NEAR-MINIMAL SPANNING TREES: A SCALING EXPONENT IN PROBABILITY MODELS

M. Lelarge, INRIA-ENS, France, marc.lelarge@ens.fr
David Aldous
C. Bordenave, University of California at Berkeley, United States, bordenav@eecs.berkeley.edu

We study the relation between the minimal spanning tree (MST) on many random points and the “near-minimal” tree which is optimal subject to the constraint that a proportion δ of its edges must be different from those of the MST. Heuristics suggest that, regardless of details of the probability model, the ratio of lengths should scale as $1 + \Theta(\delta^2)$. We prove this scaling result in the model of the lattice with random edge-lengths and in the 2-dimensional Euclidean model.