We analyze a robust optimal stopping problem in a financial market with volatility uncertainty. This is a zero-sum controller-stopper game in which the stopper is trying to maximize its pay-off against an adverse player which tries to minimize this payoff by choosing the probability measure from a set \mathcal{P}_t of measures who are not necessarily equivalent. In particular, we analyze the upper Snell envelope Z of the reward process Y and by comparing it with the Snell envelope of Y under each individual probability \mathbb{P}, we show that Z is an $\mathcal{F}_t \triangleq \inf_{\mathbb{P} \in \mathcal{P}_t} \mathbb{E}_\mathbb{P} [\cdot]$--supermartingale, and a \mathcal{F}_τ--martingale up to the first time τ^* when Z meets Y. Consequently, τ^* is the optimal stopping time for the robust optimal stopping problem.