 act
74 set_register_start_r , set_register_start_t , set_register_start: Nat # Nat # Nat;
75 set_register_end_r , set_register_end_t , set_register_end: Nat # Nat;
76 get_register_start_r , get_register_start_t , get_register_start: Nat # Nat;
77 get_register_end_r , get_register_end_t , get_register_end: Nat # Nat # Nat;
78

79 % Processes
80 proc
81 % Register process
82 Register(id: Nat , v:Nat , stat: Status) =
83 sum tid: Nat. valid_id(tid) -> (
84 sum n: Nat. in_domain(n) -> (
85 set_register_start_r(tid , id, n). Register(stat=start_writer(stat , tid , n)))
86 +

22

87 get_register_start_r(tid , id). Register(stat=start_reader(stat , tid))
88 +
89 (went_wrong(stat , tid) -> (
90 sum n': Nat. in_domain(n') -> (
91 set_register_end_r(tid , id). Register(v=n', stat=end_writer(stat , tid))
92 +
93 get_register_end_r(tid , id , n'). Register(stat=end_reader(stat , tid))))
94 <> (
95 set_register_end_r(tid , id).
96 Register(v=stored_value(stat), stat=end_writer(stat , tid))
97 +
98 get_register_end_r(tid , id , v). Register(stat=end_reader(stat , tid))))
99);

100

101 % Thread process , just an example for having interactions
102 Thread(id: Nat) =
103 sum rid: Nat. valid_id(rid) -> sum n: Nat. in_domain(n) ->
104 set_register_start_t(id, rid , n) . set_register_end_t(id, rid). Thread () +
105 sum rid: Nat. valid_id(rid) -> get_register_start_t(id, rid) .
106 sum n: Nat. in_domain(n) -> get_register_end_t(id, rid , n). Thread ();
107

108 % Initialization , handles communication
109 % In this case , we have 2 threads that both have a register
110 init
111 allow ({
112 get_register_start , get_register_end , set_register_start , set_register_end},
113 comm ({
114 set_register_start_t|set_register_start_r -> set_register_start ,
115 set_register_end_t|set_register_end_r -> set_register_end ,
116 get_register_start_t|get_register_start_r -> get_register_start ,
117 get_register_end_t|get_register_end_r -> get_register_end},
118 Thread (0) || Thread (1) ||
119 Register(0, 0, default_status) || Register(1, 0, default_status)
120));

B Model of Peterson’s with Safe Registers

9 % Jan Friso Groote 's model of Peterson 's for two threads
10 % modified by Myrthe Spronck to include safe registers
11

12 % Arrays over boolean values
13 sort
14 ArrayB = Nat -> Bool;
15

16 map
17 all_true: ArrayB;
18 set: ArrayB # Nat # Bool -> ArrayB;
19 get: ArrayB # Nat -> Bool;
20

21 var
22 a: ArrayB;
23 n: Nat;
24 v: Bool;
25

26 eqn
27 all_true(n) = true;
28 set(a, n, v) = a[n -> v];
29 get(a, n) = a(n);
30

31 % two variants of the status object , depending on the type of the stored value
32 sort
33 StatusB = struct statusB(ArrayB , Int , Bool);
34 StatusN = struct statusN(ArrayB , Int , Nat);
35

36 map
37 default_statusB: StatusB;
38 start_reader: StatusB # Nat -> StatusB;
39 start_writer: StatusB # Nat # Bool -> StatusB;
40 end_reader: StatusB # Nat -> StatusB;
41 end_writer: StatusB # Nat -> StatusB;
42 stored_value: StatusB -> Bool;
43 num_active_writers: StatusB -> Int;
44 went_wrong: StatusB # Nat -> Bool;
45

46 default_statusN: StatusN;
47 start_reader: StatusN # Nat -> StatusN;
48 start_writer: StatusN # Nat # Nat -> StatusN;

23

49 end_reader: StatusN # Nat -> StatusN;
50 end_writer: StatusN # Nat -> StatusN;
51 stored_value: StatusN -> Nat;
52 num_active_writers: StatusN -> Int;
53 went_wrong: StatusN # Nat -> Bool;
54

55 % definitions for StatusB update functions
56 var
57 b: ArrayB;
58 w: Int;
59 s, v: Bool;
60 id: Nat;
61

62 eqn
63 default_statusB = statusB(all_true , 0, false);
64 start_reader(statusB(b, w, s), id) = statusB(set(b, id , w > 0), w, s);
65 w > 0 -> start_writer(statusB(b, w, s), id, v) =
66 statusB(all_true , w + 1, false);
67 w <= 0 -> start_writer(statusB(b, w, s), id , v) =
68 statusB(set(all_true , id , false), w + 1, v);
69 end_reader(statusB(b, w, s), id) = statusB(set(b, id , true), w, s);
70 end_writer(statusB(b, w, s), id) = statusB(set(b, id , true), w - 1, false);
71 stored_value(statusB(b, w, s)) = s;
72 num_active_writers(statusB(b, w, s)) = w;
73 went_wrong(statusB(b, w, s), id) = get(b, id);
74

75 % definitions for StatusN update functions
76 var
77 b: ArrayB;
78 w: Int;
79 s, v, id: Nat;
80

81 eqn
82 default_statusN = statusN(all_true , 0, 0);
83 start_reader(statusN(b, w, s), id) = statusN(set(b, id , w > 0), w, s);
84 w > 0 -> start_writer(statusN(b, w, s), id, v) =
85 statusN(all_true , w + 1, 0);
86 w <= 0 -> start_writer(statusN(b, w, s), id, v) =
87 statusN(set(all_true , id , false), w + 1, v);
88 end_reader(statusN(b, w, s), id) = statusN(set(b, id , true), w, s);
89 end_writer(statusN(b, w, s), id) = statusN(set(b, id , true), w - 1, 0);
90 stored_value(statusN(b, w, s)) = s;
91 num_active_writers(statusN(b, w, s)) = w;
92 went_wrong(statusN(b, w, s), id) = get(b, id);
93

94 % general functions .
95 % here , since the turn stores thread id 's, we can use valid_id instead of in_domain
96 map
97 valid_id: Nat -> Bool;
98 other: Nat -> Nat;
99

100 var
101 n: Nat;
102

103 eqn
104 valid_id(n) = n < 2;
105 other (0) = 1;
106 other (1) = 0;
107

108 act
109 % indicator actions
110 wish , enter , leave: Nat;
111

112 % actions representing the register interactions
113 get_flag_start_r , get_flag_start_t , get_flag_start: Nat # Nat;
114 get_flag_end_r , get_flag_end_t , get_flag_end: Nat # Nat # Bool;
115 set_flag_start_r , set_flag_start_t , set_flag_start: Nat # Nat # Bool;
116 set_flag_end_r , set_flag_end_t , set_flag_end: Nat # Nat;
117 get_turn_start_r , get_turn_start_t , get_turn_start: Nat;
118 get_turn_end_r , get_turn_end_t , get_turn_end: Nat # Nat;
119 set_turn_start_r , set_turn_start_t , set_turn_start: Nat # Nat;
120 set_turn_end_r , set_turn_end_t , set_turn_end: Nat;
121

122 proc
123 % Flag and Turn registers
124 Flag(id: Nat , b: Bool , stat: StatusB) =
125 sum tid: Nat. valid_id(tid) -> (
126 sum b': Bool. set_flag_start_r(tid , id, b'). Flag(stat=start_writer(stat , tid , b'))
127 +
128 get_flag_start_r(tid , id). Flag(stat=start_reader(stat , tid))

24

129 +
130 (went_wrong(stat , tid) -> (
131 sum b': Bool. (
132 set_flag_end_r(tid , id). Flag(b=b', stat=end_writer(stat , tid))
133 +
134 get_flag_end_r(tid , id, b'). Flag(stat=end_reader(stat , tid))))
135 <> (
136 set_flag_end_r(tid , id). Flag(b=stored_value(stat), stat=end_writer(stat , tid))
137 +
138 get_flag_end_r(tid , id, b). Flag(stat=end_reader(stat , tid))))
139);
140

141 Turn(n: Nat , stat: StatusN) =
142 sum tid: Nat. valid_id(tid) -> (
143 sum n': Nat. valid_id(n') -> set_turn_start_r(tid , n').
144 Turn(stat=start_writer(stat , tid , n'))
145 +
146 get_turn_start_r(tid). Turn(stat=start_reader(stat , tid))
147 +
148 (went_wrong(stat , tid) -> (
149 sum n': Nat. valid_id(n') -> (
150 set_turn_end_r(tid). Turn(n=n', stat=end_writer(stat , tid))
151 +
152 get_turn_end_r(tid , n'). Turn(stat=end_reader(stat , tid))))
153 <> (
154 set_turn_end_r(tid). Turn(n=stored_value(stat), stat=end_writer(stat , tid))
155 +
156 get_turn_end_r(tid , n). Turn(stat=end_reader(stat , tid))))
157);
158

159 % the processes representing the algorithms
160 Thread(id: Nat) =
161 set_flag_start_t(id, id, true). set_flag_end_t(id, id)|wish(id).
162 set_turn_start_t(id, id). set_turn_end_t(id).
163 BusyWait(id);
164

165 BusyWait(id: Nat) =
166 get_flag_start_t(id, other(id)).
167 sum flag_other: Bool. get_flag_end_t(id , other(id), flag_other).
168 get_turn_start_t(id).
169 sum turn: Nat. valid_id(turn) ->
170 get_turn_end_t(id , turn).
171 (! flag_other || turn != id) -> Critical(id) <> BusyWait(id);
172

173 Critical(id: Nat) =
174 enter(id). leave(id).
175 set_flag_start_t(id, id, false). set_flag_end_t(id, id).
176 Thread(id);
177

178 % initialization
179 init
180 allow ({
181 get_flag_start , get_flag_end , set_flag_start , set_flag_end ,
182 get_turn_start , get_turn_end , set_turn_start , set_turn_end ,
183 set_flag_end|wish , enter , leave},
184 comm ({
185 get_flag_start_r|get_flag_start_t -> get_flag_start ,
186 get_flag_end_r|get_flag_end_t -> get_flag_end ,
187 set_flag_start_r|set_flag_start_t -> set_flag_start ,
188 set_flag_end_r|set_flag_end_t -> set_flag_end ,
189 get_turn_start_r|get_turn_start_t -> get_turn_start ,
190 get_turn_end_r|get_turn_end_t -> get_turn_end ,
191 set_turn_start_r|set_turn_start_t -> set_turn_start ,
192 set_turn_end_r|set_turn_end_t -> set_turn_end},
193 Thread (0) || Thread (1) ||
194 Flag(0,false , default_statusB) || Flag(1,false , default_statusB) ||
195 Turn(0, default_statusN)
196));

C Model of Aravind’s for 2 Threads with Safe Registers

9 % Arrays over Boolean values
10 sort
11 ArrayB = Nat -> Bool;
12

13 map
14 all_true: ArrayB;

25

15 set: ArrayB # Nat # Bool -> ArrayB;
16 get: ArrayB # Nat -> Bool;
17

18 var
19 a: ArrayB;
20 n: Nat;
21 v: Bool;
22

23 eqn
24 all_true(n) = true;
25 set(a, n, v) = a[n -> v];
26 get(a, n) = a(n);
27

28 % We have two status objects , depending on the type of the stored value
29 sort
30 StatusB = struct statusB(ArrayB , Int , Bool);
31 StatusN = struct statusN(ArrayB , Int , Nat);
32

33 map
34 default_statusB: StatusB;
35 start_reader: StatusB # Nat -> StatusB;
36 start_writer: StatusB # Nat # Bool -> StatusB;
37 end_reader: StatusB # Nat -> StatusB;
38 end_writer: StatusB # Nat -> StatusB;
39 stored_value: StatusB -> Bool;
40 num_active_writers: StatusB -> Int;
41 went_wrong: StatusB # Nat -> Bool;
42

43 default_statusN: StatusN;
44 start_reader: StatusN # Nat -> StatusN;
45 start_writer: StatusN # Nat # Nat -> StatusN;
46 end_reader: StatusN # Nat -> StatusN;
47 end_writer: StatusN # Nat -> StatusN;
48 stored_value: StatusN -> Nat;
49 num_active_writers: StatusN -> Int;
50 went_wrong: StatusN # Nat -> Bool;
51

52 % definitions for StatusB functions
53 var
54 b: ArrayB;
55 w: Int;
56 s, v: Bool;
57 id: Nat;
58

59 eqn
60 default_statusB = statusB(all_true , 0, false);
61 start_reader(statusB(b, w, s), id) = statusB(set(b, id , w > 0), w, s);
62 w > 0 -> start_writer(statusB(b, w, s), id, v) =
63 statusB(all_true , w + 1, false);
64 w <= 0 -> start_writer(statusB(b, w, s), id, v) =
65 statusB(set(all_true , id , false), w + 1, v);
66 end_reader(statusB(b, w, s), id) = statusB(set(b, id , true), w, s);
67 end_writer(statusB(b, w, s), id) = statusB(set(b, id , true), w - 1, false);
68 stored_value(statusB(b, w, s)) = s;
69 num_active_writers(statusB(b, w, s)) = w;
70 went_wrong(statusB(b, w, s), id) = get(b, id);
71

72 % definitions for StatusN functions
73 var
74 b: ArrayB;
75 w: Int;
76 s, v, id: Nat;
77

78 eqn
79 default_statusN = statusN(all_true , 0, 0);
80 start_reader(statusN(b, w, s), id) = statusN(set(b, id , w > 0), w, s);
81 w > 0 -> start_writer(statusN(b, w, s), id, v) =
82 statusN(all_true , w + 1, 0);
83 w <= 0 -> start_writer(statusN(b, w, s), id, v) =
84 statusN(set(all_true , id , false), w + 1, v);
85 end_reader(statusN(b, w, s), id) = statusN(set(b, id , true), w, s);
86 end_writer(statusN(b, w, s), id) = statusN(set(b, id , true), w - 1, 0);
87 stored_value(statusN(b, w, s)) = s;
88 num_active_writers(statusN(b, w, s)) = w;
89 went_wrong(statusN(b, w, s), id) = get(b, id);
90

91 % constant value , the maximum value the data register can take
92 map
93 LAST: Nat;
94 eqn

26

95 LAST = 3; % 2* number of threads - 1
96

97 % general functions
98 map
99 valid_id: Nat -> Bool;

100 in_domain: Nat -> Bool;
101 other: Nat -> Nat;
102

103 var
104 n: Nat;
105

106 eqn
107 valid_id(n) = n < 2; % we have id 's 0 and 1
108 in_domain(n) = n <= LAST;
109 other (0) = 1;
110 other (1) = 0;
111

112 act
113 % indicator actions:
114 wish , enter , leave : Nat;
115

116 % register interaction actions:
117 get_flag_start_r , get_flag_start_p , get_flag_start: Nat # Nat;
118 get_flag_end_r , get_flag_end_p , get_flag_end: Nat # Nat # Bool;
119 set_flag_start_r , set_flag_start_p , set_flag_start: Nat # Nat # Bool;
120 set_flag_end_r , set_flag_end_p , set_flag_end: Nat # Nat;
121

122 get_stage_start_r , get_stage_start_p , get_stage_start: Nat # Nat;
123 get_stage_end_r , get_stage_end_p , get_stage_end: Nat # Nat # Bool;
124 set_stage_start_r , set_stage_start_p , set_stage_start: Nat # Nat # Bool;
125 set_stage_end_r , set_stage_end_p , set_stage_end: Nat # Nat;
126

127 get_date_start_r , get_date_start_p , get_date_start: Nat # Nat;
128 get_date_end_r , get_date_end_p , get_date_end: Nat # Nat # Nat;
129 set_date_start_r , set_date_start_p , set_date_start: Nat # Nat # Nat;
130 set_date_end_r , set_date_end_p , set_date_end: Nat # Nat;
131

132 proc
133 % Flag , Stage and Date registers
134 Flag(id: Nat , b: Bool , stat: StatusB) =
135 sum pid: Nat. valid_id(pid) -> (
136 sum b': Bool. set_flag_start_r(pid , id, b'). Flag(stat=start_writer(stat , pid , b'))
137 +
138 get_flag_start_r(pid , id). Flag(stat=start_reader(stat , pid))
139 +
140 (went_wrong(stat , pid) -> (
141 sum b': Bool. (
142 set_flag_end_r(pid , id). Flag(b=b', stat=end_writer(stat , pid))
143 +
144 get_flag_end_r(pid , id, b'). Flag(stat=end_reader(stat , pid))))
145 <> (
146 set_flag_end_r(pid , id). Flag(b=stored_value(stat), stat=end_writer(stat , pid))
147 +
148 get_flag_end_r(pid , id, b). Flag(stat=end_reader(stat , pid))))
149);
150

151 Stage(id: Nat , b: Bool , stat: StatusB) =
152 sum pid: Nat. valid_id(pid) -> (
153 sum b': Bool. set_stage_start_r(pid , id , b'). Stage(stat=start_writer(stat , pid , b'))
154 +
155 get_stage_start_r(pid , id). Stage(stat=start_reader(stat , pid))
156 +
157 (went_wrong(stat , pid) -> (
158 sum b': Bool. (
159 set_stage_end_r(pid , id). Stage(b=b', stat=end_writer(stat , pid))
160 +
161 get_stage_end_r(pid , id , b'). Stage(stat=end_reader(stat , pid))))
162 <> (
163 set_stage_end_r(pid , id). Stage(b=stored_value(stat), stat=end_writer(stat , pid))
164 +
165 get_stage_end_r(pid , id , b). Stage(stat=end_reader(stat , pid))))
166);
167

168 Date(id: Nat , d: Nat , stat: StatusN) =
169 sum pid: Nat. valid_id(pid) -> (
170 sum n: Nat. in_domain(n) -> (set_date_start_r(pid , id , n).
171 Date(stat=start_writer(stat , pid , n)))
172 +
173 get_date_start_r(pid , id). Date(stat=start_reader(stat , pid))
174 +

27

175 (went_wrong(stat , pid) -> (
176 sum n': Nat. in_domain(n') -> (
177 set_date_end_r(pid , id). Date(d=n', stat=end_writer(stat , pid))
178 +
179 get_date_end_r(pid , id, n'). Date(stat=end_reader(stat , pid))))
180 <> (
181 set_date_end_r(pid , id). Date(d=stored_value(stat), stat=end_writer(stat , pid))
182 +
183 get_date_end_r(pid , id, d). Date(stat=end_reader(stat , pid))))
184);
185

186 % the processes representing the algorithm
187 P(id: Nat) =
188 set_flag_start_p(id, id, true). set_flag_end_p(id, id)|wish(id). R1(id);
189

190 R1(id: Nat) =
191 set_stage_start_p(id, id, false). set_stage_end_p(id, id). R2(id);
192

193 R2(id: Nat) =
194 get_flag_start_p(id, other(id)).
195 sum flag_other: Bool. get_flag_end_p(id , other(id), flag_other).
196 get_date_start_p(id, id). sum d: Nat. in_domain(d) -> get_date_end_p(id , id , d).
197 get_date_start_p(id, other(id)).
198 sum date_other: Nat. in_domain(date_other) ->
199 get_date_end_p(id , other(id), date_other).
200 ((flag_other == false || d < date_other) -> R3(id) <> R2(id));
201

202 R3(id: Nat) =
203 set_stage_start_p(id, id, true) . set_stage_end_p(id, id).
204 get_stage_start_p(id, other(id)).
205 sum stage_other: Bool. get_stage_end_p(id , other(id), stage_other).
206 (stage_other -> R1(id) <> C(id));
207

208 C(id: Nat) =
209 enter(id). leave(id).
210 get_date_start_p(id, id). sum d: Nat. in_domain(d) -> get_date_end_p(id , id , d).
211 get_date_start_p(id, other(id)).
212 sum date_other: Nat. in_domain(date_other) ->
213 get_date_end_p(id , other(id), date_other).
214 set_date_start_p(id, id, max(d, date_other) + 1). set_date_end_p(id , id).
215 get_date_start_p(id, id). sum d_res: Nat. in_domain(d_res) ->
216 get_date_end_p(id , id , d_res).
217 ((d_res >= LAST) -> (
218 set_date_start_p(id, id, id). set_date_end_p(id, id).
219 set_date_start_p(id, other(id), other(id)). set_date_end_p(id, other(id)).
220 CF(id)) <> CF(id));
221

222 CF(id: Nat) =
223 set_stage_start_p(id, id, false). set_stage_end_p(id, id).
224 set_flag_start_p(id, id, false). set_flag_end_p(id, id) . P(id);
225

226 % initialization ,
227 % hide handles replacing many action labels with tau , for verification ease
228 % allow and comm together handle the communication
229 % then the threads and registers are initialized with their id 's and initial values
230 init
231 hide ({
232 get_stage_start , get_stage_end , set_stage_start , set_stage_end ,
233 get_flag_start , get_flag_end , set_flag_start , set_flag_end ,
234 get_date_start , get_date_end , set_date_start , set_date_end},
235 allow ({
236 wish|set_flag_end , enter , leave ,
237 get_stage_start , get_stage_end , set_stage_start , set_stage_end ,
238 get_flag_start , get_flag_end , set_flag_start , set_flag_end ,
239 get_date_start , get_date_end , set_date_start , set_date_end},
240 comm ({
241 get_flag_start_r|get_flag_start_p -> get_flag_start ,
242 get_flag_end_r|get_flag_end_p -> get_flag_end ,
243 set_flag_start_r|set_flag_start_p -> set_flag_start ,
244 set_flag_end_r|set_flag_end_p -> set_flag_end ,
245 get_stage_start_r|get_stage_start_p -> get_stage_start ,
246 get_stage_end_r|get_stage_end_p -> get_stage_end ,
247 set_stage_start_r|set_stage_start_p -> set_stage_start ,
248 set_stage_end_r|set_stage_end_p -> set_stage_end ,
249 get_date_start_r|get_date_start_p -> get_date_start ,
250 get_date_end_r|get_date_end_p -> get_date_end ,
251 set_date_start_r|set_date_start_p -> set_date_start ,
252 set_date_end_r|set_date_end_p -> set_date_end},
253 P(0) || P(1) ||
254 Flag(0, false , default_statusB) || Flag(1, false , default_statusB) ||

28

255 Stage(0, false , default_statusB) || Stage(1, false , default_statusB) ||
256 Date(0, 0, default_statusN) || Date(1, 1, default_statusN)
257)));

D Model of Aravind’s for 3 Threads with Safe Registers

Differences with the 2 thread version are highlighted in red.

9 % Arrays over Boolean values
10 sort
11 ArrayB = Nat -> Bool;
12

13 map
14 default_arrayB: ArrayB;
15 all_true: ArrayB;
16 set: ArrayB # Nat # Bool -> ArrayB;
17 get: ArrayB # Nat -> Bool;
18

19 var
20 a: ArrayB;
21 n: Nat;
22 v: Bool;
23

24 eqn
25 default_arrayB(n) = false;
26 all_true(n) = true;
27 set(a, n, v) = a[n -> v];
28 get(a, n) = a(n);
29

30 % Two status objects , depending on the type of the stored value
31 sort
32 StatusB = struct statusB(ArrayB , Int , Bool);
33 StatusN = struct statusN(ArrayB , Int , Nat);
34

35 map
36 default_statusB: StatusB;
37 start_reader: StatusB # Nat -> StatusB;
38 start_writer: StatusB # Nat # Bool -> StatusB;
39 end_reader: StatusB # Nat -> StatusB;
40 end_writer: StatusB # Nat -> StatusB;
41 stored_value: StatusB -> Bool;
42 num_active_writers: StatusB -> Int;
43 went_wrong: StatusB # Nat -> Bool;
44

45 default_statusN: StatusN;
46 start_reader: StatusN # Nat -> StatusN;
47 start_writer: StatusN # Nat # Nat -> StatusN;
48 end_reader: StatusN # Nat -> StatusN;
49 end_writer: StatusN # Nat -> StatusN;
50 stored_value: StatusN -> Nat;
51 num_active_writers: StatusN -> Int;
52 went_wrong: StatusN # Nat -> Bool;
53

54 % Status B functions
55 var
56 b: ArrayB;
57 w: Int;
58 s, v: Bool;
59 id: Nat;
60

61 eqn
62 default_statusB = statusB(all_true , 0, false);
63 start_reader(statusB(b, w, s), id) = statusB(set(b, id , w > 0), w, s);
64 w > 0 -> start_writer(statusB(b, w, s), id, v) =
65 statusB(all_true , w + 1, false);
66 w <= 0 -> start_writer(statusB(b, w, s), id, v) =
67 statusB(set(all_true , id , false), w + 1, v);
68 end_reader(statusB(b, w, s), id) = statusB(set(b, id , true), w, s);
69 end_writer(statusB(b, w, s), id) = statusB(set(b, id , true), w - 1, false);
70 stored_value(statusB(b, w, s)) = s;
71 num_active_writers(statusB(b, w, s)) = w;
72 went_wrong(statusB(b, w, s), id) = get(b, id);
73

74 % Status N functions
75 var
76 b: ArrayB;
77 w: Int;

29

78 s, v, id: Nat;
79

80 eqn
81 default_statusN = statusN(all_true , 0, 0);
82 start_reader(statusN(b, w, s), id) = statusN(set(b, id , w > 0), w, s);
83 w > 0 -> start_writer(statusN(b, w, s), id, v) =
84 statusN(all_true , w + 1, 0);
85 w <= 0 -> start_writer(statusN(b, w, s), id , v) =
86 statusN(set(all_true , id , false), w + 1, v);
87 end_reader(statusN(b, w, s), id) = statusN(set(b, id , true), w, s);
88 end_writer(statusN(b, w, s), id) = statusN(set(b, id , true), w - 1, 0);
89 stored_value(statusN(b, w, s)) = s;
90 num_active_writers(statusN(b, w, s)) = w;
91 went_wrong(statusN(b, w, s), id) = get(b, id);
92

93 % constant value , the maximum value allowed by the register domain
94 map
95 LAST: Nat;
96

97 eqn
98 LAST = 5; % 2 * number of threads - 1
99

100 % general functions , need two "other" now
101 map
102 in_domain: Nat -> Bool;
103 valid_id: Nat -> Bool;
104 other fst: Nat -> Nat ;
105 other scd: Nat -> Nat ;
106

107 var
108 n: Nat;
109

110 eqn
111 in_domain(n) = n <= LAST;
112 valid id(n) = n < 3;
113 other fst(0) = 1;
114 other scd(0) = 2;
115 other fst(1) = 0;
116 other scd(1) = 2;
117 other fst(2) = 0;
118 other scd(2) = 1;
119

120 % max operation for 3 values
121 map
122 max 3: Nat # Nat # Nat -> Nat ;
123

124 var
125 a, b, c: Nat ;
126

127 eqn
128 max 3(a, b, c) = max (max (a,b),c);
129

130 act
131 % indicator actions:
132 wish , enter , leave : Nat;
133

134 % register interaction actions:
135 get_flag_start_r , get_flag_start_p , get_flag_start: Nat # Nat;
136 get_flag_end_r , get_flag_end_p , get_flag_end: Nat # Nat # Bool;
137 set_flag_start_r , set_flag_start_p , set_flag_start: Nat # Nat # Bool;
138 set_flag_end_r , set_flag_end_p , set_flag_end: Nat # Nat;
139

140 get_stage_start_r , get_stage_start_p , get_stage_start: Nat # Nat;
141 get_stage_end_r , get_stage_end_p , get_stage_end: Nat # Nat # Bool;
142 set_stage_start_r , set_stage_start_p , set_stage_start: Nat # Nat # Bool;
143 set_stage_end_r , set_stage_end_p , set_stage_end: Nat # Nat;
144

145 get_date_start_r , get_date_start_p , get_date_start: Nat # Nat;
146 get_date_end_r , get_date_end_p , get_date_end: Nat # Nat # Nat;
147 set_date_start_r , set_date_start_p , set_date_start: Nat # Nat # Nat;
148 set_date_end_r , set_date_end_p , set_date_end: Nat # Nat;
149

150 proc
151 % Flag , Stage and Date registers
152 Flag(id: Nat , b: Bool , stat: StatusB) =
153 sum pid: Nat. valid_id(pid) -> (
154 sum b': Bool. set_flag_start_r(pid , id, b'). Flag(stat=start_writer(stat , pid , b'))
155 +
156 get_flag_start_r(pid , id). Flag(stat=start_reader(stat , pid))
157 +

30

158 (went_wrong(stat , pid) -> (
159 sum b': Bool. (
160 set_flag_end_r(pid , id). Flag(b=b', stat=end_writer(stat , pid))
161 +
162 get_flag_end_r(pid , id, b'). Flag(stat=end_reader(stat , pid))))
163 <> (
164 set_flag_end_r(pid , id). Flag(b=stored_value(stat), stat=end_writer(stat , pid))
165 +
166 get_flag_end_r(pid , id, b). Flag(stat=end_reader(stat , pid))))
167);
168

169 Stage(id: Nat , b:Bool , stat:StatusB) =
170 sum pid: Nat. valid_id(pid) -> (
171 sum b': Bool. set_stage_start_r(pid , id , b'). Stage(stat=start_writer(stat , pid , b'))
172 +
173 get_stage_start_r(pid , id). Stage(stat=start_reader(stat , pid))
174 +
175 (went_wrong(stat , pid) -> (
176 sum b': Bool. (
177 set_stage_end_r(pid , id). Stage(b=b', stat=end_writer(stat , pid))
178 +
179 get_stage_end_r(pid , id , b'). Stage(stat=end_reader(stat , pid))))
180 <> (
181 set_stage_end_r(pid , id). Stage(b=stored_value(stat), stat=end_writer(stat , pid))
182 +
183 get_stage_end_r(pid , id , b). Stage(stat=end_reader(stat , pid))))
184);
185

186 Date(id: Nat , d: Nat , stat: StatusN) =
187 sum pid: Nat. valid_id(pid) -> (
188 sum n: Nat. in_domain(n) -> (set_date_start_r(pid , id , n).
189 Date(stat=start_writer(stat , pid , n)))
190 +
191 get_date_start_r(pid , id). Date(stat=start_reader(stat , pid))
192 +
193 (went_wrong(stat , pid) -> (
194 sum n': Nat. in_domain(n') -> (
195 set_date_end_r(pid , id). Date(d=n', stat=end_writer(stat , pid))
196 +
197 get_date_end_r(pid , id, n'). Date(stat=end_reader(stat , pid))))
198 <> (
199 set_date_end_r(pid , id). Date(d=stored_value(stat), stat=end_writer(stat , pid))
200 +
201 get_date_end_r(pid , id, d). Date(stat=end_reader(stat , pid))))
202);
203

204 % The processes representing the threads
205 P(id: Nat) =
206 set_flag_start_p(id, id, true) . wish(id)| set_flag_end_p(id, id) . R1(id);
207

208 R1(id: Nat) =
209 set_stage_start_p(id, id, false) . set_stage_end_p(id, id) . R2(id);
210

211 R2(id: Nat) =
212 get flag start p(id, other fst(id)). sum flag fst: Bool.
213 get flag end p(id, other fst(id), flag fst).
214 get flag start p(id, other scd(id)). sum flag scd: Bool.
215 get flag end p(id, other scd(id), flag scd).
216 get_date_start_p(id, id). sum d: Nat. in_domain(d) ->
217 get_date_end_p(id , id, d).
218 get date start p(id, other fst(id)). sum date fst: Nat. in domain(date fst) ->
219 get date end p(id, other fst(id), date fst).
220 get date start p(id, other scd(id)). sum date scd: Nat. in domain(date scd) ->
221 get date end p(id, other scd(id), date scd).
222 (((flag fst == false || d < date fst) && (flag scd == false || d < date scd)) ->
223 R3(id) <> R2(id));
224

225 R3(id: Nat) =
226 set_stage_start_p(id, id, true) . set_stage_end_p(id, id).
227 get stage start p(id, other fst(id)). sum stage fst: Bool.
228 get stage end p(id, other fst(id), stage fst).
229 get stage start p(id, other scd(id)). sum stage scd: Bool.
230 get stage end p(id, other scd(id), stage scd).
231 ((stage fst || stage scd) ->
232 R1(id) <> C(id));
233

234 C(id: Nat) =
235 enter(id). leave(id).
236 get_date_start_p(id, id). sum d: Nat. in_domain(d) ->
237 get_date_end_p(id , id, d).

31

238 get date start p(id, other fst(id)). sum date fst: Nat. in domain(date fst) ->
239 get date end p(id, other fst(id), date fst).
240 get date start p(id, other scd(id)). sum date scd: Nat. in domain(date scd) ->
241 get date end p(id, other scd(id), date scd).
242 set date start p(id, id, max 3(d, date fst, date scd) + 1). set_date_end_p(id , id).
243 get_date_start_p(id, id). sum d_res: Nat. in_domain(d_res) ->
244 get_date_end_p(id , id, d_res).
245 ((d_res >= LAST) -> (
246 set_date_start_p(id, id, id). set_date_end_p(id, id).
247 set date start p(id, other fst(id), other fst(id)). set date end p(id, other fst(id)).
248 set date start p(id, other scd(id), other scd(id)). set date end p(id, other scd(id)).
249 CF(id)) <> CF(id));
250

251 CF(id: Nat) =
252 set_stage_start_p(id, id, false). set_stage_end_p(id, id).
253 set_flag_start_p(id, id, false). set_flag_end_p(id, id). P(id);
254

255 % Initialization
256 init
257 hide ({
258 get_stage_start , get_stage_end , set_stage_start , set_stage_end ,
259 get_flag_start , get_flag_end , set_flag_start , set_flag_end ,
260 get_date_start , get_date_end , set_date_start , set_date_end},
261 allow ({
262 wish|set_flag_end , enter , leave ,
263 get_stage_start , get_stage_end , set_stage_start , set_stage_end ,
264 get_flag_start , get_flag_end , set_flag_start , set_flag_end ,
265 get_date_start , get_date_end , set_date_start , set_date_end},
266 comm ({
267 get_flag_start_r|get_flag_start_p -> get_flag_start ,
268 get_flag_end_r|get_flag_end_p -> get_flag_end ,
269 set_flag_start_r|set_flag_start_p -> set_flag_start ,
270 set_flag_end_r|set_flag_end_p -> set_flag_end ,
271 get_stage_start_r|get_stage_start_p -> get_stage_start ,
272 get_stage_end_r|get_stage_end_p -> get_stage_end ,
273 set_stage_start_r|set_stage_start_p -> set_stage_start ,
274 set_stage_end_r|set_stage_end_p -> set_stage_end ,
275 get_date_start_r|get_date_start_p -> get_date_start ,
276 get_date_end_r|get_date_end_p -> get_date_end ,
277 set_date_start_r|set_date_start_p -> set_date_start ,
278 set_date_end_r|set_date_end_p -> set_date_end},
279 P(0) || P(1) || P(2) ||
280 Flag(0, false , default_statusB) ||
281 Flag(1, false , default_statusB) ||
282 Flag(2, false, default statusB) ||
283 Stage(0, false , default_statusB) ||
284 Stage(1, false , default_statusB) ||
285 Stage(2, false, default statusB) ||
286 Date(0, 0, default_statusN) ||
287 Date(1, 1, default_statusN) ||
288 Date(2, 2, default statusN)
289)));

E Model of Aravind’s, Modified for Verification

In Section 8, we at various points introduced new actions for the verification of properties. This
is the same model as shown in Appendix C, but with these new actions added in. For clarity, the
modifications have been colored red. Note that depending on which property is being verified, it
will differ which actions are hidden and allowed. We will first show the main model, and then the
different initializations used for the properties discussed.

E.1 Main Model
9 % Arrays over Boolean values

10 sort
11 ArrayB = Nat -> Bool;
12

13 map
14 default_arrayB: ArrayB;
15 all_true: ArrayB;
16 set: ArrayB # Nat # Bool -> ArrayB;
17 get: ArrayB # Nat -> Bool;
18

32

19 var
20 a: ArrayB;
21 n: Nat;
22 v: Bool;
23

24 eqn
25 default_arrayB(n) = false;
26 all_true(n) = true;
27 set(a, n, v) = a[n -> v];
28 get(a, n) = a(n);
29

30 % Two status obkects , depending on the type of the stored value
31 sort
32 StatusB = struct statusB(ArrayB , Int , Bool);
33 StatusN = struct statusN(ArrayB , Int , Nat);
34

35 map
36 default_statusB: StatusB;
37 start_reader: StatusB # Nat -> StatusB;
38 start_writer: StatusB # Nat # Bool -> StatusB;
39 end_reader: StatusB # Nat -> StatusB;
40 end_writer: StatusB # Nat -> StatusB;
41 stored_value: StatusB -> Bool;
42 num_active_writers: StatusB -> Int;
43 went_wrong: StatusB # Nat -> Bool;
44

45 default_statusN: StatusN;
46 start_reader: StatusN # Nat -> StatusN;
47 start_writer: StatusN # Nat # Nat -> StatusN;
48 end_reader: StatusN # Nat -> StatusN;
49 end_writer: StatusN # Nat -> StatusN;
50 stored_value: StatusN -> Nat;
51 num_active_writers: StatusN -> Int;
52 went_wrong: StatusN # Nat -> Bool;
53

54 % Status B functions
55 var
56 b: ArrayB;
57 w: Int;
58 s, v: Bool;
59 id: Nat;
60

61 eqn
62 default_statusB = statusB(all_true , 0, false);
63 start_reader(statusB(b, w, s), id) = statusB(set(b, id , w > 0), w, s);
64 w > 0 -> start_writer(statusB(b, w, s), id, v) =
65 statusB(all_true , w + 1, false);
66 w <= 0 -> start_writer(statusB(b, w, s), id, v) =
67 statusB(set(all_true , id , false), w + 1, v);
68 end_reader(statusB(b, w, s), id) = statusB(set(b, id , true), w, s);
69 end_writer(statusB(b, w, s), id) = statusB(set(b, id , true), w - 1, false);
70 stored_value(statusB(b, w, s)) = s;
71 num_active_writers(statusB(b, w, s)) = w;
72 went_wrong(statusB(b, w, s), id) = get(b, id);
73

74 % Status N functions
75 var
76 b: ArrayB;
77 w: Int;
78 s, v, id: Nat;
79

80 eqn
81 default_statusN = statusN(all_true , 0, 0);
82 start_reader(statusN(b, w, s), id) = statusN(set(b, id , w > 0), w, s);
83 w > 0 -> start_writer(statusN(b, w, s), id, v) =
84 statusN(all_true , w + 1, 0);
85 w <= 0 -> start_writer(statusN(b, w, s), id, v) =
86 statusN(set(all_true , id , false), w + 1, v);
87 end_reader(statusN(b, w, s), id) = statusN(set(b, id , true), w, s);
88 end_writer(statusN(b, w, s), id) = statusN(set(b, id , true), w - 1, 0);
89 stored_value(statusN(b, w, s)) = s;
90 num_active_writers(statusN(b, w, s)) = w;
91 went_wrong(statusN(b, w, s), id) = get(b, id);
92

93 % constant value , the maximum value allowed by the register domain
94 map
95 LAST: Nat;
96 eqn
97 LAST = 3; % 2 * the number of threads - 1
98

33

99 % general functions
100 map
101 valid_id: Nat -> Bool;
102 in_domain: Nat -> Bool;
103 other: Nat -> Nat;
104

105 var
106 n: Nat;
107

108 eqn
109 valid_id(n) = n < 2;
110 in_domain(n) = n <= LAST;
111 other (0) = 1;
112 other (1) = 0;
113

114 act
115 % labels for extra verification
116 Loop;
117 Reset: Nat ;
118 TrueFlag: Nat # Bool ;
119 Entered, SeenEntering: Nat ;
120 TrueLeastRecentAccess: Nat ;
121

122 % indicator actions:
123 wish , enter , leave: Nat;
124

125 % register interaction actions:
126 get_flag_start_r , get_flag_start_p , get_flag_start: Nat # Nat;
127 get_flag_end_r , get_flag_end_p , get_flag_end: Nat # Nat # Bool;
128 set_flag_start_r , set_flag_start_p , set_flag_start: Nat # Nat # Bool;
129 set_flag_end_r , set_flag_end_p , set_flag_end: Nat # Nat;
130

131 get_stage_start_r , get_stage_start_p , get_stage_start: Nat # Nat;
132 get_stage_end_r , get_stage_end_p , get_stage_end: Nat # Nat # Bool;
133 set_stage_start_r , set_stage_start_p , set_stage_start: Nat # Nat # Bool;
134 set_stage_end_r , set_stage_end_p , set_stage_end: Nat # Nat;
135

136 get_date_start_r , get_date_start_p , get_date_start: Nat # Nat;
137 get_date_end_r , get_date_end_p , get_date_end: Nat # Nat # Nat;
138 set_date_start_r , set_date_start_p , set_date_start: Nat # Nat # Nat;
139 set_date_end_r , set_date_end_p , set_date_end: Nat # Nat;
140

141 proc
142 % Flag , Stage and Date registers
143 Flag(id: Nat , b: Bool , stat: StatusB) =
144 TrueFlag(id, b). Flag() +
145 sum pid: Nat. valid_id(pid) -> (
146 sum b': Bool. set_flag_start_r(pid , id, b'). Flag(stat=start_writer(stat , pid , b'))
147 +
148 get_flag_start_r(pid , id). Flag(stat=start_reader(stat , pid))
149 +
150 (went_wrong(stat , pid) -> (
151 sum b': Bool. (
152 set_flag_end_r(pid , id). Flag(b=b', stat=end_writer(stat , pid))
153 +
154 get_flag_end_r(pid , id, b'). Flag(stat=end_reader(stat , pid))))
155 <> (
156 set_flag_end_r(pid , id). Flag(b=stored_value(stat), stat=end_writer(stat , pid))
157 +
158 get_flag_end_r(pid , id, b). Flag(stat=end_reader(stat , pid))))
159);
160

161 Stage(id: Nat , b:Bool , stat:StatusB) =
162 sum pid: Nat. valid_id(pid) -> (
163 sum b': Bool. set_stage_start_r(pid , id , b'). Stage(stat=start_writer(stat , pid , b'))
164 +
165 get_stage_start_r(pid , id). Stage(stat=start_reader(stat , pid))
166 +
167 (went_wrong(stat , pid) -> (
168 sum b': Bool. (
169 set_stage_end_r(pid , id). Stage(b=b', stat=end_writer(stat , pid))
170 +
171 get_stage_end_r(pid , id , b'). Stage(stat=end_reader(stat , pid))))
172 <> (
173 set_stage_end_r(pid , id). Stage(b=stored_value(stat), stat=end_writer(stat , pid))
174 +
175 get_stage_end_r(pid , id , b). Stage(stat=end_reader(stat , pid))))
176);
177

178 Date(id: Nat , d: Nat , stat: StatusN) =

34

179 sum pid: Nat. valid_id(pid) -> (
180 sum n: Nat. in_domain(n) -> (set_date_start_r(pid , id , n).
181 Date(stat=start_writer(stat , pid , n)))
182 +
183 get_date_start_r(pid , id). Date(stat=start_reader(stat , pid))
184 +
185 (went_wrong(stat , pid) -> (
186 sum n': Nat. in_domain(n') -> (
187 set_date_end_r(pid , id). Date(d=n', stat=end_writer(stat , pid))
188 +
189 get_date_end_r(pid , id, n'). Date(stat=end_reader(stat , pid))))
190 <> (
191 set_date_end_r(pid , id). Date(d=stored_value(stat), stat=end_writer(stat , pid))
192 +
193 get_date_end_r(pid , id, d). Date(stat=end_reader(stat , pid))))
194);
195

196 % only works for the two thread example
197 LeastRecentAccess(v: Nat) =
198 Entered(1). LeastRecentAccess(0) +
199 Entered(0). LeastRecentAccess(1) +
200 TrueLeastRecentAccess(v). LeastRecentAccess();
201

202 % The actual processes
203 P(id: Nat) =
204 set_flag_start_p(id, id, true). set_flag_end_p(id, id)|wish(id) . R1(id);
205

206 R1(id: Nat) =
207 set_stage_start_p(id, id, false)|Loop. set_stage_end_p(id , id)|Loop. R2(id);
208

209 R2(id: Nat) =
210 get_flag_start_p(id, other(id))|Loop. sum flag_other: Bool.
211 get_flag_end_p(id , other(id), flag_other)|Loop.
212 get_date_start_p(id, id)|Loop. sum d: Nat. in_domain(d) ->
213 get_date_end_p(id , id , d)|Loop.
214 get_date_start_p(id, other(id))|Loop. sum date_other: Nat. in_domain(date_other) ->
215 get_date_end_p(id , other(id), date_other)|Loop.
216 ((flag_other == false || d < date_other) -> R3(id) <> R2(id));
217

218 R3(id: Nat) =
219 set_stage_start_p(id, id, true)|Loop. set_stage_end_p(id , id)|Loop.
220 get_stage_start_p(id, other(id))|Loop. sum stage_other: Bool.
221 get_stage_end_p(id, other(id), stage_other)|Loop.
222 (stage_other -> R1(id) <> C(id));
223

224 C(id: Nat) =
225 enter(id). leave(id).
226 get_date_start_p(id, id). sum d: Nat. in_domain(d) -> get_date_end_p(id , id , d).
227 get_date_start_p(id, other(id)). sum date_other: Nat. in_domain(date_other) ->
228 get_date_end_p(id , other(id), date_other).
229 set_date_start_p(id, id, max(d, date_other) + 1). set_date_end_p(id , id).
230 get_date_start_p(id, id). sum d_res: Nat. in_domain(d_res) ->
231 get_date_end_p(id , id , d_res).
232 ((d_res >= LAST) -> (
233 set_date_start_p(id, id, id). set_date_end_p(id, id)|Reset(id).
234 set_date_start_p(id, other(id), other(id)). set_date_end_p(id, other(id))|Reset(other(id)).
235 CF(id)) <> CF(id));
236

237 CF(id: Nat) =
238 set_stage_start_p(id, id, false). set_stage_end_p(id, id).
239 set_flag_start_p(id, id, false). set_flag_end_p(id, id).
240 P(id);

E.2 Initialization Property 3
9 init

10 hide ({
11 get_stage_start , get_stage_end , set_stage_start , set_stage_end ,
12 get_flag_start , get_flag_end , set_flag_start , set_flag_end ,
13 get_date_start , get_date_end , set_date_start , set_date_end ,
14 TrueFlag, TrueLeastRecentAccess, Entered, Reset},
15 allow ({
16 wish|set_flag_end ,
17 enter , leave ,
18 get_stage_start , get_stage_end , set_stage_start , set_stage_end ,
19 get_flag_start , get_flag_end , set_flag_start , set_flag_end ,
20 get_date_start , get_date_end , set_date_start , set_date_end ,
21 get stage start|Loop, get stage end|Loop, set stage start|Loop, set stage end|Loop,

35

22 get flag start|Loop, get flag end|Loop, set flag start|Loop, set flag end|Loop,
23 get date start|Loop, get date end|Loop, set date start|Loop, set date end|Loop,
24 set date end|Reset}},
25 comm ({
26 get_flag_start_r|get_flag_start_p -> get_flag_start ,
27 get_flag_end_r|get_flag_end_p -> get_flag_end ,
28 set_flag_start_r|set_flag_start_p -> set_flag_start ,
29 set_flag_end_r|set_flag_end_p -> set_flag_end ,
30 get_stage_start_r|get_stage_start_p -> get_stage_start ,
31 get_stage_end_r|get_stage_end_p -> get_stage_end ,
32 set_stage_start_r|set_stage_start_p -> set_stage_start ,
33 set_stage_end_r|set_stage_end_p -> set_stage_end ,
34 get_date_start_r|get_date_start_p -> get_date_start ,
35 get_date_end_r|get_date_end_p -> get_date_end ,
36 set_date_start_r|set_date_start_p -> set_date_start ,
37 set_date_end_r|set_date_end_p -> set_date_end},
38 P(0) || P(1) ||
39 Flag(0, false , default_statusB) || Flag(1, false , default_statusB) ||
40 Stage(0, false , default_statusB) || Stage(1, false , default_statusB) ||
41 Date(0, 0, default_statusN) || Date(1, 1, default_statusN)
42)));

E.3 Initialization Property 5
9 init

10 hide ({
11 get_stage_start , get_stage_end , set_stage_start , set_stage_end ,
12 get_flag_start , get_flag_end , set_flag_start , set_flag_end ,
13 get_date_start , get_date_end , set_date_start , set_date_end ,
14 TrueFlag, TrueLeastRecentAccess, Entered, Loop},
15 allow ({
16 wish|set_flag_end ,
17 enter , leave ,
18 get_stage_start , get_stage_end , set_stage_start , set_stage_end ,
19 get_flag_start , get_flag_end , set_flag_start , set_flag_end ,
20 get_date_start , get_date_end , set_date_start , set_date_end ,
21 get stage start|Loop, get stage end|Loop, set stage start|Loop, set stage end|Loop,
22 get flag start|Loop, get flag end|Loop, set flag start|Loop, set flag end|Loop,
23 get date start|Loop, get date end|Loop, set date start|Loop, set date end|Loop,
24 set date end|Reset}},
25 comm ({
26 get_flag_start_r|get_flag_start_p -> get_flag_start ,
27 get_flag_end_r|get_flag_end_p -> get_flag_end ,
28 set_flag_start_r|set_flag_start_p -> set_flag_start ,
29 set_flag_end_r|set_flag_end_p -> set_flag_end ,
30 get_stage_start_r|get_stage_start_p -> get_stage_start ,
31 get_stage_end_r|get_stage_end_p -> get_stage_end ,
32 set_stage_start_r|set_stage_start_p -> set_stage_start ,
33 set_stage_end_r|set_stage_end_p -> set_stage_end ,
34 get_date_start_r|get_date_start_p -> get_date_start ,
35 get_date_end_r|get_date_end_p -> get_date_end ,
36 set_date_start_r|set_date_start_p -> set_date_start ,
37 set_date_end_r|set_date_end_p -> set_date_end},
38 P(0) || P(1) ||
39 Flag(0, false , default_statusB) || Flag(1, false , default_statusB) ||
40 Stage(0, false , default_statusB) || Stage(1, false , default_statusB) ||
41 Date(0, 0, default_statusN) || Date(1, 1, default_statusN)
42)));

E.4 Initialization Property 6
9 init

10 hide ({
11 get_stage_start , get_stage_end , set_stage_start , set_stage_end ,
12 get_flag_start , get_flag_end , set_flag_start , set_flag_end ,
13 get_date_start , get_date_end , set_date_start , set_date_end ,
14 Loop},
15 allow ({
16 wish|set_flag_end ,
17 leave , % note that enter is not allowed
18 get_stage_start , get_stage_end , set_stage_start , set_stage_end ,
19 get_flag_start , get_flag_end , set_flag_start , set_flag_end ,
20 get_date_start , get_date_end , set_date_start , set_date_end ,
21 get stage start|Loop, get stage end|Loop, set stage start|Loop, set stage end|Loop,
22 get flag start|Loop, get flag end|Loop, set flag start|Loop, set flag end|Loop,
23 get date start|Loop, get date end|Loop, set date start|Loop, set date end|Loop,

36

24 TrueFlag, TrueLeastRecentAccess, SeenEntering,
25 set date end|Reset},
26 comm ({
27 enter|Entered -> SeenEntering,
28 get_flag_start_r|get_flag_start_p -> get_flag_start ,
29 get_flag_end_r|get_flag_end_p -> get_flag_end ,
30 set_flag_start_r|set_flag_start_p -> set_flag_start ,
31 set_flag_end_r|set_flag_end_p -> set_flag_end ,
32 get_stage_start_r|get_stage_start_p -> get_stage_start ,
33 get_stage_end_r|get_stage_end_p -> get_stage_end ,
34 set_stage_start_r|set_stage_start_p -> set_stage_start ,
35 set_stage_end_r|set_stage_end_p -> set_stage_end ,
36 get_date_start_r|get_date_start_p -> get_date_start ,
37 get_date_end_r|get_date_end_p -> get_date_end ,
38 set_date_start_r|set_date_start_p -> set_date_start ,
39 set_date_end_r|set_date_end_p -> set_date_end},
40 P(0) || P(1) ||
41 LeastRecentAccess(2) || % initialized to an unused id
42 Flag(0, false , default_statusB) || Flag(1, false , default_statusB) ||
43 Stage(0, false , default_statusB) || Stage(1, false , default_statusB) ||
44 Date(0, 0, default_statusN) || Date(1, 1, default_statusN)
45)));

F mCRL2 Counterexamples

Here, we show and explain the mCRL2-generated counterexamples for the properties that we
verified in Section 8 that did not hold on the model of Aravind’s BLRU algorithm.

F.1 Counterexample Property 2

Figure 3: Counterexample for eventual access on Aravind’s BLRU algorithm for 2 threads.

Figure 3 shows a counterexample for the eventual access property without fairness assumption.
Here, we see that thread 0 starts competing. It gets as far as setting its own stage to true and
seeing that the stage of thread 1 is still false, at this point thread 0 could execute the enter
action. However, then thread 1 starts competing (at set flag start(1, 1, true)), it goes through
the steps until it gets to the busy wait. There, since thread 0 still has its flag set to true and the
date of thread 1 is greater than that of thread 0, it cannot read the values that would allow it to
pass the wait.

37

At this point, we would expect thread 0 to enter the critical section, and then execute its exit
protocol, which would include making its own date greater than that of thread 1, which would
free thread 1 from the busy wait. But if thread 0 never gets to take those actions, thread 1 can
keep endlessly looping. This is what happens in this counterexample.

F.2 Counterexample Property 4 for 3 Threads

We found that a bound of 2 overtakes was not ensured when Aravind’s algorithm is used with
three threads. This was unsurprising, since the expected bound is 2n− 2 where n is the number
of threads. Still, the counterexample is included to show why the bound of 2 is not met. Figure
4 shows a counterexample generated by mCRL2. In this case, all actions except wish, enter
and leave have been hidden and the example has been reduced modulo divergence-preserving
branching bisimilarity.

Figure 4: Counterexample for bounded overtaking with bound 2 on Aravind’s BLRU algorithm
for 3 threads.

We can still see what happens: all three threads raise their flag, and thread 1 manages to win
the competition3. After thread 1 leaves the critical section and completes its exit protocol, the
dates are as follows: date[0] = 0, date[1] = 3, date[2] = 2. Thread 1 wishes for access to the
critical section again, the rest of the trace shows thread 1 being overtaken three times, violating
the property.

First, thread 0 has the lowest date and enters the critical section, setting its own date to 4 in
the exit protocol. Then thread 2 enters, since it now has the lowest date. In the exit protocol
for thread 2, it sets its date to the maximum value, so a reset occurs. After the reset, date[0] =
0, date[1] = 1, date[2] = 2. When thread 0 then wishes for access to the critical section again, it
can overtake thread 1 by having a lower date value. Thread 1 has been overtaken more than two
times.

3Thread 1 gets access before thread 0 does even though thread 0 has a lower initial date value, we showed this
is possible in the discussion of Property 6

38

F.3 Counterexample Property 6

Figure 5 shows a counterexample to Property 6. We are checking here that before a reset on the
date values happens (and complicates LRU), the LRU property is satisfied. Here, we consider the
LRU property satisfied if when both threads are competing, only the thread that had access to
the critical section least recently can access it. This is a very strict definition of the LRU property.

The trace shown is rather long, so to summarize what happens: thread 0 goes through the whole
cycle of doing the entry protocol, accessing the critical section, and then executing its exit protocol
without thread 1 doing anything. The reason that this (minimal) counterexample includes this is
because until one thread has had access to the critical section, we cannot say that either thread
had access “least recently”. It is only at the second set flag start(0, 0, true) that the meat of the
counterexample begins, this is near the top of the fourth vertical line. Once again, thread 0 goes
through the motions of the entry protocol, and manages to get all the way to the end where it
sets its own stage to true and sees that the stage of thread 1 is still false. At this point, thread 0
can take the enter action. But before it does, thread 1 raises its flag and starts competing. Then,
thread 0 enters the critical section, even though thread 1 had access least recently and it currently
competing.

Figure 5: Counterexample for LRU on Aravind’s BLRU algorithm for 2 threads, before a reset.

39

	Introduction
	Background
	This Report

	Algorithms
	Peterson's Algorithm
	Lamport's Bakery Algorithm
	Aravind's BLRU Algorithm

	Safe Registers
	Modeling Approach
	mCRL2
	Design Choices

	Safe Register Model
	Peterson's Algorithm with Safe Registers
	Model of Aravind's Algorithm
	Verification of Aravind's Algorithm
	Discussion and Future Work
	Quality of the Safe Register Model
	Further Verification

	Conclusion
	Safe Register Model
	Model of Peterson's with Safe Registers
	Model of Aravind's for 2 Threads with Safe Registers
	Model of Aravind's for 3 Threads with Safe Registers
	Model of Aravind's, Modified for Verification
	Main Model
	Initialization Property 3
	Initialization Property 5
	Initialization Property 6

	mCRL2 Counterexamples
	Counterexample Property 2
	Counterexample Property 4 for 3 Threads
	Counterexample Property 6

