Consider a duopoly, where there are two identical firms but one processes orders according to a first-come first-served discipline and the other serves all orders simultaneously by allocating an equal capacity to each customer. Considering customers who individually wish to minimize the expected time until the end of their service, which firm would attract a larger share of the market? We model the situation in terms of a stochastic game among the customers. If a Nash equilibrium exists, it is shown that it is the unique equilibrium point. When customers are lost due to full buffers with a probability of approximately zero, it turns out that the firm sharing its resources must serve at a speed at least 15% faster than its competitor to guarantee a minimum market share of 50%.