We study an admissions control problem, where a queue with service rate $1 - p$ receives incoming jobs at rate $\lambda \in (1 - p, 1)$, and the decision maker is allowed to redirect away jobs up to a rate of p, with the objective of minimizing the time-average queue length.

We show that the amount of information about the future has a significant impact on system performance, in the heavy-traffic regime. When the future is unknown, the optimal average queue length diverges at rate $\sim \log \frac{1}{1 - \lambda}$, as $\lambda \to 1$. In sharp contrast, when all future arrival and service times are revealed beforehand, the optimal average queue length converges to a finite constant, $(1 - p)/p$, as $\lambda \to 1$. We further show that the finite limit of $(1 - p)/p$ can be achieved using only a finite lookahead window starting from the current time frame, whose length scales as $O \left(\log \frac{1}{1 - \lambda} \right)$, as $\lambda \to 1$. This leads to the conjecture of an interesting duality between queuing delay and the amount of information about the future.