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1 Introduction

The importance of energy conservation is a topic which is greatly discussed. Energy conservation
is important to battle climate change, as discussed in the United Nations Climate Change
Conference, also known as COP26 [4]. The importance of energy conservation w.r.t. light has also
been emphasize by Signify at COP26 [3]. Furthermore, energy conservation can have economical
benefits as the energy prices are skyrocketing [2]. The U.S. Energy Information Administration
estimates that 8% of the total residential and commercial electricity consumption is used for
lightning [1]. Thus, the importance of efficient lighting is growing and as a result, more research
on lightning is is carried out, including this report.

Optical systems can be studied using either forward methods or inverse methods. In forward
methods, the target distribution is computed from the source distribution and the mapping of
the optical system. A well-known forward method is Monte-Carlo ray-tracing [5]. However, this
type of method has the disadvantage that it often relies on trial-and-error. That is, a target
distribution is computed. If the result is not desired, the optical system is altered and the
computation is repeated. This can be a long and tedious process if high precision results are
needed.

Alternatively, there are inverse methods. These methods are based on a given source and
target distribution. Subsequently, the mapping of the optical system is computed. This is a
direct solution method. In the inverse method that we consider, geometrical optics is used. In
geometrical optics, light propagation is approximated using rays which only travel in straight
paths. This approximation is based on the fact that the wavelength is minuscule compared to
the distances the light travels. Furthermore, we consider conservation of energy. That is, all
light emitted by the source should arrive at the target. Using the conservation of energy and the
formulation of an optical system, a partial differential equation can be derived for the optical
surface, which can be either a lens or a reflector. This partial differential equation is known as
the generalized Monge-Ampere equation.

In the derivation of the Monge-Ampere equation, optimal transport can be used. In optimal
transport problems, a certain quantity has to be moved from one location to a different location.
The goal is to find the mapping that moves the quantity while minimizing the effort or costs it
takes to move the quantity. Using theory from optical transport, conditions can be found for
finding a mapping. Furthermore, optimal transport can be used to formulate a cost function.
This function relates optical surfaces and or Hamiltonian functions and is used in the derivation
of the Monge-Ampère equation.

In order to solve the generalized Monge-Ampère equation, a numerical method is needed. The
method that we use is the generalized least squares method. Alongside the Monge-Ampère
equation, we impose a transport boundary condition. Subsequently, this system of equations
can be solved using an iterative three-step minimization process. The process includes the
minimization of three functionals that are used to impose the Monge-Ampere equation, impose
the transport boundary condition and lastly compute the mapping.

In section 2 of this report, we formulate the mathematical model of our optical system. We start
with a description of the geometry and introduce the variables that are needed. Subsequently,
we derive the optical path length and the cost function. Next we introduce a transformation of
coordinates from Cartesian coordinates to stereographic coordinates. We briefly discuss the

2



mapping. Afterwards, we introduce energy conservation that is used to derive the Monge-
Ampère equation. Lastly, we explain how optimal transport can be used to formulate problems in
illumination optics. In section 3, we explain the numerical method. We give a concise explanation
of all the steps of the generalized least squares method. These steps include functionals that
impose the Monge-Ampère equation and the transport boundary conditions. Finally, we explain
how to compute the mapping and the optical surfaces. In section 4, we study an example for the
point to point optical system. In this example, we derive formulas for the optical surfaces and
derive the mapping. In section 5, we discuss several aspects of the method that can be criticized.
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2 Mathematical model

In this section, we will formulate the mathematical model of our optical system. The source
intensity and target intensity are given. The goal is to design optical surfaces such that the
twice reflected rays leaving from the source arrive at the target with the desired target intensity.
We start with an introduction to the problem and the corresponding variables. Next we derive
Hamilton’s characteristic function and compute the cost function. Subsequently, we introduce
stereographic coordinates that are preferred for point sources and targets. Furthermore, we
formulate the optical mapping. Using this mapping and the stereographic coordinates, we
formulate the conservation of energy and the corresponding transport boundary conditions.
Finally, we introduce theory of optimal transport and see how this relates to illumination optics.

2.1 The optical system

We consider an optical system with a point source and a point target. The point source emits
rays which are twice reflected before arriving at the point target. The optical system is depicted
in Figure 1.

Figure 1: Illustration of the point-to-point optical system with two reflectors

The point source is located at Os in the source plane z = zs = 0. The rays leave the source with
unit direction vector ŝ = (s1, s2, s3)T. The target is located at Ot in the target plane z = zt = L,
a distance L from the source. The unit direction vector êz = (0, 0, 1) denotes the direction from
Os to Ot. Rays arrive at the target with unit direction vector t̂ = (t1, t2, t3)T. Furthermore, we
denote qs = (0, 0)T and ps = (s1, s2)T as the position and directions vectors of the rays emitted,
projected on the source plane. Similarly, qt = (0, 0)T and pt = (t1, t2)T are the position and
direction vectors of the rays arriving at the target, projected on the target plane. We denote the
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source and target domain by X and Y, respectively.

The reflectors are denoted in spherical coordinates by parametrizationsR1 : r1(θ, ϕ) = u(θ, ϕ)êr,1
andR2 : r2(σ, ψ) = v(σ, ψ)êr,2, where êr,1, êr,2 are the radial unit vectors from source and target,
respectively. Furthermore, θ and σ are the polar angles, i.e., θ, σ ∈ [0, π]. Furthermore, ϕ and
ψ are the azimuthal angles, i.e., ϕ,ψ ∈ [0, 2π). We choose the origin of the target coordinate
system to be a point that approximates the optical surface v. We write u(θ, ϕ) = u(ŝ) and
v(σ, ψ) = v(t̂).
In spherical coordinates, the unit direction vectors ŝ and t̂ are

ŝ =

sin(θ) cos(ϕ),
sin(θ) sin(ϕ),

cos(θ)

 , t̂ =

sin(σ) cos(ψ),
sin(σ) sin(ψ),

cos(σ)

 .

Next, we compute one of Hamilton’s characteristic functions. Since we are interested in the
source and target directions ps,pt, we consider the angular characteristic function T , which is
defined as

T (zs, zt,ps,pt) = V (zs, zt, qs, qt) + qs · ps − qt · pt,

where V is the point characteristic. The point characteristic, also known as the optical path
length, denotes the distance travelled by the light ray going from the source to the target. We
have already seen that qs = qt = (0, 0)T. Thus, the angular characteristic T is equal to the point
characteristic V . Furthermore, it holds that

∂T

∂ps
=
∂T

∂pt
= 0,

as shown in Section 2.7.4 of [6]. As a result, the angular characteristic T is independent of ps
and pt. Thus, the angular characteristic is constant. The optical path length can easily be found
to be

V (zs, zt, qs, qt) = u(ŝ) + v(t̂) + d(P1, P2),

where d(P1, P2) is the distance between points P1 and P2 and P1, P2 are the points where the
rays hit the first and second reflector, respectively. The distance between the reflectors can be
computed using that the summation of vectors over a cycle is zero. That is,

−−−→
OsP1 +

−−−→
P1P2 +

−−−→
P2Ot +

−−−→
OtOs = 0.

Substituting all vectors we obtain

−−−→
P1P2 = −

−−−→
OsP1 −

−→
P2 +

−−−→
OtOs,

= −u(ŝ)ŝ− v(t̂)t̂+ Lêz.

Thus the distance between P1 and P2 equals

d(P1, P2) = | − u(ŝ)ŝ− v(t̂)t̂+ Lêz|,

where | · | denotes the Euclidean distance. Substituting the distance between the reflectors, we
obtain

V (zs, zt, qs, qt) = u(ŝ) + v(t̂) + |Lêz − u(ŝ)ŝ− v(t̂)t̂|. (1)
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2.2 Derivation of cost function

In this section, we will derive the cost function. This is a function that relates the two optical
surfaces by separating the variables related to the optical surfaces. It is typically written as

ũ(ŝ) + ṽ(t̂) = c(ŝ, t̂),

where ũ and ṽ relate to the first and second reflector, respectively. We can use (1) to obtain an
expression for the cost function in terms of ŝ and t̂. This is done by scaling and transforming
the expressions for the reflectors, u(ŝ) and v(t̂). First, bringing u(ŝ), v(t̂) to the left-handside
and squaring on both sides gives

V 2 − L2 − 2u(ŝ)(V − Lêz · ŝ)− 2v(t̂)(V − Lêz · t̂) + 2u(ŝ)v(t̂)(1− ŝ · t̂) = 0. (2)

To simplify computations, we scale the equation by introducing

β =
V

L
, ū =

u(ŝ)

L
, v̄ =

v(t̂)

L
, (3)

and obtain

β2 − 1− 2ū(ŝ)(β − êz · ŝ)− 2v̄(t̂)(β − êz · t̂) + 2ū(ŝ)v̄(t̂)(1− ŝ · t̂) = 0, (4)

where we assume that L 6= 0, β > 1. In order to separate variables ū and v̄, we introduce
functions k1(ŝ) and k2(t̂), defined as

k1(ŝ) =
1

2ū(ŝ)(β − êz · ŝ)
, k2(t̂) =

1

2v̄(t̂)(β − êz · t̂)
. (5)

Multiplying (4) with k1k2, we obtain

(β2 − 1)k1k2 − k1 − k2 +
1− ŝ · t̂

2(β − êz · ŝ)(β − êz · t̂)
= 0,(

k1(ŝ)− 1

β2 − 1

)(
k2(t̂)− 1

β2 − 1

)
+

1− ŝ · t̂
2(β2 − 1)(β − êz · ŝ)(β − êz · t̂)

− 1

(β2 − 1)2
= 0. (6)

Finally, we introduce functions ũ(ŝ) and ṽ(t̂):

ũ(ŝ) = log

(
k1(ŝ)− 1

β2 − 1

)
, ṽ(t̂) = log

(
k2(t̂)− 1

β2 − 1

)
, (7)

where we assume the arguments of the logarithms to be positive. Substituting these functions
gives an optimal transport formulation ũ(ŝ) + ṽ(t̂) = c(ŝ, t̂) where

ũ(ŝ) + ṽ(t̂) = 2 log

(
1

β2 − 1

)
+ log

(
1− (β2 − 1)(1− ŝ · t̂)

2(β − êz · ŝ)(β − êz · t̂)

)
. (8)

2.3 Stereographic coordinates

We consider a point source and point target. Therefore, the source domain and target domain
are in spherical coordinates. It is convenient to transform this to stereographic coordinates. In
this transformation of coordinates, the unit direction vectors are projected on the equator plane
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z = 0. The vectors ŝ and t̂ are defined on the unit sphere S2. As a result, the source and target
domain become bounded and circular for cone-shaped beams. The stereographic coordinates
x(ŝ) and y(t̂) are defined as

x(ŝ) =

(
x1

x2

)
=

1

1± s3

(
s1

s2

)
=

1

1± cos(θ)

(
sin(θ) cos(ϕ)
sin(θ) sin(ϕ)

)
, (9a)

y(t̂) =

(
y1

y2

)
=

1

1± t3

(
t1
t2

)
=

1

1± cos(σ)

(
sin(σ) cos(ψ)
sin(σ) sin(ψ)

)
. (9b)

The corresponding inverse projections are

ŝ(x) =
1

1 + |x|2

 2x1

2x2

±(1− |x|2)

 , (10a)

t̂(y) =
1

1 + |y|2

 2y1

2y2

±(1− |y|2)

 . (10b)

The ±-signs in the stereographic projections (9a) and (9b) indicate the two options for the
stereographic projection. The projection can be chosen from the south pole (0, 0,−1) onto the
plane z = 0, leading to a plus sign. Alternatively, the projection can be chosen from the north
pole (0, 0, 1) onto the plane z = 0, leading to a minus sign. When using a projection from the
south pole, the stereographic projection is not defined for s3 = −1 and t3 = −1. For a projection
from the north pole, the projection is not defined for s3 = 1 and t3 = 1. The projections can
be chosen separately for the source and the target. For the light system depicted in 1, the best
choice would be a projection from the south for ŝ as well as for t̂. This will result in a bounded
domain on the plane z = 0 for ŝ and t̂.

2.4 The mapping

We have previously mentioned that we consider an inverse method for the optical system. This
means that given source intensity f and target intensity g, we want to find a mapping m : X → Y
that maps the rays leaving the source such that they arrive at the target after being twice
reflected. For stereographic source coordinates x and stereographic target coordinates y, we
denote the mapping as

m(x) = y, x ∈ X , y ∈ Y,

where X ,Y are now the source and target domain in stereographic coordinates, respectively.

2.5 Energy conservation

An important conditions for an optical system is energy conservation. This means that all light
emitted from the source should arrive at the target. The intensity of the point source is given
by the distribution f(θ, ϕ) in lumen per steradians [lm/sr]. The intensity of the target is given
by the distribution g(σ, ψ), again given in [lm/sr]. Energy conservation states that∫

A

f(θ, ϕ)dS(θ, ϕ) =

∫
t̂(A)

g(σ, ψ)dS(σ, ψ),
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for arbitrary A ⊂ S2 and image set t̂(A) ⊂ S2. As we use stereographic coordinates in the
optical system, we have to apply the transformation for the energy balance. This gives∫

x(A)

f̃(x)

∣∣∣∣ ∂ŝ∂x1
× ∂ŝ

∂x2

∣∣∣∣ dx =

∫
y(t̂(A))

g̃(y)

∣∣∣∣∣ ∂t̂∂y1
× ∂t̂

∂y2

∣∣∣∣∣dy,
where f̃ and g̃ are the intensities in stereographic coordinates. Computing the Jacobians resulting
from the coordinate transformation gives∫

x(A)

f̃(x)
4

(1 + |x|2)2
dx =

∫
y(t̂(A))

g̃(y)
4

(1 + |y|2)2
dy.

Thereafter, we substitute the mapping y = m(x) to obtain∫
x(A)

f̃(x)
4

(1 + |x|2)2
dx =

∫
x(A)

g̃(m(x))
4

(1 + |m(x)|2)2
|det

(
Dm(x)

)
|dx.

As this holds for arbitrary A, we obtain

det
(
Dm(x)

)
=

f̃(x)

g̃(m(x))

(1 + |m(x)|2)2

(1 + |x|2)2
, (11)

where we assume a positive determinant. Equation (11) is known as the Jacobian equation.

2.5.1 Transport boundary condition

The generalized Monge-Ampère equation is accompanied by the transport boundary condition:

m(∂X ) = ∂Y.

This condition states that the boundary of source domain X is mapped to the boundary of the
target domain Y. The condition is derived from the implicit boundary condition m(X ) = Y
together with the edge-ray principle, the proof of which can be found in Section 4.5 of [6].

2.6 Optimal transport

In this section, we will explain the optimal transport problem and explain how this relates to
optical design problems. We will use optimal transport to derive the Monge-Ampère equation.
This derivation will be concise but useful as it gives more insight in the underlying minimization
problem. For a more detailed derivation, see Section 4.3 of [6].

The goal in optimal transport is to find a mapping m : X → Y that transforms a measure µ on
X to a measure ν on Y while minimizing the cost of transport. We denote the push-forward of µ
by m as m#(µ). The first formulation of an optimal transport problem was given by Gaspard
Monge in 1781 [7]. He formulated the problem as follows.

Formulation 2.1 (Monge). Let c : X ×Y → R be a Borel-measurable function. Let µ and ν be
probability measures on X and Y, respectively. Then the aim is to find a mapping m: X → Y
that attains the infimum

inf
m∈M

I[m] = inf
m∈M

∫
X
c(x,m(x))dµ(x), (12)

where M is the set of all measure-preserving mappings such that m#(µ) = ν, that is, ν =
µ ◦ m−1.
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Monge’s formulation of the optimal transport problem can be ill-posed as an m such that
m#(µ) = ν does not always exist [Section 4.3 of [6]]. In 1942, Kantorovich formulated the
same problem.

Formulation 2.2 (Monge-Kantorovich). Let Γ(µ, ν) be the collection of probability measures on
X ×Y with marginals µ on X and ν on Y. That is, for all A ⊂ X : γ(A×Y) = µ(A) and for all
B ⊂ Y: γ(X ×B) = ν(B). The aim is to find the infimum

inf
γ∈Γ(µ,ν)

J [γ] = inf
γ∈Γ(µ,ν)

∫
X×Y

c(x,y)dγ(x,y). (13)

This formulation is known as the Monge-Kantorovich formulation. It can be shown that under
some conditions on the cost function, a pair (u, v) and a mapping m can be found that minimizes
the transportation costs as stated in the Monge-Kantovorich formulation (13). This can be
shown using c-convex/c-concave functions and c-convex/c-concave pairs. All further definitions
and derivations start with the formulation of the cost function:

v(y)− u(x) = c(x,y).

Note that this formulation differs a minus sign from previous notations. However, the two
formulations can be interchanged.
We start with the definitions for c-transforms [Section 4.3 of [6]].

Definition 1. The c-transform v∗ : X → R of v : Y → R is defined as

∀x ∈ X : v∗(x) = sup
y∈Y

(−c(x,y) + v(y)). (14)

Definition 2. The c-transform u∗ : Y → R of u : X → R is defined as

∀y ∈ Y : u∗(y) = inf
x∈X

(c(x,y) + u(x)). (15)

Next we define c-convex and c-concave functions.

Definition 3. A function u : X → R is c-convex if there exists v : Y → R such that the
c-transform of v equals u, i.e., u = v∗.

Definition 4. A function u : X → R is c-concave if the supremum and infimum in (14) and
(15) are interchanged and there exists v : Y → R such that the c-transform of v equals u, i.e.,
u = v∗.

Lastly, we have to define a c-convex/c-concave pair.

Definition 5. For a conjugate pair (u, v) with u = v∗ and v = u∗, leading to u = u∗∗, we define
a c-convex pair as

∀x ∈ X : u(x) = max
y∈Y

(v(y)− c(x,y)), (16a)

∀y ∈ Y : v(y) = min
x∈X

(u(x) + c(x,y)), (16b)

where u is c-convex and v is c-concave.
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Definition 6. For a conjugate pair (u, v) with u = v∗ and v = u∗, leading to u = u∗∗, we define
a c-concave pair as

∀x ∈ X : u(x) = min
y∈Y

(v(y)− c(x,y)), (17a)

∀y ∈ Y : v(y) = max
x∈X

(u(x) + c(x,y)), (17b)

where u is c-concave and v is c-convex.

Now that all definitions are given, we can formulate conditions for a minimizer of the optimal
transport problem.

Theorem 1. For a bounded and continuous cost function c with injective ∇xc(x, ·), there exists
a conjugate pair (u, v) that minimizes the Monge-Kantorovich problem (13) and a corresponding
unique map that minimizes the Monge-problem (12). Furthermore, there exists a c-convex/c-
concave u such that

∇u(x) +∇xc(x,m(x)) = 0, (18)

which is a stationary point of u(x) + c(x,y) in (16b) or (17b). As a result, the mapping can be
found implicitly using (18).

A proof of existence can be found in [8].

2.6.1 Derivation of the Monge-Ampère equation

In the previous section, we saw that there exists a mappingm : X → Y that satisfies the Jacobian
equation (11) and a conjugate pair (u, v) that satisfies v(y)− u(x) = c(x,y). Furthermore, the
mapping m can be found implicitly using (18). However, it should hold that the mixed Hessian
matrix, defined as

C = Dxyc =

(
∂2c

∂x1∂y1
∂2c

∂x1∂y2
∂2c

∂x2∂y1
∂2c

∂x2∂y2

)
,

is invertible. In order to obtain the minimum or maximum defined in the c-convex/c-concave
pairs, it should hold that

P (x) = −D2u(x)−Dxxc(x,m(x)) (19)

is symmetric negative definite (SND) or symmetric positive definite (SPD), respectively.
Differentiating (18) w.r.t. x, we obtain

D2u(x) + Dxxc(x,m(x)) +C(x,m(x))Dm(x) = 0.

Substituting P from (19) gives

C(x,m(x))Dm(x) = P (x). (20)

Now taking the determinants and using the Jacobian equation (11) gives

det
(
Dm(x)

)
=

det
(
P (x)

)
det
(
C(x,m(x))

) =
f(x)

g(m(x))
= F (x,m(x)), (21)
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where we assume that f, g have incorporated the Jacobians due to coordinate transformation
and denote the right-handside by F . Finally, we substitute P again to obtain the generalized
Monge-Ampère equation

det
(

D2u(x) + Dxxc(x,m(x))
)

= det
(
C(x,m(x))

) f(x)

g(m(x))
.
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3 Numerical method

In this section, we will explain the numerical method which is the generalized least squares
algorithm. A full documentation of this algorithm is found in Section 6 of [6]. We will give a
concise explanation of the algorithm.

In the first part of the algorithm, the mappingm is computed using a 3-step iterative minimization
process. The mapping m can be computed from the generalized Monge-Ampère equation
(20) subject to (11). Alongside the Monge-Ampère equation, there is the transport boundary
condition which states

m(∂X ) = ∂Y. (22)

From (21) and (22), the mapping can be computed using a constrained minimization problem.
This is done via an iterative process minimizing three functionals.
The first functional JI , defined as

JI [m,P ] = 1
2

∫∫
X
‖C Dm− P ‖2dx,

where ‖·‖ denotes the Frobenius norm, enforces (20) under the constraint det(P ) = F det(C).
The second functional JB , defined as

JB [m, b] = 1
2

∮
∂X
|m− b|2ds,

where b : ∂X → ∂Y and | · | denotes the L2−norm, enforces the transport boundary condition
(22). Lastly, functional J , defined as

J [m,P , b] = αJI [m,P ] + (1− α)JB [m, b],

is a weighted average of functionals JI and JB for 0 < α < 1. By choosing α, you can either
emphasize the boundary or emphasize the interior.
The iterative process starts with initial guess m0 and cost matrix C(·,m0). The iteration steps
are

bn+1 = argmin
b∈B

JB [mn, b],

P n+1 = argmin
p∈P

JI [m
n,P ],

mn+1 = argmin
m∈M

J [m,P n+1, bn+1],

where the spaces are defined as

B = {b ∈ C1(∂X )2 | b(x) ∈ ∂Y},
P = {P ∈ C1(X )2×2 |P SND/SPD, det(P ) = det

(
F(·,m)

)
det
(
C(·,m)

)
},

M = C2(X )2.

As an initial guessm0, we map the smallest box enclosing the source domain X , i.e., [amin, amax]×
[bmin, bmax] to the smallest box enclosing the target domain Y, i.e., [cmin, cmax]× [dmin, dmax].
Furthermore, the source grid is discretized using a rectangular grid of size N1 ×N2:

x1,i = amin + (i− 1)h1,

x2,j = bmin + (j − 1)h2,
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where h1 and h2 are the constant grid sizes. We will now explain each step of the 3-step
minimization process separately.

3.1 Computation of b

In the computation of b, we minimize the functional JB as this imposes the transport boundary
condition. The minimization can be performed pointwise since we do not integrate over derivative
of b, thus we compute

min
bij∈B

1
2 |mij − bij |2,

where mij = m(xij) and bij = b(xij). The point b is the point on the boundary ∂Y that
minimizes the distance between m(∂X ) and the target boundary ∂Y. This is computed for all
points xij . The minimum is computed using skew projections on line segments that are parallel
to fragments of the boundary ∂Y. A full explanation of the skew projection can be found in
Section 6.1.1 of [6].

3.2 Computation of P

In the computation of P , we minimize the functional JI , which imposes the generalized Monge-
Ampère equation (21). This minimization can again be performed pointwise since we do not
integrate over derivative of P . We want to solve the following constrained minimization problem

minimize 1
2‖Qs − P ‖2,

subject to det(P ) = F det
(
C(·,m)

)
).

where Qs = 1
2 (Q+QT) is the symmetric part of Q which is the central difference approximation

of Dm. An additional constraint is tr(P ) ≤ 0 or tr(P ) ≥ 0 for a c-convex or c-concave
solution u, respectively. In order to solve the minimization problem, the Lagrangian is computed.
Subsequently, the partial derivatives of the Lagrangian w.r.t elements of P and the Lagrangian
multiplier are computed and set equal to zero. Different stationary points can be found for
different values of the Lagrangian multiplier. A complete overview is given in Section 6.1.2 of
[6].

3.3 Computation of m

For the computation of m, we minimize the functional J . This minimization can not be done
pointwise since we integrate over a derivative of m. Therefore, we compute the first variation
w.r.t. m and set it equal to zero. The first variation is

δJ [m,P , b](η) = lim
ε→0

1

ε

(
J [m+ εη,P , b]− J [m,P , b]

)
.

This can be rewritten to be

δJ [m,P , b](η) = α

∫
X

(C Dm− P ) : C Dη dx+ (1− α)

∮
∂X

(m− b) · η ds, (23)

where : denotes the Frobenius inner product defined as A : B =
∑
i,j ĀijBij . Using the

fundamental lemma of calculus of variations, we can formulate a boundary value problem from
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(23):

∇ · (CTC Dm) = ∇ · (CTP ), x ∈ X , (24a)

(1− α)m+ α(CTC Dm)n̂ = (1− α)b+ αCTPn̂, x ∈ ∂X , (24b)

where n̂ is the outward unit normal on the source boundary ∂X . Boundary value problem (24)
is discretized using the finite volume method which leads to a linear system that is solved using
the mldivide operator in Matlab.

3.4 Computation of u

After convergence of the minimization problem which computes m, we can compute the optical
surface u. The surface u can be computed from (18). However, due to numerical errors, ∇xc
is not conservative anymore. As a result, a direct integration method does not give a unique
solution. Thus we compute the least-squares solution. This is done by minimizing the functional

I[u] = 1
2

∫
X
|∇u+∇xc(·,m)|2dx.

Similarly as before, this is solved by setting the first variation to zero:

δI[u](v) = lim
ε→0

1

ε

(
I[u+ εv]− I[u]

)
=

∫
X

(
∇u+∇xc(·,m)

)
·∇v dx.

Using Gauss’s theorem and the fundamental lemma of calculus of variations, we obtain the
following BVP:

∆u = −∇ ·∇xc(·,m), x ∈ X , (25a)

∇u · n̂ = −∇xc(·,m) · n̂, x ∈ ∂X , (25b)

where n̂ is the outward unit normal of ∂X . This BVP still does not give a unique solution. We
can compute a unique solution by choosing the value of u in one point. The computation of this
value is explained in [9]. This value is added as a constraint to the BVP. As a result, we can
uniquely solve BVP (25).

14



4 Example

In this section, we will consider a relatively simple example. The optical system is shown in
Figure 2.

Figure 2: Illustration of the point-to-point example with two reflectors

We consider the source to be at the origin, i.e., Os = (0, 0, 0). The target is located at a distance
L away along the z-axis, i.e., Ot = (0, 0, L). We consider two identically shaped paraboloids as
reflectors. The first reflector has focus Os and directrix z = d1. The second reflector has focus
Ot and directrix z = d2. Using these reflectors, all rays leaving the point source will be reflected
into a collimated beam. This beam is again reflected such that all rays arrive at the point target.
For the source and target, we consider a stereographic projection from the north pole.

4.1 Optical surfaces

A paraboloid with focus (a, b, c) and directrix z = d in Cartesian coordinates is given by

(x− a)2 + (y − b)2 + (z − c)2 = (z − d)2. (26)

4.1.1 First reflector

For the first reflector R1, we have focus Os = (0, 0, 0) and directrix z = d1. The location of the
directrix can be computed using a ray leaving the source in direction (0, 0,−1). The optical path
length will then be

V = 4| 12d1|+ L. (27)

Dividing (27) by L and taking the directrix on the negative z-axis, we get d1 = − 1
2L(β−1) Thus

the formula in Cartesian coordinates reads

x2 + y2 = −2zd1 + d2
1. (28)

Using the parametrization R1 : r1(θ, ϕ) = u(θ, ϕ)êr,1 and the inverse projection (10a) from the
north pole, we obtain Cartesian coordinates in terms of the stereographic source coordinates

15



x1, x2: xy
z

 = u ŝ(x) =
u

1 + |x|2

 2x1

2x2

−(1− |x|2)

 .

Substituting these Cartesian coordinates into (28) gives

4|x|2u2

(1 + |x|2)2
=

2ud1(1− |x|2)

1 + |x|2
+ d2

1. (29)

Solving for the location of the optical surface u = u(x) gives

u(x) = − 1
2d1(1 + |x|2). (30)

Thus we have obtained a formula for the first optical surface u(x) in terms of stereographic
coordinates x = (x1, x2)T.

In the derivation of the cost function, we have applied a transformation given by (3),(5) and (7).
This transformation also has to be applied to (30). Thus we first obtain ū:

ū(x) = 1
4 (β − 1)(1 + |x|2).

Next we compute k1:

k1(x) =
2

(β − 1)(1 + |x|2)
(
β + 1−|x|2

1+|x|2

) .
Lastly, we substitute k1 into (7) to obtain ũ:

ũ(x) = log

 2

(β − 1)(1 + |x|2)
(
β + 1−|x|2

1+|x|2

) − 1

β2 − 1


ũ(x) = log

(
β + 1− (β − 1)|x|2

(β2 − 1)(β + 1 + (β − 1)|x|2)

)
. (31)

4.1.2 Second reflector

The second reflector has focus Ot = (0, 0, L) and directrix z = d2. As we consider two identically
shaped reflectors, we can easily see that d2 = L+ |d1| = 1

2L(β + 1). Using (26), the reflector in
Cartesian coordinates is

x2 + y2 = 2z(L− d2) + d2
2 − L2. (32)

Similar as for the first reflector, we use parametrization R2 : r2(φ, ψ) = v(φ, ψ)êr,2 and inverse
projection (10b) from the south pole to obtain Cartesian coordinates written in stereographic
coordinates. However, we want a projection w.r.t. the target Ot = (0, 0, L)T. Thus we have
inverse projectionxy

z

 = −v t̂(y) +

0
0
L

 =
−v

1 + |y|2

 2y1

2y2

−(1− |y|2)

+

0
0
L

 .

16



Note that t̂ points towards the target, instead of away from the target, leading to a minus sign.
Substituting this into (32) gives the following equation for the location of the second optical
surface v = v(y):

4|y|2v2

(1 + |y|2)2
= 2(v

1− |y|2

1 + |y|2
+ L)(L− d2) + d2

2 − L2,

4|y|2v2

(1 + |y|2)2
= 2v

1− |y|2

1 + |y|2
(L− d2) + (L− d2)2 (33)

Solving for v gives

v(y) = − 1
2 (L− d2)(1 + |y|2).

We can now use that L− d2 = d1 and obtain

v(y) = − 1
2d1(1 + |y|2). (34)

Similar as for u, we have to apply the transformations (3), (5), (7). Firstly,

v̄(y) = 1
4 (β − 1)(1 + |y|2).

Subsequently,

k2(y) =
2

(β − 1)(β − 1 + (β + 1)|y|2)
.

Lastly, we obtain

ṽ(y) = log

 2

(β − 1)(1 + |y|2)
(
β + 1−|y|2

1+|y|2

) − 1

β2 − 1


ṽ(y) = log

(
β + 1− (β − 1)|y|2

(β2 − 1)(β + 1 + (β − 1)|y|2)

)
. (35)

Now that we have computed both reflectors, we can make a 3D plot of our optical system. This
can be seen in Figure 3.
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Figure 3: 3D illustration of the example, L = 2, β = 6

4.2 The mapping

For this example, we can show see that the mapping in stereographic coordinates is m(x) = −x.
We start with the fact that vectors over a cycle are zero:

−−−→
OsP1 +

−−−→
P1P2 +

−−−→
P2Ot +

−−−→
OtOs = 0,

uŝ+ vt̂ = (L− d(P1, P2))êz.

For the first two components, we obtain

u

(
s1

s2

)
+ v

(
t1
t2

)
= 0.

Substituting the stereographic projections, we obtain

u(1− s3)x+ v(1− t3)y = 0, (36)

2ux

1 + |x|2
+

2vy

1 + |y|2
= 0.

Taking the inner product with x as well as y results in two equations:

2|x|2

1 + |x|2
u+

2x · y
1 + |y|2

v = 0,

2x · y
1 + |x|2

u+
2|y|2

1 + |y|2
v = 0.

As this is linear system and we do not look for the trivial solution, we set the determinant of the
linear operator equal to zero. This gives

(x · y)2 = |x|2|y|2.
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Thus we obtain that x = ±y. However, x = y contradicts (36). Thus we find that the mapping
is m(x) = y = −x.

4.3 Cost function

If we use steregraphic projections from the north pole, the cost function (8) becomes

c(x,y) = 2 log

(
1

β2 − 1

)
+ log

(
(β + 1)2 + 2(β2 − 1)x · y + (β − 1)2|x|2|y|2(
β + 1 + (β − 1)|x|2

) (
β + 1 + (β − 1)|y|2

) ) ,
= log

(
(β + 1)2 + 2(β2 − 1)x · y + (β − 1)2|x|2|y|2

(β2 − 1)2
(
β + 1 + (β − 1)|x|2

) (
β + 1 + (β − 1)|y|2

))

Using (31) and (35), we can compute ũ+ ṽ:

ũ(x) + ṽ(y) = log

(
(β + 1− (β − 1)|y|2)(β + 1− (β − 1)|x|2)

(β2 − 1)2(β + 1 + (β − 1)|y|2)(β + 1 + (β − 1)|x|2)

)
,

= log

(
(β + 1)2 − (β2 − 1)(|x|2 + |y|2) + (β − 1)2|x|2|y|2

(β2 − 1)2(β + 1 + (β − 1)|x|2)(β + 1 + (β − 1)|y|2)

)
.

If we substitute the mapping y = −x, we find that

c(x,−x) = log

 (β + 1)2 − 2(β2 − 1)|x|2 + (β − 1)2|x|2|x|2

(β2 − 1)2
(
β + 1 + (β − 1)|x|2

)2
 ,

ũ(x) + ṽ(−x) = log

(
(β + 1)2 − 2(β2 − 1)|x|2 + (β − 1)2|x|2|x|2

(β2 − 1)2(β + 1 + (β − 1)|x|2)2

)
.

Thus for our example, we have found that it indeed holds that ũ(x) + ṽ(y) = c(x,y).
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5 Discussion

In Section 2.2, we have derived the cost function. There are two points of discussion in this
derivation. Firstly, in the beginning of the derivation, we have squared equation (2). Squaring
an equation that needs to be solved can introduce a second solution while in the first place, only
one solution is desired. This phenomena was also discussed in Section 3.7 of [6]. Unfortunately,
we were unable to explain the meaning of this second solution.

Secondly, in the transformation of u to ũ and similar for v, we have taken the logarithm. This
was done in (7). Similar computations were done in Section 3.4 of [10]. It is only allowed to
take the logarithm over a positive argument. However, we were unable to verify whether the
argument is always positive. This means that we might compute solutions that are not defined.

Lastly, we note that in the computation of the reflectors (29) and (33), we solved quadratic
equations. Thus, two solutions could be found for both u as well as for v. For both cases, we
found one paraboloid that had the desired geometry and a second solution which was not defined
on our domain. Therefore, we discarded the second solution.
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