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Di�erent industry sectors, di�erent problems

I Telecommunication: Stable workforce assignments.

I Telecommunication: Designing FTTH network.

I Airport ground operations: Shift scheduling of workers.

I Logistics: Planning routes of vehicles.

I Machine learning: Constructing max-accuracy decision trees.
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I Shift scheduling of airport workers: 200 workers, 4 weeks, 5 skills.

I Planning routes of vehicles: 100-1K customers, 50 vehicles.

I Decision trees: 5K data instances, 50 attributes.
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Common properties of the problems

I Strict feasibility requirements.

I Worst cases: NP-Hard.

I Exponentially many feasible solutions

I Many local optimal points.
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Standard formulations

One big formulation, low-quality bound.

I Stable workforce assignments: Worker-job decisions.

I Shift scheduling of airport workers: Worker-shift decisions.

I Planning routes of vehicles: Vehicle-customer decisions.

I Decision trees: Data row-tree node decisions.
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Master formulation

I Linear programming model:

• More complicated objects as decision variables.

I Object set

• has exponentially many items.
• initially is empty or has few items.

I Iteratively �nd promising columns and add them to object set.

I When no promising column exists: certi�cate for optimality.
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Main loop of Column Generation

I Reduced cost of a column is

• violation amount of the corresponding dual constraint.
• estimated cost change per unit increase in its value.

I Adding promising columns

• completes dual feasibility.
• improves primal objective.

I No dual feasibility improvement ≈ primal optimality



March 14, 2018
PAGE 35

/ department IE&IS

Main loop of Column Generation

I Reduced cost of a column is

• violation amount of the corresponding dual constraint.

• estimated cost change per unit increase in its value.

I Adding promising columns

• completes dual feasibility.
• improves primal objective.

I No dual feasibility improvement ≈ primal optimality



March 14, 2018
PAGE 36

/ department IE&IS

Main loop of Column Generation

I Reduced cost of a column is

• violation amount of the corresponding dual constraint.
• estimated cost change per unit increase in its value.

I Adding promising columns

• completes dual feasibility.
• improves primal objective.

I No dual feasibility improvement ≈ primal optimality



March 14, 2018
PAGE 37

/ department IE&IS

Main loop of Column Generation

I Reduced cost of a column is

• violation amount of the corresponding dual constraint.
• estimated cost change per unit increase in its value.

I Adding promising columns

• completes dual feasibility.
• improves primal objective.

I No dual feasibility improvement ≈ primal optimality



March 14, 2018
PAGE 38

/ department IE&IS

Main loop of Column Generation

I Reduced cost of a column is

• violation amount of the corresponding dual constraint.
• estimated cost change per unit increase in its value.

I Adding promising columns

• completes dual feasibility.

• improves primal objective.

I No dual feasibility improvement ≈ primal optimality



March 14, 2018
PAGE 39

/ department IE&IS

Main loop of Column Generation

I Reduced cost of a column is

• violation amount of the corresponding dual constraint.
• estimated cost change per unit increase in its value.

I Adding promising columns

• completes dual feasibility.
• improves primal objective.

I No dual feasibility improvement ≈ primal optimality



March 14, 2018
PAGE 40

/ department IE&IS

Main loop of Column Generation

I Reduced cost of a column is

• violation amount of the corresponding dual constraint.
• estimated cost change per unit increase in its value.

I Adding promising columns

• completes dual feasibility.
• improves primal objective.

I No dual feasibility improvement ≈ primal optimality



March 14, 2018
PAGE 41

/ department IE&IS

Outline

Some real-life decision problems
Standard formulations

Basics of Column Generation
Master formulations

Case: Shift scheduling of airport workers
Problem description
Master formulation
Reduced cost and pricing problem

Column Generation overview

Towards an integer solution

Using data science in the CG approach



March 14, 2018
PAGE 42

/ department IE&IS

Problem de�nition: Shift scheduling

We are given:

I multi-skilled workers with availability info.

I service demand within a planning horizon
I labor regulations about shifts:

• minimum resting time between shifts,
• maximum working time due to contracts,
• night shifts: longer resting times.
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Basic notation

I Let S be set of all schedules st. a schedule s ∈ S

• covers time interval i ∈ N if si = 1, not otherwise.
• should comply all regulations
• should have length bet. 3-9 hrs.

I For worker w ∈W

• Skdw indicates if worker w is skilled in skill type d ∈ D.

I Service demand Ri,d at time i in skill type d,
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Master IP formulation

Min
∑
w∈W

∑
s∈S

cswxsw

subject to ∑
w∈W

Skdws
ixsw ≥ Ri,d, d ∈ D, i ∈ N

∑
s∈S

xsw = 1, w ∈W

xsw ∈ {0, 1}, s ∈ S, w ∈W



March 14, 2018
PAGE 56

/ department IE&IS

LP Relaxation of Master formulation

Min
∑
w∈W

∑
s∈S′

cswxsw

subject to ∑
w∈W

Skdws
ixsw ≥ Ri,d, d ∈ D, i ∈ N

∑
s∈S′

xsw = 1, w ∈W

0 ≤ xsw ≤ 1, s ∈ S ′, w ∈W

Note: Restricted set S ′ ⊂ S
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LP Relaxation of Master formulation

Min
∑
w∈W

∑
s∈S′

cswxsw Duals

subject to ∑
w∈W

Skdws
ixsw ≥ Ri,d, d ∈ D, i ∈ N πi,d

∑
s∈S′

xsw = 1, w ∈W θw

0 ≤ xsw ≤ 1, s ∈ S ′, w ∈W
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Reduced cost of column xsw

Dual constraint of column xsw:∑
d∈D

∑
i∈N

Skdws
iπ∗i,d + θ∗w ≤ csw (1)

Reduced cost of column xsw:

c̄sw = csw −
∑
d∈D

∑
i∈N

Skdws
iπ∗i,d − θ∗w (2)

Case c̄sw < 0: (1) Estimated objective decrease (why?), (2) dual feasibility
violation.
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Pricing problem: Objective

Pricing problem: Find the most promising column (schedule) with the

objective

min
s∈S,w∈W

{
csw −

∑
d∈D

∑
i∈N

Skdws
iπ∗i,d − θ∗w

}
(3)

= max
s∈S,w∈W

{∑
i∈N

si
(∑

d∈D

Skdwπ
∗
i,d − ciw

)}
− θ∗w (4)
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Pricing problem: Modeling

De�ne a graph,

I reds: shifts, blues: resting times, blacks: unavailability.

I labor regulations: arc structure and side constraints
I Solve max

a
waxa subject to

• conservations, resting after shifts, passing unavailability arcs.

I Pricing: �nd the constrained 0− |N | "Longest Path"!
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Pricing problem: Modeling

A schedule s on the graph looks like:
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Column Generation overview

I Initialization:

• Formulate Master ILP model, obtain the Restricted Master
Problem (RMP).

• Express the reduced costs, formulate pricing.

I Warm up: Find several initial columns for a warm start of RMP.

I Step 1: Solve the Restricted Master Problem, pass duals to

pricing.
I Step 2: Solve pricing:

• If ∃i : c̄i < 0: update S ′, go to Step 1.
• If ∀i : c̄i ≥ 0: RMP is solved to optimality, go to Step 3.

I Step 3: Output the RMP solution.
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Towards integer solutions

Having fractional RMP optimal solution, we have two choices:

I Use rounding heuristics:

• Use meta heuristics to �nd a feasible solution quickly (hopefully)
• Make decisions how to (smartly) round the fractional solution

I Start a smart enumeration, e.g. Branch-and-Price, either

• to obtain "optimal" integer sol'n.
• to output "best-found" integer sol'n with quality measure in a
time limit.

.
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I Use rounding heuristics:

• Use meta heuristics to �nd a feasible solution quickly (hopefully)
• Make decisions how to (smartly) round the fractional solution

I Start a smart enumeration, e.g. Branch-and-Price, either

• to obtain "optimal" integer sol'n.
• to output "best-found" integer sol'n with quality measure in a
time limit.

.
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Using data science: Advantage or waste?

Consider a data of instance history and their solutions.

I Find "similar" instances and round the current fractional solution

towards corresponding solutions.

I Simply �nd "similar" previous solutions to the current fractional

solution and round accordingly.

I Cluster instances and analyze the commonalities (patterns) in the

cluster solutions.
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THANKS
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